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Abstract We develop a new multistep monotone map approach to characterize min-
imal state-space recursive equilibrium for a broad class of infinite horizon dynamic
general equilibrium models with positive externalities, dynamic complementarities,
public policy, equilibrium indeterminacy, and sunspots. This new approach is global,
defined in the equilibrium version of the household’s Euler equation, applies to
economies for which there are no known existence results, and existing methods
are inapplicable. Our methods are able to distinguish different structural properties of
recursive equilibria. In stark contrast to the extensive body of existing work on these
models, our methods make no appeal to the theory of smooth dynamical systems that
are commonly applied in the literature. Actually, sufficient smoothness to apply such
methods cannot be established relative to the set of recursive equilibria. Our partial
ordering methods also provide a qualitative theory of equilibrium comparative statics
in the presence of multiple equilibrium. These robust equilibrium comparison results
are shown to be computable via successive approximations from subsolutions and
supersolutions in sets of candidate equilibrium function spaces. We provide applica-
tions to an extensive literature on local indeterminacy of dynamic equilibrium.
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1 Introduction

Since thework of Lucas et al. (1971) and Prescott andMehra (1980), recursive equilib-
rium (RE, in short) has been a key focal point of both applied and theoretical work in
characterizing sequential equilibrium for dynamic general equilibriummodels in such
fields as macroeconomics, international trade, growth theory, industrial organization,
financial economies, andmonetary theory.1 When dynamic economies are Pareto opti-
mal, in the case of homogeneous agent models with standard concavity conditions, RE
is unique and can be computed using standard dynamic programming algorithms. In
this case, equilibrium comparative statics analysis is reduced to either application of
local or global implicit function theorem-based smooth dynamical systems or appli-
cations of dynamic lattice programming methods to the social planner’s problem. In
nonoptimal economies, even the existence of dynamic equilibrium becomes compli-
cated to prove, let alone obtain equilibrium comparative statics results. Although some
recent extensions of dynamic lattice programmingmethods have beenmade for nonop-
timal economies (including those with heterogeneous agents) in Mirman et al. (2008)
and Acemoglu and Jensen (2015), there are important nonoptimal homogeneous agent
economies in which these tools are difficult to apply. Further, an extensive literature
on monotone mapmethods has stemmed from the pioneering work of Coleman (1991,
1997, 2000) and Greenwood and Huffman (1995), but these methods are also known
to fail in some nonoptimal models (see Santos 2002, Sect. 3.2).2

In this paper, we propose a new method for obtaining existence as well as equilib-
rium comparison in a well-studied class of nonoptimal homogeneous agent economies
with dynamic complementarities. Our method extends the scope of parameterized
fixed point methods to models with local indeterminacy, multiple equilibrium, and
discontinuous minimal state-space RE. We focus on dynamic general equilibrium
models studied extensively in the literature with externalities and nonconvexities in
production, public or monetary policy, monopolistic competition, and some models
with credit constraints on firms under incomplete markets and/or adverse selection. 3

Very importantly, our results are based on global methods and make no appeal to local
analysis, in contrast to the literature studying dynamic models with complementarities
using the methods of smooth dynamical systems to characterize sequential equilib-
rium near steady states as in the seminal work of Benhabib and Farmer (1994), among
numerous others.4

1 See Stokey et al. (1989).
2 See alsoDatta et al. (2002),Morand andReffett (2003), andDatta et al. (2005),Datta (2017) for extensions
of monotone map methods.
3 The “technology”we specify can be interpreted as a “reduced-form” for production in various nonoptimal
economies, including models with monopolistic competition, taxes, learning, production externalities, and
even some cash-in-advance models. See Benhabib and Farmer (1994), Greenwood and Huffman (1995),
and Datta et al. (2002) for examples of other economies that fit this structure.
4 For recent papers, see Shimokawa (2000), Beaudry and Portier (2007), Jaimovich (2007, 2008), Wang
andWen (2008), Guo and Harrison (2010), Antoci et al. (2011), d’Albis et al. (2012), and Huang and Meng
(2012), Lloyd-Braga et al. (2014), Benhabib et al. (2013), Liu and Wang (2014), and Feng and Hoelle
(2017).
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Our method involves a new class of “two-step” monotone maps defined on par-
tially ordered sets. The key intuition underlying these multistep methods is simple:
In the first step, we construct solutions to a parameterized fixed point problem that
guarantee necessary structural restrictions implied by household optimization relative
to individual state variables. Then, using a fixed point monotone comparative statics
result on “first-step” fixed points, we define a second-step monotone operator, which
verifies necessary aggregate state consistency conditions for a RE. The second-stage
fixed point structure allows us to compute state asymmetric RE, which is critical in
the class of models with local indeterminacy for example. As the two-step procedure
verifies the existence of RE via a monotone operator, robust equilibrium comparative
statics can be delivered in some deep parameters. An important implication is that the
set of state asymmetric RE could be huge—consistent with results on local indetermi-
nacy of sequential equilibrium in the literature. Note that, we do not need monotone
RE for these methods to work, we need monotone operators defined on suitable chain
complete partially ordered sets. Further, we do not need continuous RE. Indeed, our
methods are designed specifically to allow for and construct discontinuous RE that
are consistent with solutions to the household dynamic program.

It is, perhaps, important to point out that we obtain a rich set of robust RE compara-
tive statics/dynamics without appealing directly to the lattice programmingmachinery
of Topkis (1978, 1998) and Veinott (1992). Our methods can be interpreted as an
iterative class of parameterized dynamic lattice programming problems built on the
household program, not that of the social planner. Our work builds also on Acemoglu
and Jensen (2015), where a new approach to the existence of robust equilibrium com-
parative statics is proposed for large dynamic models, and where theymake significant
progress in obtaining sufficient conditions for robust distributional equilibrium com-
parative statics. Although their methods are powerful for many important classes of
dynamic economies (including situations where our methods do not apply), as we
show in this paper, their sufficient conditions cannot be checked even in certain homo-
geneous agent economies. They apply dynamic lattice programming methods to the
individual agent problem and obtain sufficient partial monotonicity of decision rules
which are then exploited to deduce aggregate equilibrium comparative statics. In this
sense, even though their results are more general, in some applications, they suffer
from limitations similar to that of Mirman et al. (2008).

The differential approach to equilibrium comparative statics goes far back to
Samuelson (1941), and is best illustrated in the seminal work of Debreu (1970),
who used differential topology tools to bear on the question.5 This method has been
extended to dynamic economies by Kehoe et al. (1990), and Santos (1992), among
others. Interesting application of smooth equilibrium comparative statics is found in
the extensive literature on the indeterminacy of equilibrium in models of one-sector
production with externalities, e.g., see papers following the approach taken in Ben-
habib and Farmer (1994), Boldrin and Rustichini (1994), Benhabib and Perli (1994),

5 See also MasColell (1986) for a comprehensive discussion.
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and Farmer and Guo (1994).6 These papers study determinacy of sequential equilib-
rium dynamics around a proposed hyperbolic point (e.g., the unique positive steady
state), and it is shown that if a smooth sequential equilibrium is present, the local
dynamics would be consistent with a continuum of equilibrium paths leading to the
steady state. An important new approach to the study of global indeterminacy via topo-
logical dynamical systems methods is found in the Euler equation branching approach
of Stockman (2010) and Raines and Stockman (2010). Our methods are very much
in the spirit of these latter papers, but we ask different questions (i.e., we are con-
cerned with existence of RE dynamics, and characterizing RE comparative statics;
not a theory of the resulting RE dynamical system). Further, in Stockman (2010) and
Raines and Stockman (2010), the question of sufficient conditions for the existence
of continuous dynamic equilibria is not addressed.7 We should remark our results
make no appeal to the tools of topological dynamical systems. Further, we are not
able to prove the existence of continuous recursive equilibrium within the class of
economies with study. But in principle, our methods seek to complement the results
and methodological approach taken in these latter two papers.

The rest of the paper is laid out as follows. In Sect. 2, we describe the class of homo-
geneous agent models analyzed in this paper. In Sect. 3, we construct the RE operator
and prove existence. In Sect. 4, we develop equilibrium comparative statics results. In
Sect. 5, we conclude with examples and discussion of our results in comparison with
the literature.

2 The framework

We study a general class of homogeneous agent dynamic general equilibrium mod-
els with externalities and complementarities with reduced-form production function
that embeds numerous other nonoptimal dynamic economies with complementarities
including Benhabib and Farmer (1994) and Liu andWang (2014), among others. Time
is discrete and indexed by t ∈ {0, 1, 2, . . .}. The economy has a unit mass of iden-
tical (or a representative) infinitely lived household with separable preferences over
lifetime streams of consumption and leisure, {ct }∞t=0 and {lt }∞t=0, respectively. The
household’s lifetime utility is:

∞∑

t=0

β t {u(ct ) + v(lt )}, (1)

6 For recent applications of these smooth dynamical systemsmethods, see Santos (2002), Jaimovich (2007,
2008), Wang and Wen (2008), Guo and Harrison (2010), Antoci et al. (2011), Huang and Meng (2012),
Nourry et al. (2013), Lloyd-Braga et al. (2014).
7 These authors use new methods in topological dynamics of Devaney, among others, which require one
to prove the existence of globally continuous sequential or recursive equilibrium. As with the applications
of the methods of smooth dynamical systems (a la Grobman–Hartmann), sufficient conditions for the
existence of (globally) continuous equilibrium dynamics are also not known. Although we are unable to
prove existence of such topological equilibrium dynamics, our methods are in the spirit of the pioneering
work of Stockman (2010) and Raines and Stockman (2010).
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where β ∈ (0, 1) is the discount factor.
The following regular assumptions are imposed on period utility functions (omitting

time subscript).

Assumption A1 The returns from consumption and leisure, u : R+ → R+ and
v : [0, 1] → R+ are continuous, strictly increasing, strictly concave, and twice-
continuously differentiable on R++ with u(0) = 0, v(0) = 0 and Inada-type
conditions are satisfied, i.e.,

lim
c→0

u′(c) → ∞; lim
c→∞ u′(c) → 0; lim

l→0
v′(l) → ∞.

Households are endowed with an initial holding of capital denoted by k0 > 0 and
one unit of productive time in each period. Factor and goods markets are perfectly
competitive. Households own factors of production and rent them to firms. A unit mass
of firms (or one representative) face production technologies given by F(k, n, K , N̂ ).
Technology has constant returns to scale (CRS) in private factors (k, n),where k is the
individual firm’s decision on capital, n its decision on labor inputs, but we also allow
for the social externalities that depend on the aggregate levels of capital K and labor
N̂ , respectively. We assume the following conditions on the production technology.

Assumption A2 The production function F : R+ × R+ × R+ × R+ → R+is mul-
tiplicatively separable in private returns and social externalities: F(k, n, K , N̂ ) =
f (k, n)e(K , N̂ ); in addition, (a) f : R+ × R+ → R+ is constant returns to scale,
supermodular, increasing (but increasing strictly with each argument for the positive
input of the other), weakly concave jointly (but strictly concave with each argument
separately for the positive input of the other), and twice-continuously differentiable
in both arguments (on R++ × R++) with f (0, n) = 0 = f (k, 0); (b) the marginal
products of f in capital and labor satisfy Inada-type conditions:

lim
k→0

f1(k, n) → ∞ for all n ∈ (0, 1],
lim

k→∞ f1(k, n) → 0 for all n ∈ [0, 1],
lim
n→0

f2(k, n) → ∞ for all k > 0;

and (c) the social externality e: R+ × R+ → R+ is increasing and C1jointly with
e(0, N̂ ) = 0 = e(K , 0) = 0. In addition, (d) there exists a kmax > 0, such that
F(k, 1, K , 1) ≤ kmax for all k, K ≥ kmax.

Here, kmax stands for themaximal sustainable level of capital. DefineK =[0, kmax].
We postpone further remarks on assumptions A1 and A2 till Sect. 2.1.

2.1 Household dynamic program

In this subsection, we describe household and firm decision making: Within-period
choices and prices are expressed as functions of aggregate capital in that period.
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The law of motion or the mapping between current aggregate capital and future
aggregate capital depends on individual choices. Given a level of aggregate capi-
tal, K , the maximal level of output that can be generated in any period is given by
f M (K ) = f (K , 1)e(K , 1), using all available labor in the production. This is an
upper bound for feasibility of household consumption (and/or investment) and allows
us to define a space of socially feasible consumption functions:

B f (K) := {(C : K → R+|0 ≤ C(K ) ≤ f M (K ), ∀ K ∈ K} (2)

and, endow B f with the topology of pointwise convergence, as well as its pointwise
partial order.8 We develop a representation of the aggregate economy parameterized
by C ∈ B f .

In order to generate the path for aggregate capital {Kt }∞t=0, we further restrict the set
of consumption and investment functions to reflect that labor supply is endogenous in
this economy. This restricts the space of possible investment/consumption functions
we can consider. Anticipating the equilibrium conditions that govern the labor-leisure
choice for a household in any RE, we posit the existence of a “contingent” aggregate
labor supply, given by N (C, K ) ∈ [0, 1]. Here N (C, K ) represents a static or within-
period labor-leisure choice, and is parameterized by both current aggregate state K ,

and consumption function C .9

The aggregate labor supply mapping implies restriction on the attainable level of
output and hence restricts the possible laws of motion for the aggregate state variable
in any RE. In particular, when developing the household’s dynamic program for a
candidate RE consumption function C ∈ B f , aggregate labor supply N , households
assume the law of motion on the aggregate capital stock to be:

K ′ = g(K ; C, N ) = f (K , N (C(K ), K ))e(K , N (C(K ), K )) − C(K ). (3)

This law of motion generates the sequence of aggregate capital {Kt }∞t=0 from K0 > 0.
Next, we specify household income process as a function of aggregate capital, K .

Prices of capital (r ) and labor (w) are set to equal their respective marginal products,

r(K , N̂ ) = f1(K , N̂ )e(K , N̂ ),

w(K , N̂ ) = f2(K , N̂ )e(K , N̂ ). (4)

That is, firms are price-takers and hire capital and labor such that their individual
or private marginal returns equal rental rates given aggregate (K , N̂ ). Appeal-
ing to zero profits under constant returns to scale, household income process
y(k, n, K ; N (C(K ), K )) is given by:

y(k, n, K ; N (C(K ), K )) = r(K , N (C(K ), K ))k + w(K , N (C(K ), K ))n, (5)

8 In this sequel, to minimize notation, after defining a function space we delete the domain from the
reference if the context is clear. For example, B f (K) is subsequently referred as B f .

9 It is shown in Lemma 2, N is decreasing in C, and increasing in K .
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where for K > 0, the income process is real-valued. The feasible budget correspon-
dence is,

Φ(k, K ; N (C(K ), K )) = {c, n, x |c + x ≤ y(k, n, K ; N (C(K ), K )), c ≥ 0, x ≥ 0, n ∈ [0, 1]},

where x denotes the household level of investment. Under Assumptions A1 and A2,
as r ,w are each continuous, the feasible correspondenceΦ is a continuous correspon-
dence, when K > 0.

Households use (C, N ) to calculate factor prices for any K ∈ K∗ = K\0. The
household’s dynamic program can be stated as follows: Given C ∈ B f and the law
of motion, g(K ; C, N ) > 0, with aggregate labor supply given by N , and the house-
hold’s value functionV ∗(·; C, N ): K×K∗→ R+ satisfies the following parameterized
Bellman equation:10

V ∗(k, K ; C, N ) = sup
c,n,x∈Φ

{u(c)+v(1−n)+βV ∗(y(k, n, K ; N (C(K ), K ))−c, g(K ; C, N ); C, N )}.
(6)

Let the optimal solutions for consumption and labor supply be given by c∗(k, K ; C, N )

and n∗(k, K ; C, N ).

2.2 A minimal state-space recursive equilibrium

Now, we are ready to formally define a minimal state-space recursive equilibrium for
this economy.

Definition 1 Aminimal state-space recursive equilibrium is a list of functionsC∗, N∗
for consumption and aggregate labor supply, as well as the associated value function
V ∗(·; C∗, N∗), law of motion g∗, the optimal solutions c∗ and n∗ and prices w, r for
any K > 0 such that

1. V ∗(·; C∗, N∗) satisfies (6) with (c∗(k, K ; C∗, N∗), n∗(k, K ; C∗, N∗)) being the
arguments that solve the right-hand side of the Bellman equation, for each k.

2. Taking pricesw, r and aggregate states K , N∗(C∗(K ), K ) as givenfirmsmaximize
profit:

max
k,n≥0

F(k, n, K , N∗(C∗(K ), K )) − r(K )k − w(K )n.

3. Consistency:

c∗(K , K ; C∗, N∗) = C∗(K ),

n∗(K , K ; C∗, N∗) = N∗(C∗(K ), K ),

with C∗(0) = N∗(0, 0) = 0.

10 We could also allow for u(c) = ln(c). Define R∗− = R ∪ −∞, the Bellman equation will be an upper
semicontinuous function V ∗(·; C, N ) : K × K∗→ R∗− that is continuous, when K > 0. Aside from that
case, the range of the Bellman operator is actually R+.
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4. Market clearing:

g∗(K ; C∗, N∗) + c∗(K , K ; C∗, N∗) = F(K , N∗(C∗(K ), K ), K , N∗(C∗(K ), K )

= y(K , N∗(C∗(K ), K ), K ; N∗(C∗(K ), K )).

For the sake of notation, the list of functions in the definition of the RE, we often
simplify and denote using just C∗ for consumption with the corresponding law of
motion for capita g∗, and N∗ for labor supply.

We end this subsection by characterizing the first-order conditions for maximiza-
tion problem in (6) along any RE. Observe that by a standard argument, V ∗(·; C, N )

is strictly concave and at least once-continuously differentiable in its first argument k
(e.g., Coleman (1991) and the Mirman–Zilcha Lemma). This implies under Assump-
tions A1 and A2, objective function on the right-hand side of (6) is strictly concave
in its control variable. Therefore, we can characterize the optimal solutions in (6)
by the first-order conditions, which are necessary and sufficient. In particular, not-
ing the Inada conditions, if K > 0, g(K ; C∗, N∗) > 0, the optimal consumption
c∗ = c∗(k, K ; C∗, N∗) must satisfy the following functional equation,

u′(c∗(k, K ; C∗, N∗))

−βu′(c∗(yc∗ , yC∗ ; C∗, N∗)) f1

(
yC∗

N∗(C∗(yC∗), yC∗)

)
e(yC∗ , N∗(C∗(yC∗), yC∗)) = 0,

where yc∗ = y(k, n∗(k, K ; C∗, N∗), K , N∗(C∗(K ), K )) − c∗, and where r = f1e
has been substituted in the Euler equation.

Similarly, the first-order condition associated with labor supply n∗(k, K ; C∗, N∗)
in any RE is

v′(1 − n∗(k, K ; C∗, N∗))
u′(c∗(k, K ; C∗, N∗))

− f2

(
K

N∗(C∗(K ), K )
)e(K , N∗(C∗(K ), K )

)
= 0, (7)

and where we have used the assumption of homogeneity of production function in
private returns (Assumption A2).

2.3 Necessary properties of a minimal state-space recursive equilibrium

We now characterize some necessary properties of household policies along a recur-
sive equilibrium. These arguments put restrictions that constitute the basis of further
construction in Sect. 3. In particular, along any RE, the household optimal solutions
have continuity on individual or private capital (k) but not on aggregate capital (K ).

Lemma 1 Under Assumptions A1 and A2, for any C ∈ B f , N such that N (C, K ) ∈
(0, 1] for any K ∈ K∗and g > 0, household’s optimal consumption, c∗ and labor
supply, n∗ are continuous in k.
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Proof Given C ∈ B f , N such that N (C, K ) ∈ (0, 1] with K ∈ K∗, g(K ; C, N ) > 0
household’s dynamic program (6) is

V ∗(k, K ; C, N ) = max
c,n,x∈Φ

{u(c) + v(1 − n) + βV ∗(y(k, n, K ; N (C(K ), K )) − c, g(K ; C, N ); C, N )}.

Under A1 and A2, by a standard argument V ∗(k, K ; C, N ) is continuous and strictly
concave in k. As the feasible correspondence Φ(k, K ; N (C(K ), K )) is nonempty,
compact and convex valued, and continuous in k, each (K , C, N ), and the objective on
the right-hand side of the Bellman equation at V ∗(k, K ; C, N ) in (6) is continuous and
strictly concave in c each (k, K , C, N ), byBerge’smaximum theorem, c∗(k, K ; C, N )

and n∗(k, K ; C, N ) are both continuous in k, each (K , C, N ). ��
Therefore, by Lemma 1, all RE must necessarily have structural properties in indi-

vidual state. Aside from resource feasibility, there are no required structural properties
for aRE in aggregate state K .Our two-stepmethods of RE construction heavily exploit
this fact and decompose our fixed point arguments relative to individual versus aggre-
gate state variables and isolate the discontinuities of RE to only aggregate states. This
means that although multiplicities of RE might be easy to construct, obtaining suf-
ficient conditions for RE smoothness is difficult. This casts concerns about applying
smooth dynamical systemsmethods in characterizingmultiplicity of equilibriumpaths
near any steady state associated with our model.

Also, it bears mentioning, Lemma 1 seems to pose serious challenges in develop-
ing rigorous applications of existing correspondence-based approaches to generalized
Markov equilibrium in the literature to compute RE in dynamic models (e.g., Kubler
and Schmedders 2003; Feng et al. 2014). For example, it is not clear how these existing
generalizedMarkovmethods can be applied to themodels studied in this paper. In fact,
we claim any sequential equilibrium has to satisfy a version of Lemma 1. In particu-
lar, any sequential equilibrium that is written recursively as in a generalized Markov
equilibrium on an enlarged state space involving endogenous state variables such as
“envelopes” or “shadow values for capital” must deliver RE decision rules that are
consistent with household value functions that are also once-continuous differentiable
in individual states along a sequential equilibrium.11

3 Construction of the RE

A roadmap of our construction of RE is as follows: First, we solve for the equilibrium
labor supply, contingent on a candidate RE consumption policy. Then, in the second
subsection, we propose suitable function spaces for a candidate RE that guarantee
requisite continuity properties per Lemma 1. Next, the existence of equilibrium is

11 The point is, in any sequential equilibrium where {K ∗
t }, {N∗

t } where k∗
t = K ∗

t and n∗
t = N∗

t (where
small letters denote individual household decisions on capital and labor), the labor, consumption, and
capital decisions from the economy’s initial state (k0, K0) when k0 = K0 must be consistent with a value
function V ∗(k0, K0; {Kt }, {Nt } has an envelope theorem in its first argument (hence, the existence of Euler
equation). It is not clear how APS-type generalized Markov equilibrium methods can guarantee this for our
economies (as the expanded set of state variables are constructed from a correspondence of solutions of
systems that are at best only upper semicontinuous in (k, K ) when k = K ).
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proved using two-step operator. Specifically, we define amapping (say, A) on a product
function space (say, H1 × H2) such that one subspace (H2) is at least chain complete.
The “first-step” operator treats the chain complete subspace as fixed, and study fixed
points of the partial map h1 → A(h1, h2) in H1. In the last subsection, we define a
“second-step” operator that uses domain H2, and maps to a subset of H2, where we
prove a RE exists.

3.1 Contingent RE labor supply

We construct “contingent” equilibrium representations of labor supply N that we
assume in the development of the household’s dynamic program in (6). It represents
the “static” necessary and sufficient condition for RE labor supply. It bears mentioning
this static equilibrium relationship between consumption and labor supply is generally
not unique in our model; thus, in effect, we have an RE labor supply correspondence
say, N∗. The least and greatest selections from this correspondence, each exhibiting
monotone comparative statics in (Ĉ, K ) are used to parameterize “upper” and “lower”
Euler equation operators.

Recall that the household decision problem defined in (6), and (7). Next, for any
contingent equilibrium consumption Ĉ and aggregate labor supply N̂ , define a new
mapping:

Zn(n, N̂ , Ĉ, K ) = v′(1 − n)

u′(Ĉ)
− f2(K , n)e(K , N̂ ), (8)

and a second mapping n̂∗(N̂ ; Ĉ, K ) implicitly from (8):

Zn(n̂∗(N̂ ; Ĉ, K ), N̂ , Ĉ, K ) = 0, (9)

for Ĉ > 0, all K > 0. Noting, the Inada conditions on v and f2 plus the strict
concavity conditions, this root is well defined and unique; then extend it to include the
boundaries by setting n̂∗(N̂ ; Ĉ, K ) = 1, when Ĉ = 0, K > 0 and set n̂∗(N̂ ; Ĉ, K )

= 0 otherwise. Lemma 2 characterizes solutions to the equation:12

n̂∗(N̂ ; Ĉ, K ) = N̂ .

Lemma 2 Say Assumptions A1 and A2 are both satisfied. Then, (a) n̂∗ is single-
valued, and continuously differentiable jointly for (Ĉ, K ) >> 0, N̂ ∈ (0, 1). Further,
(b) n̂∗(N̂ ; Ĉ, K ) is increasing in N̂ and K , and decreasing in Ĉ . Finally, (c) for

12 Under Assumption A2, when the equilibrium wage rate w is increasing in N̂ (e.g., as in the case of
Benhabib and Perli (1994) and Liu and Wang (2014), among many others), the set of contingent RE labor
supply decision will be a correspondence. We should note, in any sequential equilibria for Benhabib
and Farmer models, for technologies evaluated at the so-called indeterminacy parameters, this similar
equilibrium labor supply decisions each period is also a correspondence.Thismeans smoothness conditions
near steady states that required to apply the Grobman–Hartman Theorem and/or stable manifold theorem
are going to be problematic to check. That is, it is difficult to prove the existence of smooth equilibria, which
is required to check the hypotheses needed to apply smooth dynamical systems methods to characterize the
local determinacy of sequential equilibrium. This is true for both discrete and continuous time models.
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each (Ĉ, K ), n̂∗(N̂ ; Ĉ, K ) has a nonempty compact set of fixed points N∗(Ĉ, K ) ⊂
[0, 1], with the greatest selection ∨N∗(Ĉ, K ) and the least selection ∧N∗(Ĉ, K ),
both continuous, increasing in K , decreasing in Ĉ, and strictly positive, when Ĉ >

0, K > 0.

Proof (a) Note Zn is strictly increasing in n, n̂∗(N̂ ; Ĉ, K ) is unique for each (Ĉ, K ).
By the Inada conditions on v and f in n, for all N̂ ∈ [0, 1], when Ĉ > 0,
K > 0, n̂∗(N̂ ; Ĉ, K ) ∈ (0, 1). Further, when Ĉ > 0, K > 0, N̂ ∈ (0, 1), as
|∂n Zn(n∗(N̂ ; Ĉ, K ), N̂ , Ĉ, K )| �= 0 by strict concavity of v and f, by the global
implicit function theorem, root n̂∗(N̂ ; Ĉ, K ) is also globally continuously differen-
tiable (e.g., see Phillips 2012, Lemma 2).

(b) The comparative statics result follows from the fact that under Assumptions A1
and A2, Zn is strictly increasing in (N̂ , Ĉ) and strictly decreasing in K .

(c) The set [0, 1] is a complete lattice, N̂ → n̂∗(N̂ , Ĉ, K ) is a increasing function
on [0, 1] for each (Ĉ, K ); hence, by Tarski’s theorem (Tarski 1955, Theorem 1),
the fixed points of n̂∗(·, Ĉ, K ) denoted by N∗(Ĉ, K ) form a nonempty complete
chain for all (Ĉ, K ). As n̂∗ is decreasing in K and increasing in Ĉ , by Veinott fixed
point comparative statics theorem (Veinott 1992, Chap. 4, Theorem 14), the greatest
fixed point ∨N∗(Ĉ, K ) and least fixed point ∧N∗(Ĉ, K ) are well defined selections,
increasing in K and decreasing in Ĉ .

Finally, for positivity of each selection,when Ĉ > 0, K > 0,wehave n(0; Ĉ, K ) >

0 by the Inada conditions in Assumption A1. The continuity of the least and greatest
selections ∨N∗(Ĉ, K ) and ∧N∗(Ĉ, K ) follows from a modification of the transver-
sality argument in Raines and Stockman (2010, Propositions 4 and 5), and continuous
differentiability of u. ��

To slightly shorten notation, let us denote: n∗∨(Ĉ, K ):= ∨ N∗(Ĉ, K ) and
n∗∧(Ĉ, K ):= ∧ N∗(Ĉ, K ). We make a few remarks on Lemma 2.

First, the existence of a sunspot equilibrium does not require capital externalities.
By a simple modification of the transversality argument (Raines and Stockman 2010,
Proposition 4 and 5), for economies satisfying Assumptions A1 and a stronger version
of A2with specific Cobb–Douglas technologies (as in Benhabib and Farmer 1994; Liu
andWang 2014) for the indeterminacy parameters, there are two continuous selections
for contingent equilibrium labor supply N∗. This implies that RE in our case is not
unique even if each branch of our Euler equation operatorswe define in the next section
of the paper has unique fixed points. Further, sunspot equilibria exist without capital
externalities driven by only labor externalities.

Second, under assumptionA2,without theCobb–Douglas technology specification,
the Raines–Stockman result cited above implies the existence of an even number of
solutions for contingent labor supply N∗. The problem of studying REwith each these
selections is that only the least and greatest selections are known to exhibit monotone
comparative statics in (Ĉ, K ); thus for other remaining selections, constructing a
monotone map method (traditional or two-step methods) is more challenging.

Finally, it is important to note that for a finite horizon version of our model, in
the terminal period T, when equilibrium wage rate, w(K ; N̂ ) = f2(K , N̂ )e(K , N̂ ) is
decreasing in N̂ , the solution for the “lower bound” for RE labor supply, denoted by
N∗

f (K ), isunique,where N∗
f (K ) is the uniquen solving Zn(n, n, f (K , n)e(K , n), K ) =
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0. This is the case in models with elastic labor supply studied in Coleman (1997)
and Datta et al. (2002). In those papers, the (unique) RE can be computed as the
“limit” of policy iteration type methods from (nonstationary) RE for finite hori-
zon economies of length T . Then, the equilibrium for the terminal period economy
implies a “lower bound” for RE labor supply, hence RE output, namely f ∗(K ) =
f (K , N∗

f (K ))e(K , N∗
f (K )), which is used as the “upper” bound for RE consumption

in the infinite horizon case, where the one period equilibrium labor supply N∗
f (K )

is the unique lower bound for labor supply in any RE for the infinite horizon econ-
omy. This is not true in this paper with assumptions A1 and A2. That is, we have
multiple equilibrium in the terminal period for any finite horizon economy of length
T .

This fact requires us to be careful in constructing the maximal level of output
possible (given contingent labor supply) for the definition of function spaces where
RE can be shown to exist. That is, RE consumption cannot exceed the level of output
f ∗(K ) = f (K , N∗

f (K ))e(K , N∗
f (K )) but, we have multiple candidates for N∗

f (K ).
To see this, observe that under Assumptions A1 and A2, we can compute the set of
terminal period equilibrium labor supplies N∗

f (K ) as the fixed point of the mapping

n̂∗
f defined implicitly by Z f

n (n̂∗
f (N̂ , K ), N̂ , K ) = 0 for all N̂ ∈ [0, 1], K > 0, where

Z f
n (n, N̂ , K ) = v′(1 − n)

u′( f (K , n, K , n))
− f2(K , n)e(K , N̂ ) (10)

and where we set n̂∗
f (N̂ , 0) = 0. Thus, equilibrium wages f2(K , n)e(K , n) could be

rising in n, we can have multiple (but finite) number of terminal period equilibria,
each continuous in K . Again, we denote the greatest and least of them as ∨N∗

f (K )

and ∧N∗
f (K ).

We must also parameterize the space of feasible RE consumption function. In par-
ticular, we need to impose a restricted version of the upper bound for output contingent
on candidate RE consumption. We use the modified production function evaluated at
n f

∨(K ) = ∨N∗
f (K ) and n f

∧(K ) = ∧N∗
f (K ):

f ∗
ν (K ):= f

(
K , n f

ν (K )
)

e
(

K , n f
ν (K )

)
,

where ν ∈ {∨,∧}. Observe that f ∗
ν (K ) ≤ f M (K ) and we have a strict inequality if

K > 0 (as n∗∧(Ĉ, K ) ≤ n∗∨(Ĉ, K ) ≤ 1 for all K ∈ K, with equality when K > 0).
Then, under Assumption A2, we also have f ∗∨(K ) ≥ f ∗∧(K ) for all K ∈ K.

3.2 Some useful function spaces

Note that an RE is defined on the diagonal of the household’s state space K × K,

D = {K |(K , K ) ∈ K × K}.
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Thus, D is the space K embedded into K × K. Recall the space B f defined in Eq. (2).
Then, our “first step” operators will always use as their domain the following space:
Hν ⊂ B f for ν ∈ {∨,∧} where

Hν(D) := {h1 : D → R+|, h1 increasing, continuous, and

f ∗
h1,ν(k):= f (k, n∗

ν(h1(k), k))e(k, n∗
ν(h1(k), k))

−h1(k) nonnegative and increasing in k}.

Endow Hν with its pointwise partial order, and the topology of uniform convergence.
Notice also, by Assumption A2, we have for any h1 ∈ Hν , f ∗

h1,∨(k) ≥ f ∗
h1,∧(k).

The space Hν has desirable chain completeness and compactness properties, noted
in the following Proposition.

Proposition 1 Under Assumption A2, Hν is compact in the space of bounded, con-
tinuous functions endowed with the topology of uniform convergence (hence, chain
complete under pointwise partial orders).

Proof The compactness of Hν follows from Coleman (1997, Lemma 8), noting in
Coleman’s Lemma, relative to our space Hν, u′(h1(k)) is falling in k for h1 ∈ Hν .

The chain completeness of Hν follows as any compact partially ordered metric space
is chain complete (e.g., Amann 1976, Corollary 3.2). ��

Althoughwe often use B f as our second-step domain,wewill also use the following
subset of B f to prove the existence of RE where the aggregate consumption function
h is decreasing in the aggregate state K , and the implied RE investment is increasing
in K :

B f
m(D) = {h2 ∈ B f |h2 is decreasing}.

We specify the ranges of our second-step mappings for the different domains B f

or B f
m . In particular, we shall prove RE policies exist in the function space C∗

ν defined
as follows:13

C∗
ν(D, B f ) = {h: K × K → R+|K ∈ K, k → h(k, K ) ∈ Hν and K → h(K , K ) ∈ B f },

(11)
for ν ∈ {∨,∧}. Notice, RE policies in any of the spaces C∗

ν(B) with B ∈ {B f , B f
m} is

consistent with the necessary properties of any RE in Lemma 1. The following Lemma
is useful.

Lemma 3 Under Assumption A2, (a) B f and B f
m are complete lattices. In addition,

(b) C∗
ν(B f ) is a complete lattice, while C∗

ν(B f
m) is subcomplete sublattice.

Proof (a) To see B f is a complete lattice, consider any subset B1 ⊂ B f . As the
pointwise inf and sup operations on the elements of B preserve pointwise bounds, we
have 0≤ inf x B1 ≤ f M , and 0≤ supx B1 ≤ f M ; hence, ∧B1 ∈ B f and ∨B1 ∈ B f .

13 Subsequent to this, we shall again omit the domain ofC∗ from the notation. So, for example,C∗(D, B f )

will be denoted by C∗(B f ).
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Therefore, B f is a complete lattice. For B1 ⊂ B f
m , as the pointwise sup (resp, inf)

operation preserves monotonicity, ∧B1 ∈ B f
m and ∨B1 ∈ B f

m . (b) For B1 ⊂ C∗
ν(B f

m)

as monotonicity in K (resp, equicontinuity at k), when k = K are preserved also under
arbitrary pointwise sup and inf operations on the compact set D, ∧B1 ∈ C∗

ν(B f
m) and

∨B1 ∈ C∗
ν(B f

m). Similarly, for B1 ⊂ C∗
ν(B f ). ��

As will be evident soon, to define our first-step operator, we also need to choose a
suitable upper bound for the second-step iterations, i.e., h̄2 ∈ B f (resp., h̄m

2 ∈ B f
m ), in

order to evaluate the externality mapping. For the space B f , take h̄2 ∈ B f such that

f M (k) ≥ h̄2(k) = f ∗
ν (k) = f

(
k, n f

ν (k)
)

e
(

k, n f
ν (k)

)
(12)

with equality when k > 0. For the space B f
m , as the greatest contingent labor supply

n∗∨(Ĉ, K ) is decreasing in Ĉ, for any h2 ∈ B f
m , we have n∗∨(h2(K ), K ) is increasing

in K . So, simply choose any h̄m
2 ∈ B f

m , such that n f
∨(K ) ≤ n∗∨(h̄m

2 (K ), K ) ≤ 1, with
equality when K > 0. Then, for example, we may take

f M (k) ≥ h̄m
2 (k) = f

(
k, n∗∨(h̄m

2 (k), k)
)

e
(
k, n∗∨(h̄m

2 (k), k)
)

(13)

with equality when k > 0.

3.3 The first step

We now construct our Euler equation operators. To do this, we first rewrite the equilib-
rium version of the household Bellman equation in (6) on the collection of functions
(h1, h2) ∈ Hν × (B f ∩[0, h̄2]). For the rest of this section, fix the index ν ∈ {∨,∧}.14

For k, K > 0, h1 > 0, consider the following mapping:

Zν

(
ĉ, k, K , h1, h2(K )

) = u′(ĉ) − βu′ (h1( f ∗
ĉ,ν(k))

)
r̄
(

ĉ, h1

(
f ∗
ĉ,v(k)

)
, f ∗

h2(K ),ν(K )
)

(14)
where the distorted return on capital is given by:

r̄
(

ĉ, K , h1( f ∗
ĉ,v(k)), f ∗

h2(K ),ν(K )
)

= f1

(
f ∗
ĉ,v(k)

n∗
ν(h1( f ∗

ĉ,ν(k)), f ∗
h2(K ),ν(K ))

)
e
(

f ∗
h2(K ),ν(K ), n∗

ν

(
h1( f ∗

ĉ,ν(k)), f ∗
h2(K ),ν(K )

))
.

Here, for h1 ∈ Hν , r̄ is increasing and continuous in ĉ, and decreasing in (h1, h2),

noting we have defined

14 Analogously, we can restrict our second-step domain by h̄m
2 .
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f ∗
ĉ,ν(k) = f

(
k, n∗

ν(ĉ, k)
)

e
(
k, n∗

ν(ĉ, k)
) − ĉ.

For K > 0, h1 ∈ Hν, h1 > 0, h2 ∈ (B f ∩ [0, h̄2]), define the mapping ĉ∗
ν implicitly

as follows:
Zν(ĉ

∗
ν(k, K , h1, h2(K )), k, h1, h2(K )) = 0. (15)

Then, when (h1, h2) ∈ Hν × (B f ∩ [0, h̄2]) :

Aν(h1, h2(K ))(k) = ĉ∗
ν(k, h1, h2(K )), k > 0, h1 > 0, h2 < h̄2

= h̄2(k) if h1 > 0, h2 = h̄2 for any k

= 0 otherwise. (16)

We first study the monotonicity and order continuity properties of the operator Aν

using Proposition 3. Recall, for a mapping f : X → Y, where X and Y are each
countable chain complete partially ordered sets, we say f is order continuous if
f (∨X ′) = ∨ f (X ′) and f (∧X ′)=∧ f (X ′) for all countable chains X ′ ⊂ X. If X
and Y are additionally Banach spaces, say f is a compact operator if it is (a) contin-
uous (relative to the norm topologies on X and Y ), and (b) for any bounded X ′ ⊂ X,

f (X ′) ⊂ X is relative compact. We have the following result:

Lemma 4 Let h̄2 ∈ B f be given as above. Then, under Assumptions A1 and A2, (a)
for any (h1, h2) ∈ Hν ×{B f ∩[0, h̄2]}, Aν(h1, h2(K )) ∈ Hν . Further, (b)(h1, h2) →
Aν(h1, h2(K )) is order continuous on Hν × {B f ∩ [0, h̄2]}.
Proof (a) We first prove for any h̄2 ∈ B f , 0 ≤ h̄2 ≤ f M , with h̄2(k) < f M (k) when
k > 0, for the order interval [0, h̄2] ⊂ B f , (h1, h2) ∈ Hν ×[0, h̄2], Aν(h1, h2(K )) ∈
Hν .

Fix h2 ∈ [0, h̄2] . By the continuity and monotonicity properties of h1 ∈ Hν, under
Assumption A1 and A2, when k > 0, h1 > 0, Zν(ĉ, k, K , h1, h2(K )) is decreasing
and continuous in ĉ, increasing and continuous in k, for each (K , h1, h2). Further, not-
ing the Inada conditions on u and f and the fact that for h2 ∈ [0, h̄2], h̄2(k)−h2(k) >

0, we therefore have (i) the existence of a unique root ĉ∗
ν(k, K , h1, h2(K )) such that

Zν(ĉ∗
ν(k, h1, h2(K )), k, K , h1, h2(K )) = 0, such that (ii) ĉ∗

ν is increasing and con-
tinuous in k for fixed (K , h1, h2). Therefore, noting the definition of A(h1; h2(K ))

when k = K = 0, we have k → Aν(h1; h2(K ))(k) continuous and increasing in k.
Further, if k1 ≥ k2, Aν(h1; h2(K ))(k) is increasing in k, we have

u′(ĉ∗
ν(k1, K , h1, h2(K ))) ≤ u′(ĉ∗

ν(k2, K , h1, h2(K ))).

This implies, by the definition of ĉ∗
ν(k, K , h1, h2(K )), the second term of Zν must

decrease when k1 ≥ k2. That is, Aν(h1; h2(K ))(k) = ĉ∗
ν(k, K , h1, h2(K ))(k) must

be such that

f ∗
Aν (h1;h2),ν(k) = f (k, n∗

ν(Aν(h1; h2)(k), k))e(k, n∗
ν(Aν(h1; h2)(k), k))

−Aν(h1; h2)(k)
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is increasing in k. Noting the definition of Aν(h1, h2(K ))(k) elsewhere, Aν(h1; h2
(K )) ∈ Hν for each h2 ∈ [0, h̄2]. As h̄2 ∈ B f , h̄2(k) < f M (k) when k > 0 was
arbitrary, that proves (a).

(b) Consider a function A: X1 × X2 → Y, where X1, X2 and Y nonempty and
chain complete. We begin by mentioning two facts about order continuous operators.
First, the operator A is order continuous jointly in x = (x1, x2) if and only if it is
order continuous in each argument (see Stoltenberg-Hansen et al. 1994, Proposition
2.4). Therefore, to prove claim (b), it suffices to check the order continuity of Aν in
each argument separately. Second, an order continuous operator is necessarily isotone
(e.g., see Dugundji and Granas 1982, p. 15).

For any h̄2 ∈ B f , [0, h̄2] ⊂ B f , consider (h1, h2) ∈ Hν × [0, h̄2]. We first
show (h1, h2) → Aν(h1, h2(K )) is isotone on Hν × [0, h̄2]. To see this, observe for
k = K > 0, h1 > 0, h2 ∈ [0, h̄2], as Zν in (14) is decreasing and continuous in ĉ,
and increasing in (h1, h2), the operator Aν is isotone in (h1, h2).Noting the definition
of A elsewhere in (16), Aν is isotone on Hν × {B f ∩ [0, h̄2]}.

By Lemma 3, Hν× B f is a complete lattice and hence, countably chain complete.
It follows that Hν × [0, h̄2] is countably chain subcomplete for any h̄2 ∈ B f that
satisfies conditions of this lemma.

We first show Aν preserves the supremum of countable chains in Hν, for each
h2 ∈ [0, h̄2]. When h2 ∈ [0, h̄2], k = K > 0, consider the countable chain {hn

1}
each hn

1 ∈ Hν . For each h2 ∈ [0, h̄2], h1 → Aν(h1; h2(K )) is simply a special
case of the nonlinear operator studied by Coleman (1997) (e.g., see Coleman 1997,
Eq. (9), Lemmas 5, 6, and 8). Therefore, by a result in Coleman (1997, Lemma 9),
h1 → Aν(h1; h2) is a compact operator (therefore, continuous in both the topology
of uniform and in the topology of pointwise convergence). Then, by Proposition 3,
h1 → Aν(h1; h2(K )) is order continuous.

Next, we show that Aν preserves the supremum of countable chains of {hn
2} each

hn
2 ∈ [0, h̄2], for each h1 ∈ Hν . For fixed h1 > 0, k = K > 0, by the continuity

assumptions on the derivatives of the primitives in A1 and A2, for all k = K > 0, we
have

Z(ĉ∗
ν (k, K , h1, ∨hn

2(K )), k, h1, ∨hn
2(K )) = ∨Z(ĉ∗

ν (k, K , h1, ∨hn
2(K )), k, K , h1, hn

2(K ))

= Z(∨ĉ∗
ν (k, K , ∨h1, hn

2(K )), k, K , h1, hn
2(K )),

where the first line follows from the fact that under assumption A2, Z is continuous
pointwise in h2(K ) n∗

ν(Ĉ, K ) is continuous in Ĉ for ν = {∨,∧}, and ∨( f − hn
2)(K )

=( f − ∨ hn
2)(K ), for each K ; the last line follows from the fact that under Assump-

tions A1 and A2, as for h1 ∈ Hν, Z is continuous in x̂ . Therefore, we have

Aν(h1; ∨h2(K )) = ∨A(h1; h2(K )).

The fact that Aν preserves infimum of countable chains in Hν × [0, h̄2] for all
h̄2 ∈ B f , h̄2 < f M follows from a dual argument.

Next lemma shows that for each h2 ∈ B f , the operator h1 → Aν(h1; h2(K )) has a
nontrivial strictly positive greatest fixed point, and this greatest fixed point is isotone
in h2 ∈ [0, h̄2].
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Lemma 5 Under Assumptions A1 and A2, for h2 ∈ [0, h̄2], and ν ∈ {∨,∧}, (a) h1 →
Aν(h1; h2(K )) has a greatest fixed point h∗

ν(h2(K )) ∈ Hν , with h∗
ν(h2(K ))(k) > 0

when k > 0; (b) this fixed point can be computed by successive approximation from
f ∗
ν as

inf
n

An
ν( f ∗

ν ; h2(K )) = h∗
ν(h2(K )),

where infn An
ν( f ∗

ν ; h2(K ))(k) = limn An
ν( f ∗

ν ; h2(K ))(k). Finally, (c) h2 → h∗
ν is

isotone on [0, h̄2].
Proof (a) Existence of greatest fixed point of h1 → Aν(h1; h2(K )): For each h2 ∈
[0, h̄2], as Aν(·; h2(K )) is an isotone transformation of Hν, and Hν is a nonempty
complete lattice, hence by Tarski (1955, Theorem 1) the set of fixed points of h1 →
Aν(h1; h2(K )) is a nonempty complete lattice.

(b) Computation of greatest fixed point h1 → Aν(h1; h2(K )): For given h2 ∈
[0, h̄2], as h1 → Aν(h1; h2(K )) is order continuous on Hν, consider the iterations
An( f ∗

ν ; h2(K )). Then, {An
ν( f ∗

ν ; h2(K ))}∞n=0 is a decreasing chain. As pointwise and
uniform convergence coincide in Hν , and pointwise convergence implies order con-
vergence in Hν by Proposition 3, we have for each k:

lim
n→∞ An

ν( f ∗
ν ; h2(K ))(k) = inf

n
An

ν( f ∗
ν ; h2(K ))(k)

= h∗
ν(h2(K ))(k)

= ∨ΨAν (h2(K ))(k),

where ΨAν (h2(K )) ⊂ Hν for each h2 ∈ [0, h̄2] is the fixed point set of h1 →
Aν(h1; h2(K )), with a trivial least fixed point ∧ΨAν = 0. Strict positivity of
h∗

ν(h2(K ))(k), when k > 0 follows from a modification of a standard argument
involving the Inada conditions and iterations along RE paths (e.g., Coleman 1997,
Lemma 11 and Theorem 12).

(c) Isotonicity of h∗
ν follows from Veinott’s fixed point comparative statics result

(i.e., Topkis 1998, Theorem 2.5.2), noting h2 → Aν(h1; h2(K )) is increasing on
[0, h̄2]. ��

3.4 The second step: existence of RE

Using Lemma 5, we can now define the RE operator A∗
ν based on the greatest fixed

point of the first-step operator. For h̄2 ∈ B f (h̄2 ∈ B f
m) as specified above, let the

“second-step” operator be defined as:

A∗
ν(h2)(k) = h∗

ν(h2(k))(k) for h2 ∈ [0, h̄2]
= 0 else, (17)

where the restriction of A∗
ν to the space h2 ∈ [0, h̄2] ⊂ B f

m is denoted by A∗
m,ν(h2).

Then, a RE is any fixed point h∗ of A∗
ν such that, when k > 0, h∗(k) > 0, and

g∗ > 0. Further, any such RE of that is a fixed point on B f
m will additionally have RE
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investment g∗ monotone. Recall, the RE investment is given by

g∗
ν (k) = f ∗(k, n∗

ν(C
∗(k), k))e(k, n∗

ν(C
∗(k), k)) − C∗(k),

for any C∗ ∈ B f . Similarly, define g∗
m,ν for any C∗ ∈ B f

m . Recall C∗ is a candidate
RE consumption function, while n∗

ν are the fixed points defined in Lemma 2.
Our first main theorem of the paper which concerns the existence of RE using

the operator A∗
ν in Eq. (17) in each of the spaces [0, h̄2] (resp, [0, h̄m

2 ]) where the

upper bounds h̄2 ∈ B f (resp., h̄m
2 ∈ B f

m) are given by Eq. (12) (resp., 13). Recall,
although for each h2 ∈ [0, h̄2] and any K , we have h∗

ν(h2(K )) ∈ Hν , in general,
K → h∗

ν(h2(K ))(K ) /∈ Hν .

Theorem 1 Under Assumptions A1, A2, for h2 ∈ [0, h̄2] ⊂ B f , we have for ν ∈
{∨,∧}:
(a) A∗

ν : [0, h̄2] → [0, h̄2] has a nonempty complete lattice of fixed points ΨA∗
ν

⊂
[0, h̄2] ⊂ B f , each fixed point is a RE,

(b) operator A∗
ν is order continuous on [0, h̄2] ⊂ B f ;

(c) the least C∗
ν,L and the greatest C∗

ν,G RE can be computed as follows-for each k,

∨(A∗
ν)

n(0)(k) = C∗
ν,L(k) ≤ C∗

ν,G(k) = ∧(A∗
ν)

n(h̄2)(k, k)

n∗
ν(C

∗
ν,L(k), k) ≥ n∗

ν(C
∗
ν,G(k), k);

(d) for h2 ∈ [0, h̄m
2 ] ⊂ B f

m, for the mapping A∗
m,ν : [0, h̄m

2 ]→[0, h̄m
2 ] claims (a)–(d)

hold for its nonempty complete lattice of RE ΨA∗
m,ν

⊂ [0, h̄m
2 ] ⊂ B f

m.

Moreover, RE policies c∗(·, ·, C∗
ν ) ∈ C∗(B f ) (or, C∗(B f

m) if we consider subspace

B f
m , respectively).

Proof Weprove parts (a–c) for RE in [0, h̄2]. The proof of (d) for RE in [0, h̄m
2 ] relative

to the claims in parts (a–c) for A∗
m,v follows from a similar construction.

(a) First, observe by the Inada conditions on u and f , and the definition of the range
of the first-step fixed point, by construction, we have 0 ≤ A∗

ν(0) ≤ A∗
ν(h̄2) ≤ h̄2 with

strict equality with k = K > 0, where h̄2 is defined in Eq. (13). Then, by Lemma
5(c), as Aν is isotone, and by Lemma 3 B f is a nonempty complete lattice, the fixed
point set ΨA∗

ν
⊂ [0, h̄2] is a nonempty complete lattice by Tarski’s Theorem.

(b) From Lemma 4, Aν is order continuous on Hν × [0, h̄2]. We first show this
implies greatest fixed point of the partial map h1 → Aν(h1; h2(K )), is order continu-
ous in h2 ∈ [0, h̄2]. To see this, consider the iterations from an initial point h0

1:=∨ Hν,

with the iterations given by {An
ν(h

0
1; h2(K ))}∞n=0. As order continuity is closed under

composition, and evaluation maps and projections are order continuous in chain com-
plete partially ordered sets,we concludeby theTarski–Kantorovich theorem (Dugundji
and Granas 1982, Theorem 4.2):

A∗
ν(h2)(k) = ∧An

ν(h
0
1; h2(k))(k) = An

ν(∧hn
1; h2(k))(k)

= lim
n→∞ An

ν(h
0
1; h2(k))(k) = h∗

ν(h2(k))(k) = ∨ΨAν (h2(k))(k),
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where the convergence to ∨ΨAν (h2(k)) is uniform, and ∨ΨAν (h2(k)) is order contin-
uous in h2, each k.

(c) By construction, we have 0 ≤ A∗
ν(0) ≤ A∗

ν(h̄2) ≤ h̄2 with strict equality with
k = K > 0. Then, as by part (b), A∗

ν(h2), h2 ∈ [0, h̄2] is order continuous, therefore,
by the Tarski–Kantorovich theorem, we have

∨(A∗
ν)

n(0) = C∗
ν,L = ∧ΨA∗

ν
≤ ∨ΨA∗

ν
= C∗

v,G = ∧(A∗
ν)

n(h̄2).

��
First and foremost, there are no known results on the existence of either sequential

or recursive equilibrium under these conditions.15 In particular, no results are known
on the existence of smooth sequential equilibrium. It bears mentioning that, in discrete
time models without proving smooth sequential or recursive equilibria, at least locally
near the steady state, one cannot apply smooth dynamical systems methods (as is
typically done in the literature to characterize local indeterminacy of equilibria).16

Further, as the “Santos’s economy” (Santos 2002, Sect. 3.2) is embedded in our class
of economies, we know that continuous (let alone smooth) RE do not exist.

Second, Coleman (1997) or Datta et al. (2002) do not handle Assumption A2. In
particular, these papers effectively do not consider the case of labor externalities, rather
the case of elastic labor supply with income taxes and/or capital externalities under
very strong restrictions. Further, Mirman et al. (2008) only consider inelastic labor
supply and no labor externality.

Third, equilibrium responses for labor supply are in general a correspondence
under assumption A2. This plays a key role in our analysis. In particular, our methods
for verifying RE involve Euler equation branching methods [see Raines and Stock-
man (2010) and Stockman (2010)]. That is, we construct a least and greatest selections
of equilibrium labor supply in each period (contingent on consumption and the cap-
ital stock), and then parameterize “upper” and “lower” Euler equation operators. In
general, though, these Euler equation branches are not ordered.

Fourth, ifwe allow for e(K , 0) > 0when K > 0, and e(0, N̂ ) > 0when N̂ > 0,our
arguments still apply. The simplest case is e(K , N̂ ) = (1− τ(K )), for τ(K ) ∈ [0, 1)
is discussed in Sect. 5.

Next, we should mention, in Theorem 1, we characterize the comparative statics
of any RE in individual and aggregate state variables for a fixed economy (under
Assumptions A1 and A2). That is, we prove all RE has consumption and investment
policies monotone in individual states (and continuous), as required by Lemma 1.

15 Note that Feng et al. (2014) do not apply to this economy.
16 TheGrobman andHartmann theorem is the key result that is usually applied in this literature in justifying
local methods to study determinacy of equilibrium via topological conjugacy arguments. In discrete time,
this theorem requires sequential and/or recursive equilibrium dynamics near the steady state be smooth
(e.g., to verify the steady state is hyperbolic and topological conjugacy). No such results on existence of
smooth equilibrium dynamics in models with labor externalities (or large capital externalities) are known.
Further, given the results in Santos (1991) for Pareto optimal economies, one would assume such conditions
would be very strong, requiring global strong concavity conditions for household dynamic programs along
equilibrium paths. Hence, a global argument is needed to study indeterminacy.
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4 Equilibrium comparative statics

We now consider RE comparative statics on the space of deep parameters of the
economy relative to the set of RE equilibrium in Theorem 1. The first question is
related to “capital deepening” with respect to discount rate. We do the comparative
statics for RE using the operator A∗

ν in B f and mention as a corollary the similar

comparative statics in B f
m .

Theorem 2 Capital deepening in discount rates. Under Assumptions A1 and A2,
for h̄2 ∈ B f given in expression (12), we have (a) for the least fixed point
C∗

ν,L(β) ∈ [0, h̄2] (resp., greatest fixed point C∗
ν,G(β) ∈ [0, h̄2]) for β1 ≥

β2, C∗
ν,L(β1) ≤ C∗

ν,L(β2) (resp, C∗
ν,G(β1) ≤ C∗

ν,G(β2)) with RE investment
g∗
ν,G(β1) ≥ g∗

ν,G(β2) (resp., g∗
ν,L(β1) ≥ g∗

ν,L(β2)), and the associated labor sup-
ply N∗

ν,L(β2)(k):=n∗
ν(h

∗
ν,L(β2)(k), k) ≥ n∗

ν(h
∗
ν,L(β1)(k), k) =: N∗

ν,L(β1)(k) (resp.,
N∗

ν,G(β2) ≥ N∗
ν,G(β1)). Also, (b) the RE comparative statics can be computed by the

successive approximations as follows:

∨(Aν)
n(0;β1) = C∗

ν,L(β1) ≤ C∗
ν,L(β2) = ∨(Aν)

n(0;β2)

∧(Aν)
n(h̄2;β1) = C∗

ν,G(β1) ≤ C∗
ν,G(β2) = ∧(Aν)

n(h̄2;β2)

Finally (c), the claims in (a) and (b) hold for the least and greatest fixed points of A∗
m,v

on B f
m .

Proof Noting its dependence on the parameterβ,wewill do the case of RE inC∗
ν (β) ∈

[0, h̄2]. The exact same argument works for h2 ∈ [0, h̄m
2 ].

Noting the definition of Aν(h1, h2(K );β), it is decreasing in β. As by definition,
A∗

ν(h2;β) is the greatest fixed point of the partial map h1 → Aν(h1; h2(K );β) by
Veinott’s fixed point comparative statics theorem, A∗

ν(h2;β) is decreasing in β.
By Theorem 1(c), the mapping h2 → A∗

ν(h2;β) is order continuous in h2. Then,
by the Tarski–Kantorovich theorem, we have

∨(A∗
ν)

n(0;β1) = C∗
ν,L(β1)

≤ C∗
ν,L(β2)

= ∨(A∗
ν)

n(0;β2),

Further, as n∗
ν(c, k) is decreasing and continuous in c, we have for RE labor supply:

n∗
ν(C

∗
ν,L(β1)(k), k) ≥ n∗

ν(C
∗
ν,L(β2)(k), k).

By a dual argument, we could proceed for the greatest fixed point. Noting the definition
of RE investment associated with least and greatest RE consumption C∗

ν,L(β) and
C∗

ν,G(β),we have RE investment g∗
ν,G(β1) ≥ g∗

ν,G(β2) (resp., g∗
ν,L(β1) ≥ g∗

ν,L(β2)),

which completes the proof. ��
Notice, in Theorem 2, we compare RE labor supply for different discount rate

β, as well as investment and consumption. Mirman et al. (2008) and Acemoglu and
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Jensen (2015) provide similar monotone comparison result for dynamic economies
with inelastic labor supply, small capital externalities, and no labor externality. There
is no obvious way to extend their results in models with elastic labor supply, labor
externality, and especially, large capital externalities.

5 Applications and discussion

In this section, we relate our contribution vis-a-vis some classical results in the lit-
erature. In particular, we apply our methods to Romer (1986), Benhabib and Farmer
(1994) economies and we conclude with a detailed discussion on Santos (2002).

5.1 Romer (1986)

In the spirit of Romer (1986) economy, we introduce inelastic labor supply and no
leisure-labor choice in assumptions A1 and A2. That is, consider the following special
case of our general assumptions:

Assumption Romer: Modify Assumption A1 with v(l) = 0 for all l ∈ [0, 1] and
Assumption A2 with ẽ(K ):= e(K , 1) rising in K .

If f1(K , 1)ẽ(K ) is falling in K , then there exists an unique RE by Coleman (1991,
2000) or Mirman et al. (2008). On the other hand, if f1(K , 1)ẽ(K ) is rising in K ,
Theorem 1 implies existence of the least and the greatest RE. Further, Theorem 2
provides RE comparative static results. We interpret f1(K , 1)ẽ(K ) is decreasing in
K as the case of “small” externality and f1(K , 1)ẽ(K ) increasing in K as the case
of “large” externality.17 For example, consider f (k, 1) = kα and ẽ(K ) = K a for
a, α ≥ 0, with a + α < 1 implying small externality and a + α > 1 implying
large externality. Notice that, in case of inelastic labor supply, we have a single Euler
equation operator, with no Euler equation branching.18

5.2 Benhabib and Farmer (1994)

The economies studied in Benhabib and Farmer (1994) provide another important
application of our results, as well as the (case of symmetric RE in) dynamic models
with heterogeneous firms and credit constraints found in recent paper by Liu and
Wang (2014), or some heterogeneous agent economies with adverse selection (e.g.,
Benhabib and Wang 2014). To obtain Benhabib and Farmer (1994) style economies,
we modify our assumptions as follows:

17 We should mention, the case of indeterminacy occurring in economies with inelastic labor such that the
equilibrium return on capital could be increasing in K is mentioned in Boldrin and Rustichini (1994).
18 In this case, we need to take a bound f M in the definition of the second-step space B f to be slightly
higher: i.e., let N̂ > 1, so f (K , N̂ )ẽ(K ) > f (K , 1)ẽ(K ). As the first-step operator uses the upper bound
for output to be F(K , 1, K , 1), the first step greatest fixed point h∗(h2(K ))(K ) < f (K , N̂ )ẽ(K ), hence if
we take h̄2 = f (K , 1)ẽ(K ) < f (K , N̂ )ẽ(K ) in the second step, A∗(h̄2) < h̄2.
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Assumption Benhabib-Farmer: u(c) and v(l) are each power utility in consumption
and leisure (or, u(c) = ln c ) in Assumption A1, and technology is Cobb–Douglas:
F(k, n, K , N̂ ) = kanb K c N̂ d with f (k, n) = kanb, e(K , N̂ ) = K c N̂ d , and
a, b, c, d > 0, such that a + b = 1, a + c > 1, b + d > 1 in Assumption A2.

By Theorem 1, a complete lattice of RE exists in both [0, h̄2] and [0, h̄m
2 ], while

by Theorem 2, we can compare the least and the greatest RE in each of these function
spaces in the discount rate. As Benhabib and Farmer (1994) show the equivalence of
the “laissez faire” versions of their models to monopolistic competition, our results
apply to these decentralizations also. Liu and Wang (2014) have recently produced a
very interesting dynamic economy, where credit constraints on heterogeneous firms
generate a set of sequential equilibrium conditions in a symmetric equilibrium that
are observationally equivalent to the model of Benhabib and Farmer (1994) without
appealing to increasing returns directly. See alsoPintus (2006) formore recent analysis.
Our results apply to that framework as well.

Finally, we can develop a global theory of comparisons of recursive sunspot equi-
libria as in Benhabib and Farmer (1994) by extending the approach of Spear (1991).
Since our construction is global, the resulting theory of stationary sunspot equilibrium
is global. It is not clear how such results are obtainedwith local approaches in standard
methods available in the literature. For example, Spear’s results (Spear (1991)) for the
existence of continuous stationary sunspots in models with positive externalities such
as Romer (1986) are not easy to extend. The complication is clear from Lemma 2. As
contingent labor supply is a correspondence, it does not generally admit smooth selec-
tions; rather, only continuous selection that depend on steady-state capital; hence, the
implicit function theorem cannot be applied at the steady state. The global approach
avoids this complication. Further, as we generate RE with monotone dynamics in
capital, we can study the question of existence of stationary sunspot equilibria using
monotone Markov process methods.

5.3 Santos (2002) and relationship of our methods to the literature

A common approach to studying (local) structure of dynamic equilibrium in the lit-
erature is using methods of smooth dynamical systems and characterizing recursive
or sequential equilibrium dynamics near a steady state. Unfortunately, these meth-
ods are not applicable if a locally smooth dynamic equilibrium does not exist. Upon
ensuring existence of a sequential equilibrium, if the model is continuous time, then
one can additionally prove the resulting sequential equilibrium is the solution of an
autonomous differential equation having a smooth extension near steady states.19 In
this case, one can use the Grobman–Hartman Theorem, and/or versions of the stable
manifold theorem to study the local properties of RE. We are not aware of similar
results for the class of economies studied in this paper, even with continuous time.

For discrete time models, one requires to first prove the existence of a sequential
equilibrium; then, to show one such sequential equilibrium can be smoothly extended
over an open set of the steady state. First, multiplicity of contingent equilibrium labor

19 See Hirsch et al. (2013, Chap. 7, especially Chap. 7.4).
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supply in Lemma 2 does create difficulty in applying these methods even locally near
steady states. Although at best the transversality argument yields a globally continuous
selections for contingent RE labor supply, and not a smooth selection, at any point
in the state space k∗ > 0, equilibrium contingent labor supply is locally smooth
by the implicit function theorem. So this is not problematic. The issue is the local
invariant manifold near the steady state for which our extremal recursive competitive
equilibrium dynamical systems form a selection does not necessarily admit a smooth
selection. Actually, sufficient conditions under which a smooth selection exists are
strong and require unique recursive equilibria (e.g., see Datta et al. 2002). Further,
the Santos (2002, Sect. 3.2) counterexample (even with inelastic labor supply) proves
smooth local equilibria need not exist. In other words, we have nonexistence of smooth
local recursive equilibria near steady states. So it does not seem easy to apply the
methods of smooth dynamical systems to characterize even the local structure of RE,
let alone its global structure aswedo inSects. 3 and 4. Santos (2002) has been discussed
extensively in the literature as it provides a striking example of where all known
methods for existence of minimal state RE fail. It is also an important prototypical
example of so-called policy-induced indeterminacy,20 with identical features as in
Coleman (1991, 2000) andMirman et al. (2008), except for allowing regressive income
tax as opposed to a progressive income tax. We elaborate these points in the remainder
of this subsection.

Assumption Santos: The household preferences are such that v(l) = 0 for all l ∈
[0, 1], the period utility function u(c) is either satisfyingAssumptionA1 or u(c) = ln c
for c ∈ R++. Labor is supplied inelastically (normalized to 1). Production technology
is given by f (k, n), where k stands for capital and n for labor hired by the firm.
Function f satisfies conditions in Assumption A2 with e(K , N̂ ) = 1. In addition,
there is a Lipschitz continuous and monotone income tax function, τ : K → [0, 1).

Coleman (1991) analyzes the case of progressive taxation in which τ is a monotone
increasing function of aggregate state. The case of regressive taxation (or, monotone
decreasing τ ) includes the example in Santos (2002, Sect. 3.2). We should also men-
tion that Peralta-Alva and Santos (2010) demonstrate (numerically) indeterminacy of
sequential equilibria near the unstable steady state for the case of regressive taxa-
tion. Note that, under regressive taxation, a sequential equilibrium does exist by an
argument following Crettez and Morhaim (2012).

The household enters any given period with an individual level of capital k ∈ R+,
facing an economy in aggregate state K ∈ R+ where K is the per-capita capital
stock and aggregate labor, N̂ = 1. Household income in state (k, K ) is r(K )k +
w(K ), where r(K ):= f1(K , 1) is the rental rate for capital and w(K ):= f2(K , 1) is
the wage rate. Profits are zero by constant returns to scale. The income tax proceeds are
redistributed as lump-sum transfer J (K ) back to households under a balance budget,
J (K ):= τ(K )(r(K )k + w(K )). Denoting investment by x , the agent or household’s

20 The question of policy-induced indeterminacy have been discussed extensively in the literature. Early
literature includes papers by Schmitt-Grohe and Uribe (1997), Guo and Lansing (1998), and Guo and
Harrison (2004), while more recently Nourry et al. (2013), Nishimura et al. (2015), and Menuet et al.
(2017) among others has addressed this issue.
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budget constraint is,

c + x ≤ {(1 − τ(K ))(r(K )k + w(K )) + J (K )}=: yτ (k, K ). (18)

With this notation, we formally define a minimal state-space recursive equilibrium
as a list of functions C∗, V ∗, c∗, w, r, J such that for each K > 0:

1. Taking pricesw, r and law of motion C ∈ B f (K) as given V ∗ : K×K×B f → R
satisfies the Bellman equation for the household problem,

V ∗(k, K ; C) = max
c∈[0,yτ (k,K )]{u(c) + βV ∗(yτ (k, K ) − c, g(K ; C); C)}, (19)

with c∗(k, K ; C) as the solution.
2. Taking prices w, r as given firms maximize profit,

max
k,n≥0

f (k, n) − r(K )k − w(K )n.

3. Aggregate and individual consistency,

C∗(K ) = c∗(K , K ; C∗),
C∗(0) = 0.

4. Government budget balance, J (K ) = τ(K )[r(K )k + w(K )] and,
5. Market clearing: c∗(K , K ; C∗)+ g∗(K , K ; C∗) = f (K , 1) = yτ (K , K ).

Next, for the sake of notation, list of function in the definition of the RE is simplified
and denoted by using a consumption functionC∗ and the corresponding law of motion
g∗. The unique optimal solution c∗(k, K ; C∗) in (19) has strong structural properties
in the individual state k (although not in aggregate state K ). The next proposition is a
counterpart of Lemma 1 from Sect. 2.3.

Proposition 2 Under Assumption Santos, (a) an RE consumption function k →
c∗(k, K ; C∗) is increasing and Lipschitz in k, and (b) an RE investment function
k → x∗(k, K ; C∗):= yτ (k, K ) − c∗(k, K ; C∗) is increasing and Lipschitz in k.

Proof A standard argument shows that under our assumptions, the value function V ∗
is strictly concave and continuous in k, for each K , and has a smooth envelope

V ∗
1 (k, K ; C∗) = u′(c∗(k, K ; C∗))r(K )(1 − τ(K )),

and V ∗
1 (k, K ; C) is decreasing in k; hence, consumption c∗(k, K ; C∗) is increasing

in k which proves one part of (a). To prove (b), notice that the necessary and sufficient
first-order characterization of the unique optimal investment x∗ = x∗(k, K ; C∗) is,

u′((yτ −x∗)(k, K , C∗))−βu′((yτ −x∗)(x∗, g∗(K ); C∗) r(g∗(K ))(1−τ(g∗(K )) = 0,
(20)
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where g∗(K ) = f̃ (K ) − C∗(K ). From (a), a consumption c∗(k, K ; C∗) = (yτ −
x∗)(k, K ; C∗) is monotone increasing in k, as when k rises, the left-hand side of (20
) falls in k. As the continuation consumption c∗(k′, K ′; C∗) = (yτ − x∗)(k′, K ′; C∗)
is also monotone increasing in k, this implies x∗(k, K ; C∗) is increasing in k, which
proves part of (b).

Finally, since yτ (k, K ) is Lipschitz for K > 0, c∗(k, K ; C∗) and x∗(k, K ; C∗)
are both Lipschitz with a Lipschitz constant bounded by the Lipschitz constant of
yτ (k, K ), namely F1(K , 1) when K > 0. ��

We make few remarks.
First, according to Proposition 2, any RE in this economy must be continuous in

individual state k, so any discontinuities in a RE must occur only in aggregate states
K .

Second, if we approach the question of existence and characterization of RE via
dynamic lattice programming methods [e.g., as discussed in Mirman et al. (2008)
and Acemoglu and Jensen (2015)], it is easy to see issues that arise under regressive
taxation as the return on capital is not monotone in g. That is, a lattice program-
ming argument cannot determine whether c∗(k, K ; C∗) is increasing or decreasing
in C∗, and without further characterization of equilibrium single-crossing properties;
hence, existence of an RE would need to be verified, for example, by a topological
argument. This complicates the question of constructing monotone equilibrium com-
parative statics in the deep parameters of the economy (β, τ ). Further, obtaining sharp
characterizations of RE that have joint monotonicity properties of RE investment in
both individual and aggregate states (i.e., monotonicity of K → c∗(K , K ; C∗) in any
RE C∗) directly via application of dynamic lattice programming, as in Mirman et al.
(2008), is not possible as requisite single-crossing properties are not evident. Actually,
single-crossing properties are only shown to be held in particular subclasses of RE.

Third, if we try to apply Coleman’s monotone map method to verify existence of
any RE with regressive taxation, we also run into problems. To see that, following
Coleman (1991), let us take a “guess” at future consumption function C : D → D
where

H(D)={C |0≤C(K ) ≤ f (K ), C continuous, increasing and f −C increasing in K }.

Next, we define a mapping Zc(ĉ, k, K , C) based on the Euler equation as follows -
for C ∈ H, 0 < C(K ) < f̃ (K ) , K > 0,

Zc(ĉ, k, K , C) = u′(ĉ)−βu′(C(yτ (k, K )− ĉ))r( f̃ (K )− ĉ)[1−τ( f̃ (K )− ĉ)]. (21)

The Coleman monotone map operator is,

Ac(C)(K ) = ĉ∗(K , K , C) such that Zc(ĉ
∗(k, K , C), k, K , C) = 0,

= 0 if C = 0. (22)
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Under progressive taxation, everything works well: that is, Ac is single-valued, isotone
and has a nontrivial fixed point, which is a recursive equilibrium.21 Also, the fixed
point can be computed by successive approximations as the limits of nonstationary
recursive equilibria for finite horizon economies. Further, one can show that the fixed
point is increasing in β, and decreasing in τ .22 However, under regressive taxation, the
Coleman monotone map operator Ac is not single-valued; rather, it is nonempty upper
semicontinuous correspondence and does not necessarily admit a continuous selection
in its first argument k, for each K , let alone a Lipschitz section as in Proposition 2.
Therefore, as Santos (2002) points out, the Coleman monotone map method cannot
verify existence of an RE or characterize equilibrium comparative statics.

Our methods do work for the case of regressive taxation. Since we are interested in
comparing RE, we specify explicitly how our new Euler equation operator depends on
(β, τ ), the deep parameters of the economy. Let h1 ∈ H , h2 ∈ B f , for 0 < h1 < f̃ ,

k > 0, define

Z(ĉ, k, K , h1; h2(K ), β, τ ) = u′(ĉ) − βu′(h1( f̃ (k) − ĉ))r( f̃ (k) − ĉ)

(1 − τ( f̃ (K ) − h2(K ))). (23)

Next, define the operator A as follows:

A(h1, h2, K ;β, τ)(k) = ĉ∗(k, K , h1, h2;β, τ)

if Z(ĉ∗(k, K , h1, h2;β, τ), k, K , h1; h2, β, τ ) = 0,

= 0 otherwise. (24)

Notice, the operator defined in (24) differs from Coleman’s operator defined in (22)
only by how it treats the “tax” in the second term of (21) versus (23). We add an
additional step to the computation of the fixed point (compose τ with h2 ∈ B f ) which
allows us to study the complementarity structure of the household equilibrium Euler
equation in “two steps”. In effect, the decomposition of the equilibrium fixed point
problem deconstructs the single-crossing property for the household’s problem into
a single-crossing property (in equilibrium) in two parts, one part isolating “individ-
ual” state dynamic complementarities, and a second part isolating “aggregate” state
dynamic complementarities.

In terms of the example we are considering in this section: for any h2 ∈ B f ,
h1 → A(h1, h2, K ;β, τ) is isotone. Also, the partial map h1 → A(h1, h2, K ;β, τ)

is precisely Coleman’s “monotone map” operator embedded as a “first-step” operator
in a “two-step” procedure. As H is a complete lattice under pointwise partial order, by
Tarski’s theorem, our first-step operator has a complete lattice of fixed points ΨA ⊂
H for each (h2, K , β, τ ) with a trivial greatest fixed point at 0, and a unique (least)
strictly “interior” fixed point h∗(h2, K , β, τ ) ∈ H .23

21 Keep in mind, C = 0 is a trivial fixed point.
22 Here, “decreasing in τ” is in the pointwise partial order: τ1 ≥ τ2 if τ1(K ) ≥ τ2(K ) for all K .

23 Existence follows fromColeman (1991) and uniqueness of strictly positive fixed point for the “first-step”
operator follows from Coleman (2000). These are also derived as corollaries in our paper.
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Next, we use the least fixed point to define a second-step operator

A∗(h2;β, τ)(K ) = h∗(h2, K ;β, τ)(K ), h2 ∈ B f , K > 0

= 0 else.

By Veinott’s fixed point comparative statics result (e.g., Topkis 1998, Theorem 2.5.2),
h∗(h2, K ;β, τ) is increasing in h2 on B f for each (β, τ ), with h∗(h2, K ;β, τ) also
increasing in β, and decreasing in τ . By construction, A∗(h2;β, τ) ∈ B f and B f is
a nonempty complete lattice. Therefore, by Tarski’s theorem, the fixed point set of
operator A∗ denoted byΨA∗(β, τ ) is a nonempty complete lattice and each fixed point
is an RE.

Importantly, by construction for any C∗(β, τ ) ∈ ΨA∗(β, τ ) ⊂ B f we have that the
optimal solution to the household dynamic program (k, K ) → c∗(k, K , C∗;β, τ) ∈
C∗(D, B f (K)), where we recall that C∗(D, B f (K)) is the set of candidate RE con-
sumption policy functions.

Further, as A∗ is increasing in β and decreasing in τ , by a standard fixed point
comparative statics argument, under either progressive or regressive taxation, the least
RE, ∧ΨA∗(β, τ ), and the greatest RE, ∨ΨA∗(β, τ ), are increasing in β and decreasing
in τ .

Notice that we can provide sharper characterization of some RE (namely, some RE
has stronger monotonicity properties for investment). That is, assume additionally at
function K → f̃ (K )− h2(K ) is increasing. Denoting by A∗

m(h2;β, τ) the restriction

of the mapping A∗(h2;β, τ) to B f
m .Now A∗

m : B f
m → B f

m and, as B f
m is a subcomplete

lattice of B f , the fixed point set of A∗
m , by Tarski’s theorem, is nonempty complete

lattice of RE consumption functions having an associated RE investment monotone
increasing (but, in general, discontinuous). Finally, as A∗

m(h2;β, τ) restricted B f
m

is also increasing in β, and decreasing in τ, we have the same robust equilibrium
comparative statics relative to (β, τ ) obtained in Coleman (1991) and Mirman et al.
(2008) not only for progressive taxes, but also for the case of regressive taxes. The
difference between the cases is that, in general, we have multiple equilibria with
regressive taxes as we show multiple subclasses of RE along with robust equilibrium
comparative statics.

The main limitation of our approach is obtaining sufficient structure for the multi-
step monotone method to work. Specifically, if the tax structure is not monotone our
methods cannot be applied. Also, the case of nonseparable preferences are compli-
cated to handle even in models for which sequential equilibrium is known to exist,
e.g., by Crettez and Morhaim (2012).

We conclude with a generalization of equilibrium comparative statics results for
a class of distorted economies with elastic labor supply. First note that the economy
with an income tax corresponds to a “reduced-form” production specification in the
spirit of assumption A2. In particular, we rewrite the income process for our economy
y(k, n, K ; N̂ ) in Eq. (5) as a ”reduced-form” production function f (k, n)e(K , N̂ )

[e.g., see Greenwood and Huffman (1995), Coleman (2000) and Datta et al. (2002)].
In this case, you can define ê(K , N̂ ) = e(K , N̂ )(1− τ(K )) ∈ [0, 1), where e satisfies
assumption A2, and τ is either progressive or regressive. Further, noting that under
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constant returns to scale, in equilibrium after imposing the balanced budget rule, we
can define our operator as in the main section, and verify the existence of RE in
Theorem 1.

We assume proceeds of the income tax are returned as lump-sum transfers J (K )

to the household, where these transfers satisfy a balanced budget taxation rule

J (K ) = τ(K )y(K , N∗(C∗(K ), K ), K ; N∗(C∗(K ), K )),

where N∗ is any RE labor supply in Theorem 1. Then, when k = K , noting constant
returns to scale and zero profits in private returns for the firms, the income process in
a RE for a household is

yτ (k, N∗(C∗(k), k), k, N∗(C∗(k), k))

= (1 − τ(k)){r(k, N∗(C∗(k), k))k + w(k, N∗(C∗(k), k))N∗(C∗(k), k)} + J (k)

= f (k, N∗(C∗(k), k))e(k, N∗(C∗(k), k)).

Under Assumptions A2, an RE exists and can be computed by Theorem 1.
To obtain our RE comparison results, we substitute the equilibrium relationship
yτ (k, N∗(k), k; N∗(k)) = f (k, N∗(k))e(k, N∗(k)), into the definition of Aν in Eqs.
(14), (15), and (16), noting the dependence of Aν(h1, h2(K ); τ) on tax, we have the
following important result:

Theorem 3 Policy Comparative Statics.Under Assumptions A1 and A2, for h̄2 ∈ B f

(a) for the least RE C∗
ν,L(τ ) ∈ [0, h̄2] (resp., greatest RE C∗

ν,G(τ ) ∈ [0, h̄2] we have
for τ1(K ) ≥ τ2(K ) for all K ∈ K, then C∗

ν,L(τ1) ≥ C∗
ν,L(τ2) (resp, C∗

ν,G(τ1) ≥
C∗

ν,G(τ2)) with RE investment g∗
ν,G(τ1) ≤ g∗

ν,G(τ2) (resp., g∗
ν,L(τ1) ≤ g∗

ν,L(τ2)),

and the associated RE labor supply n∗
ν(C

∗
ν,L(τ2)(k), k) ≤ n∗

ν(C
∗
ν,L(τ1)(k), k) (resp,

n∗
ν(C

∗
ν,G(τ2)(k), k) ≤ n∗

ν(C
∗
ν,G(τ1)(k), k)). (b) these RE comparative statics can be

computed as follows:

∨(A∗
ν)

n(0; τ1) = C∗
ν,L(τ1) ≥ C∗

ν,L(τ2) = ∨(A∗
ν)

n(0; τ2)

∧(A∗
ν)

n(h̄2; τ1) = C∗
ν,G(τ1) ≥ C∗

ν,G(τ2) = ∧(A∗
ν)

n(h̄2; τ2).

Finally (c), the claims in (a) and (b) hold for the least and greatest RE computed using
A∗

m,v for h2 ∈ [0, h̄m
2 ] ⊂ B f

m.

Proof We prove (b) first; then (a) follows from the argument directly. By the order
continuity of h2 → A∗

m,v(h2; τ) on B f
m by the Tarski-Kantorovich theorem, we have

∨(A∗
m,ν)

n(0; τ1) = h∗
ν(τ1) ≥ h∗

ν(τ2) = ∨(A∗
m,ν)

n(0; τ2)

with n∗
ν(h

∗
m,ν(τ1)(k), k) ≤ n∗

ν(h
∗
m,ν(τ2)(k), k),

with g∗
m,ν increasing in (k) for each τ, and the last line follows from the fact that

n∗
ν(c, k) is continuous and decreasing in c. (a) For each h1 ∈ Hν, h2 ∈ B f

m ,

using the fact that under lump-sum transfers, yτ (k, N∗(C∗(k), k), k; N∗(C∗(k), k)) =
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f (k, N∗(C∗(k), k))e(k, N∗(C∗(k), k)) is independent of τ in any RE, when k > 0,
h1 > 0, h2 < y∗

f,v, by the definition Aν(h1, h2(K ); τ) is increasing in τ . Then, as in
the proof of previous theorem, by Veinott’s fixed point comparative statics theorem
has A∗

m,ν(h2; τ) is increasing in τ . ��

5.4 Extension to stochastic models

We conclude with a short discussion on extending our results to stochastic models with
Markov shocks denoted by z ∈ Z = [zL , zH ]. Let (Z ,Z) be a measurable space and
Z , the Borel family of Z with shocks {zt }∞t=0 following a first-order Markov process
Φ(z, A) for measurable set A ∈ Z . Also, let (K,K) be a measurable space, K the
Borel sets of K, and denote the state space S = K × Z, with (S,S) as its product
measure space. Allow a random externality e(K , N , z) in production and in addition
to Assumption A2, assume e smooth in the shocks (hence, measurable). We assume
aggregate laws of motion for capital are parameterized by elements in B f (S) defined
similar to B f (K) in Eq. (2), but modified to require each element of this function space
to be jointly measurable in (S,S). Now, to construct recursive equilibrium, first notice
that the prices aremeasurable. Noting that the household’s problem in Eq. (6) becomes
a stochastic dynamic program with appropriately measurable objective and aggregate
laws of motion parameterized by elements of B f (S), whose unique fixed point is
measurable, stochastic versions of households’ Euler equations and other first-order
conditions are available.

Construction of RE in a class of measurable functions using operators defined in
Eq. (16) is possible noting that the least and greatest contingent equilibrium for labor
supply in Lemma 2 is continuous (hence, measurable) in z by the transversality argu-
ments.24 Then, for Proposition 1, under pointwise partial orders, the space Hν(D × Z)

with added measurability assumptions is countably chain complete. This implies the
spacesC∗

υ(D × Z,B f ) andC∗
υ(D × Z,B f

m) are also countably chain complete.25 Since
the argument in Lemmas 4 and 5 works for the case of measurable shocks, both The-
orems 1 and 2 hold, but the set of extremal recursive equilibria is only countably
chain complete.26 Finally, if the shocks are i.i.d., then RE can be shown to exist in the
space of jointly monotone investment functions C∗

υ(D × Z,B f
m), where additionally

all elements are monotone in the shock z (along with (k, k)).
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26 Again, if the shocks are countable, the set of extremal recursive equilibria forms a complete lattice
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Appendix: fixed point theory in ordered spaces

Mathematical terminology

Posets and lattices: A partially ordered set (or poset) is a set P ordered with a
reflexive, transitive, and antisymmetric relation. If any two elements of C ⊂ P are
comparable, C is referred to as a linearly ordered set, or chain. A lattice is a set L
ordered with a reflexive, transitive, and antisymmetric relation ≥ such that any two
elements x and x ′ in L have a least upper bound in L , denoted x ∧ x ′, and a greatest
lower bound in L , denoted x ∨x ′. L1 ⊂ L is a sublattice of L if it contains the sup and
the inf (with respect to L) of any pair of points in L1. A lattice is complete if any subset
L1 of L has a least upper bound and a greatest lower bound in L . L1 is subcomplete if
it is complete and a sublattice. In a poset P , if every subchain in C ⊂ P is complete,
then C is referred to as a chain complete poset (or CPO). If every countably subchain
in C is complete, then C is referred to as a countably chain complete poset (or CCPO).
Let [a) = {x |x ∈ P, x ≥ a} be the upperset of a, and (b] = {x |x ∈ P, x ≤ b} the
lowerset of b. We say P is an ordered topological space if [a) and (b] are closed in
the topology on P. An order interval is defined to be [a, b] = [a) ∩ (b], a ≤ b.

Isotone (or order preserving) mappings on a poset: Let (X,≥X ) and (Y,≥Y )

be Posets. A mapping f : X → Y is increasing (or isotone) on X if f (x ′) ≥Y f (x),

when x ′ ≥X x, for x, x ′ ∈ X. If f (x ′) >Y f (x) when x ′ >X x , we say f is strictly
increasing.27 The mapping f : X → Y is join preserving (resp, meet preserving) if
we have for any countable chain C , f (∨C) = ∨ f (C) (resp, f (∧C) = ∧ f (C) ). A
mapping that is both join and meet preserving is order continuous.

A correspondence (or multifunction) F : X → 2Y is ascending in a binary set
relation � on 2Y if F(x ′) � F(x), when x ′ ≥X x . Let X be a poset, Y a lattice, and
define the relation � =≥v on the range L(Y) of all nonempty sublattices of Y, where
for L1, L2 ∈ L(X) we say L1 ≥v L2 in Veinott’s Strong Set order if for all x2 ∈ L2,

x1 ∈ L1, x1 ∨ x2 ∈ L1, x1 ∧ x2 ∈ L2.

Fixed points. Let F : X → 2X be a nonempty valued correspondence. x ∈ X is
a fixed point of F if x ∈ F(x). If F is a function, a fixed point is x ∈ X such that
x = F(x). For F : X×T → 2X denote byΨF : T → 2X the fixed point correspondence
of F .

Order and uniform topologies

Consider a mapping f : X → Y, where X and Y are each countable chain com-
plete partially ordered sets. We say f is order continuous if f (∨X ′) = ∨ f (X ′) and

27 To avoid using references to “isotone mapping,” we will often use the more traditional terminology
in economics “increasing.” In the literature on partially ordered sets, an “increasing map” often denotes
something slightly different (e.g., f (x ′) ≥Y f (x) when x ′ >X x for x, x ′ ∈ X ).
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f (∧X ′)=∧ f (X ′) for all countable chains X ′ ⊂ X. If X and Y are additionally Banach
spaces, say f is a compact operator if it is (a) continuous (relative to the norm topolo-
gies on X and Y ), and (b) for any bounded X ′ ⊂ X, f (X ′) ⊂ X is relatively compact.
We have the following result:

Proposition 3 Say X (S) a collection of functions on S = [0, 1], X (S) compact in
the topology of uniform convergence and endowed with the pointwise partial order,
f : X (S) → X (S) is isotone and compact. Then, f is order continuous on X (S).

Proof As X (S) is compact in the topology of uniform convergence, X (S) is compact
in the topology of pointwise convergence (as pointwise and uniform convergence
coincide in X (S)); hence, X (S) is chain complete in the pointwise partial order on
X (S) (Amann 1976, Corollary 3.2). As f : X (S) → X (S) is isotone and continuous
on X (S) in the topology of uniform convergence, f is continuous in the pointwise
topology. This implies f is continuous in the interval topology of X (S) associatedwith
pointwise partial orders (as interval topology in this case coincides with the uniform
topology/pointwise topology in X (S)). Hence, f is order continuous in pointwise
partial orders. ��

Some useful fixed point theorems

One critical result we use through the paper is Veinott’s version of Tarski’s theorem.
His result is stated in the next proposition.

Proposition 4 (Veinott 1992, Chap. 4, Theorem 14). Let X be a nonempty complete
lattice, T a poset, F : X × T → 2X a nonempty, subcomplete-valued correspondence
that is Veinott’s strong set order ascending. Then, (i) ΨF (t) is a nonempty complete
lattice, and (ii) ∨ΨF (t) and ∧ΨF (t) are isotone selections.

Tarski’s original theorem (Tarski 1955, Theorem 1) occurs as a special case of
Proposition 4, where F(x, t) = f (x), and f : X → X is a function. An important
extension of Tarski’s theorem is given by Markowsky (1976, Theorem 9) and is stated
in the next proposition. The fixed point comparative statics result in the proposition
per least (resp, greatest) fixed points is a corollary of a theorem proven in Heikkila
and Reffett (2006, Theorem 2.1) which in turn implies t → ΨF (t) is weak-induced
ascending upward and downward.

Proposition 5 Let X be a CPO, T a poset, f : X × T → X increasing in the product
order on X × T . Then, (i) for each t ∈ T ΨF (t) is nonempty CPO, (ii) t → ∧ΨF (t)
(resp, ∨ ΨF (t)) are increasing selections.

For our results, we will need constructive versions of Propositions 4 and 5. For this,
we will assume for each t ∈ T, the partial map ft : X → X is order continuous. For
this case, we have the following version of Tarski–Kantorovich–Markowsky theorem.
The characterization of the fixed point set in (i) is from Balbus et al. (2015). The
computability result is the classic Tarski–Kantorovich theorem (e.g., Dugundji and
Granas 1982, Theorem 4.2). There is a dual version for the greatest selections.
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Proposition 6 Let X be a CCPO, T a poset, f : X × T → X order continuous in
x, each t, and ∃ a xL ∈ X such that xL ≤ f (xL , t). Denote by Ψ f (t): T → 2X the
fixed point correspondence of f at t ∈ T . Then, (i) ΨF (t) is nonempty CCPO. Fur-
ther, supn f n(xL , t) = ∧Ψ f (t). Finally, if in addition, X and T are each continuous
domains, and f is additionally order continuous on T, then the mapping t → ∧Ψ f (t)
is order continuous.
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