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a b s t r a c t

This paper analyzes the Lucas treemodelwith heterogeneous agents and one asset.We show the existence
of a minimal state space Lipschitz continuous recursive equilibrium using Montrucchio (1987) results.
The recursive equilibrium implements a sequential equilibrium through an explicit functional equation
derived from the Bellman Equation. Our method also allows to prove existence of a recursive equilibrium
in a general class of deterministic or stochasticmodelswith several assets provided there exists a Lipschitz
selection on the demand correspondence. We provide examples showing applicability of our results.
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1. Introduction

Since the work of Lucas and Prescott (1971) and Prescott and
Mehra (1980), recursive equilibrium has been a key focal point
of both applied and theoretical work in characterizing sequen-
tial equilibrium for dynamic general equilibrium models in such
fields as macroeconomics, international trade, growth theory, in-
dustrial organization, financial economies, and monetary theory.
Specifically, in general dynamicmodels with infinitely lived agents
economists have focused on so-called minimal state space recur-
sive equilibrium, i.e. a pair of stationary transition and policy func-
tions that relate the endogenous variables in any two consecutive
periods, defined on the natural state space. Apart from its simplic-
ity, (minimal state space) recursive equilibrium is also widely used
in applied or computational works, as powerful recursive methods
provide algorithms to compute it efficiently. Results regarding
equilibrium existence are necessary prerequisites for a theoretical
and computational analysis, however.

Unfortunately, there are well known examples where recursive
equilibria (in specific function spaces) in dynamic economies are
non existent (see Santos (2002) for economies with taxes, Kubler
and Schmedders (2002) for economies with incomplete asset mar-
kets or Krebs (2004) for economies with large borrowing limits).
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Some recent attempts that address the question of minimal state
space recursive equilibrium existence and its approximation, in-
clude contributions of Datta et al. (2002) and Datta et al. (2018) for
models with homogeneous agents, who propose amonotonemaps
method applied on the equilibrium version of the household first
order conditions and prove equilibrium existence along with its
comparative statics, using versions of Tarski fixed point theorem.
Unfortunately, there are no known results on how to extend these
techniques to models with heterogeneous agents and multiple
assets. Next, Brumm et al. (2017) apply some powerful results
from stochastic games literature and by adding sufficient shocks
prove existence of a recursive equilibrium using operators defined
on households first order conditions and applying Kakutani–Fan–
Glicksberg fixed point theorem on the operator defined on the
Walrasian auctioneer problem. The underlying topology is weak-
star and the obtained recursive equilibrium a measurable map
on the state space. The measure theoretical results together with
recent contributions in stochastic games allow to prove mini-
mal state space recursive equilibrium existence without sunspots
or public coordination devices. More specifically, one of the
canonical equilibrium models analyzed in the literature that sig-
nificantly influenced the fields of financial economics, macroeco-
nomics, monetary theory, optimal taxation and econometrics, was
developed by Lucas Jr. (1978). However, despite the model’s wide
application, typical assumptions involve a representative agent.
In fact, presence of infinitely lived heterogeneous agents can be
the key to explain several peculiarities of market frictions from
the perspective of models with rational expectations. Apart from
mentioned Brumm et al. (2017) contribution, there are only few
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known results concerning recursive equilibrium existence in the
Lucas three model with heterogeneous agents. These include Raad
(2016), who show the existence of a possibly non-continuous
recursive equilibrium with a minimal state space, however, the
model assumes that agents have exogenous beliefs on portfolio
transitions.1 Kubler and Schmedders (2002) present an example of
an infinite-horizon economywithMarkovian fundamentals,where
the recursive competitive equilibrium (defined on a state space of
equilibrium asset holdings and exogenous shocks) does not exists.
In their example, there must exist two different nodes of a tree
such that along the equilibrium path the value of the equilibrium
asset holdings is the same but such that there exist more than
one equilibrium for both of the continuation economies. Although
they claim that a slight perturbation in individual endowmentswill
restore the existence of a weakly recursive equilibrium, we detail
the set of conditions that rules out (Kubler and Schmedders, 2002)
example from the model analyzed in our paper.2

In this paper,we take a different approach to show the existence
of a minimal state space recursive equilibrium. By minimal state
space, we mean the previous period asset allocation and current
state of nature.3 We proceed basically in five steps. First, we con-
sider a class of transition and policy functions that are Lipschitz
continuous. This allows us to obtain a sup norm compact set of
candidate equilibrium functions. Second, the adopted framework
and the recursive demand are constructed through a selector of
the Bellman correspondence which is defined without using the
first order conditions. This is a new approach and allow to compute
equilibria with occasionally binding constraints.4 Following Mon-
trucchio (1987) results, we assume strong conditions on the prim-
itives to ensure a Lipschitz condition of the demand is satisfied.5
In order to do so, we restrict our attention to models with single
asset.6 Third, another problem faced in this paper is the expansion
of the implied Lipschitz constants. Here we assume conditions on
the primitives that assure our operator maps back to the space
of Lipschitz functions with the same constant. We define upper
and lower bounds of the domains so that the effective Lipschitz
constants are well behaved (i.e. non-expanding). Fourth, the fixed
point operator is defined using the optimization problem (defined
on the candidate space of Lipschitz continuous functions) of the
Walrasian auctioneer. As a result, apart from proving existence, we
also establish that the constructed equilibrium is in fact Lipschitz
continuous. Fifth, we use a constructive argument to explain how
the sequential equilibrium can be implemented recursively by
showing the consecutive relations among the endogenous vari-
ables explicitly.

Working with Lipschitz continuous functions and a sup norm,
although restrictive per assumptions, allows us to avoid typical

1 Agents make mistakes directly or indirectly on prices by inaccurate anticipa-
tion of transition portfolios and an equilibria with rational expectations and perfect
foresight can not be implemented in this environment. Therefore, we cannot apply
Raad’s result in this paper. In fact, he shows that an equilibrium allocation for an
economy with agents making large enough errors on price expectations cannot
be a Radner equilibrium, assuming quite general conditions on the primitives. The
author also presents an example elucidating this fact even if agents make errors
only on the portfolio transitions.
2 See Remark 4.19.
3 It is minimal because an asset redistribution naturally influences the equilib-

rium prices. This is also evident in models with risk aversion heterogeneity, for
instance. See also discussion in Kubler and Schmedders (2002) on weakly recursive
equilibria.
4 We present a specific example, where equilibrium policies are boundary for a

subset of a state space.
5 Every continuously differentiable function over a compact interval is Lipschitz

continuous.Montrucchio (1987) theoremprovides, however, the Lipschitz constant
of the argmax.
6 As we are not aware of Lipschitz selection theorems for argmax correspon-

dences.

convergence problems associatedwithworkingwith the set of fea-
sible measurable functions endowed with the weak-star topology.
In fact, concerning the set of measurable functions defined over
uncountable domain, the Mazur lemma states that a weak-star
cluster point of any subset is a pointwise cluster point of its convex
hull. However, a weak-star cluster point of a typical subset may
not be a pointwise cluster point of it. Importantly, this problem is
present even when working in the space of randomized policies.
One way to overcome this problem is to introduce some convex-
ification devices, either via sunspots (see Duffie et al. (1994)) or
external noise (see Brumm et al. (2017)) in stochastic models.
Our results work for deterministic and stochastic economies and
hence complement (Brumm et al., 2017) contribution. Moreover,
and perhapsmore importantly, working with Lipschitz continuous
functions allows us to obtain a tractable and approximate space
of equilibrium candidates. Although we cannot verify whether
our fixed point operator is a contraction, working with Lipschitz
equilibrium functions is still an important numerical advantage
of our approach,7 as it is easier to characterize numerically Lips-
chitz function as opposed to a function that is only known to be
measurable. As we do not use consumers’ first order conditions,
such sequential equilibrium can be computed using the dynamic
programming approach and thus does not embody cumulative
errors in the long run as noted by Kubler and Schmedders (2005).

Including this introduction, the paper is organized into five
sections. Section 2 establishes the model. In Section 3, we define
the recursive and sequential equilibrium concepts and show how
they are related. Section 4 shows the existence result. We pro-
vide explicit conditions on the primitives that guarantee Lipschitz
continuity of the demand correspondence on a suitable set of
prices bounded away from zero and infinity. The conclusions are
addressed in Section 5.

2. The model

2.1. Definitions

Suppose that there exists a finite set of types denoted by I =

{1, . . . , I} and such that each type i ∈ I has a continuum of agents
trading in a competitive environment. Time is indexed by t in the
set N = {1, 2, . . .} for current periods and r ∈ N ∪ {0} for future
periods. In thismodel, the uncertainty is exogenous, in the sense of
being independent of agents’ actions. Each agent knows the whole
set of possible exogenous variables8 and trades contingent claims.
Let Z ⊂ [0, 1]N for some N ∈ N be a set containing all states of
nature9 and let Z be its Borel sigma-algebra. Denote by (Zτ , Zτ ) a
copy of (Z, Z ) for all τ ∈ N. Exogenous uncertainty is described by
the streams zτ

= (z1, . . . , zτ ) ∈ Z1 × · · · × Zτ = Z τ for all τ ∈ N,
that is, the set of nodes of the event tree is given by

⋃
τ∈N Z τ .

7 See e.g. Hinderer (2005) for error bounds in approximation of Lipschitz value
functions. See also Santos (2000) relating error bounds of the value and policy
functions.
8 Also called states of nature or exogenous shocks.
9 Importantly, every Lipschitz continuous function is measurable, hence do-

mains that we use in our construction allow us to work with uncountable state
space.
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There is one consumption good10 andone long lived real asset11

with dividends characterized by a bounded, measurable function
d̂ : Z → R++ given in units of the consumption good. The number
d̂(z) represents the amount of good paid by one unit of the asset in
the state of nature z. By Θ i

⊂ R+ denote a convex set where asset
choices are defined and by C i

⊂ R+ the convex set where agent
i’s consumption is chosen. Moreover, write12 X i

= C i
× Θ i and

Int X i the interior of the set X i relative to R2
+
for all i ∈ I. Define

the symbol without upper index as the Cartesian product (if it is
not otherwise defined). For instance, write C =

∏
i∈I C i. Define

analogously the symbol without upper index for functions.
Define the set of prices as Q = {q ∈ R2

++
: q = (qc, qa) =

(1, p)}. We assume that assets are given in net supply one.13

Therefore, write

Θ̄ =

{
θ̄ ∈ Θ :

∑
i∈I

θ̄ i
= 1

}
.

Let S = Θ̄ × Z be the space of state variables with a typical
element denoted by s = (θ̄ , z) and endowed with the product
topology. Write S as the Borel subsets of S and (Sτ , Sτ ) a copy of
(S, S ) for all τ ∈ N. Denote the set of all continuous functions14

q̂ : S → Q by Q̂ with q̂ = (1, p̂) and the set of all continuous
functions p̂ : S → R++ by P̂ . Moreover, consider Ĉ as the
space of all continuous functions ĉ : S → C representing the
transition of optimal consumption choices and Θ̂ as the space of
all continuous functions θ̂ : S → Θ representing the transition of
asset distribution.15 Finally, write X = C × Θ and X̂ = Ĉ × Θ̂ .

Notation 2.1. Each Cartesian product of topological spaces is
endowed with the product topology and any set of bounded con-
tinuous functions is endowed with the topology induced by the
sup norm. The norm ∥ · ∥ in RL considered here is the max norm,
that is, ∥y∥ = max{|y1|, . . . , |yn|}. Write ny and Ny for inferior and
superior boundaries of a variable y or a function ŷ and Mŷ as the
Lipschitz constant of a function ŷ. For each y, y′

∈ RL write y ≤ y′

when yl ≤ y′

l for all l ≤ L and yy′
=

∑
l≤L yly

′

l . When y ∈ RL and
y′

∈ R then write y ≤ y′ when yl ≤ y′ for all l ≤ L. For each
y, y′

∈ RL define max{y, y′
} = y′′

∈ RL with y′′

l = max{yl, y′

l} for
all l ≤ L and for y′

∈ R define max{y, y′
} = max{y, (y′, y′, . . . , y′)}.

For a function ŷ : S → Y and y′
∈ Y , then ŷ ≤ y′ stands for ŷ(s) ≤ y′

for all s ∈ S. The reverse binary relations are defined analogously.
For a set of functions {ŷi : Θ i

× S → Y i
}i∈I define ŷ : Θ × S → Y

by ŷ(θ, s) =
∏

i∈I ŷi(θ i, s) for all (θ, s) ∈ Θ × S.

10 The results can be generalized for more consumption goods. The computation
of Lipschitz constants used in our construction becomes cumbersome and does not
bring additional economic intuition, however. For this reason, we specify our main
results assuming single consumption good. See Remark A.10 in the Appendix for
more details.
11 We use Montrucchio (1987) conditions on the consumers maximization prob-
lem to assure existence of a Lipschitz demand. In case of more than one assets we
would necessarily obtain an argmax correspondence as for some prices a typical
consumer may be indifferent between some asset portfolios. As we are not aware
of results characterizing Lipschitz selections from the argmax correspondences, in
this paper we analyze the case of a single asset and leave the case of more assets for
further research.
12 We consider consumption sets as subsets of R+ as upper and lower bounds
of the domains will play an important role in the construction of non-expanding
Lipschitz constants in the proof of the existence theorem.
13 Since we are only interested in symmetric equilibria, we assume that each
agent of type i chooses the same portfolio θ̄ i and, consequently, this portfolio can
be viewed as the mean asset choice of agents belonging to type i.
14 Note that we are using the ‘‘hat’’ symbol to denote the space of functions from
S to the specified set.
15 In the equilibrium transition θ̂ (S) ⊂ Θ̄ .

2.2. Agents’ features

In every period, preferences are represented by an instanta-
neous utility given by an α-concave16 (Montrucchio, 1987) real
valued function ûi

: C i
→ R that is strictly increasing for all i ∈ I.

Since ûi is concave then it has a positive directional derivative and
by ∂ ûi(c i)(c̊ i) we denote the positive directional derivative of ûi

evaluated at the point c i in the direction of c̊ i. Sometimes we use
∂ ûi(c i) to denote ∂ ûi(c i)(1). Assume that ∂ ûi(ċ ic̈ i) = ∂ ûi(ċ i)∂ ûi(c̈ i)
for all (ċ i, c̈ i) ∈ C i

× C i.
Each agent i has a measurable endowment êi : Z → R+ of good

and a discount factor β i for each i ∈ I.
Suppose that the spaces Prob(Z) and Prob(Z r ) are endowedwith

the weak topology and the Borel sigma-algebra for each r ∈ N.
Agents’ subjective beliefs17 at every fixed date r are characterized
by the continuous map µ̂i

r : Z → Prob(Z r ) for r ∈ N, anticipating
future exogenous states of nature given the realization of the cur-
rent state of nature z. We suppose that these beliefs are predictive,
i.e. for a rectangle A1 × · · · × Ar the measure µ̂i

r satisfies:

µ̂i
r (z)(A1 × · · · × Ar ) =

∫
A1

· · ·

∫
Ar

λ̂i(zr−1, dzr ) · · · λ̂i(z, dz1). (1)

where λ̂i
: Z → Prob(Z) is a continuous probability transition rule

for each i ∈ I.
We follow the approach of contingent choices as given in Rad-

ner (1972). Because agents do not perfectly anticipate the future
states of nature, which are given exogenously, rationality leads
them to plan for the future at each current period contingent on
all possible future trajectories of the states of nature. Therefore, we
assert the definition below.

Definition 2.2. An agent i’s plan is defined as the current period
choice (c i0, θ

i
0) ∈ C i

× Θ i and the streams {c ir}r∈N and {θi
r}r∈N of

measurable functions c ir : Z r
→ C i and θi

r : Z r
→ Θ i for all r ∈ N

representing future plans.

In each current period, the quantity c ir (zr ) can be interpreted
as the value planned for consumption r periods ahead if zr is the
partial history of prices actually observed during these periods. The
asset plan {θj

r}r∈N has an analogous interpretation.
LetQ be the set of all sequences {qr : Z r

→ Q }r≥0 ofmeasurable
functions with q0 ∈ Q for r ∈ N. For each i ∈ I, define C i as the set
of all sequences {c ir : Z r

→ C i
}r≥0 of measurable functions with

c i0 ∈ C i for r ∈ N. Define Θi analogously for all i ∈ I.
We assume that agents choose a feasible plan of consumption

and savings that maximizes the expected utility, under their own
beliefs, among all other feasible plans. The next definitions charac-
terize the feasibility of a plan and how agents calculate its expected
value.

Let b̂i : Θ i
× Z × Q → C i

× Θ i be defined as

b̂i(θ i
-, z, q) = {(c i, θ i) ∈ C i

× Θ i
: c i + pθ i

≤ (p + d̂(z))θ i
- + êi(z)}.

Let q ∈ Q be a stream of contingent prices for a given q0 ∈ Q .
For each agent i ∈ I, a plan (c i, θi) ∈ C i

× Θi is feasible from
(θ i
-, z, q) if (c

i
0, θ

i
0) ∈ b̂i(θ i

-, z, q0) and for each r ∈ N

(c ir (z
r ), θi

r (z
r )) ∈ b̂i(θi

r−1(z
r−1), zr , qr (z

r )) for all zr ∈ Z r .

Denote by f i : Θ i
× Z × Q → C i

× Θi a correspondence of all
feasible plans for each i ∈ I,.

16 As we assume a single consumption good, then α-concavity is equivalent on a
compact domain to a (uniform) strict concavity.
17 These beliefs can be accurate in the case of rational expectations. But here we
assume that agents always have perfect foresight with respect to price and asset
transitions.
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Define the agent i’s expected utility ui
: C i

× Z → R from
consuming c i given the state z ∈ Z by

ui(c i, z) = ûi(c i0) +

∑
r∈N

∫
Z r
(β i)r ûi(c ir (z

r ))µ̂i
r (z, dz

r ).

Finally, define the value function ṽi
: Θ i

× Z × Q → R by:

ṽi(θ i
-, z, q) = sup{ui(c i, z) : (c i, θi) ∈ f i(θ i

-, z, q)}. (2)

The following definition characterizes agents’ demand. It yields
the current choice at each period given its previous and current
observed variables. We assume that agents have perfect foresight,
i.e, they anticipate the equilibrium stream of prices. More precisely
write δ̃

i
: Θ i

× Z × Q → C i
× Θi for goods and assets by:18

δ̃
i
(θ i
-, z, q) = argmax{ui(c i, z) : (c i, θi) ∈ f i(θ i

-, z, q)}.

3. Recursive and sequential equilibrium

This section defines the concepts of recursive and sequential
equilibrium and establishes the relation between them. Typically,
the recursive equilibrium is a function relating the variables in the
sequential equilibrium between two consecutive periods.

Definition 3.1. Let (θ̄ i)i∈I be an initial portfolio allocation and z an
initial state of nature in a given period. The allocation (c, θ) ∈ C×Θ

and the price q ∈ Q constitute a sequential equilibrium for E if they
satisfy for all zr ∈ Z r :

1. optimality: (c i, θi) ∈ δ̃
i
(θ̄ i, z, q) for all i ∈ I;

2. asset markets clearing:
∑

i∈I θi
r (z

r ) = 1;
3. good markets clearing:

∑
i∈I c ir (zr ) = d̂(zr ) +

∑
i∈I êi(zr ).

Now, we introduce the concept of recursive equilibrium and
show in the Appendix that it implements the sequential equilib-
rium. The recursive demand is constructed using the value func-
tion. The latter is defined as the optimal value among all feasible
plans, given the income and current portfolio endowments and,
additionally, the transitions of the endogenous variables such as
prices and asset distribution. To do so, we need to define an
appropriate function spaces, where our equilibrium objects would
belong to. For each i ∈ I, let V̂ i be the set of all uniformly bounded
continuous functions v̂i

: Θ i
× S → R such that v̂i( · , s) is concave

for each s ∈ S and ∂1v̂
i is uniformly bounded. Assume that V̂ i is

endowedwith the sup norm.19 Define C̃ i as the set of all uniformly
bounded continuous functions c̃ i : Θ i

×S → R and Θ̃ i analogously
for i ∈ I.

The definition below characterizes the demand and the indirect
utilities given as transition functions.

Definition 3.2. Define the function δ̂iv : V̂ × Q̂ × Θ̂ → V̂ i by

δ̂iv(v̂, q̂, θ̂ )(θ i
-, s) = max

{
ûi(c i) + β i

∫
Z ′

v̂i(θ i, θ̂ (s), z ′)λ̂i(z, dz ′)
}
(3)

over all (c i, θ i) ∈ C i
× Θ i such that (c i, θ i) ∈ b̂i(θ i

-, z, q̂(s)) and the
function δ̃ix : V̂ × Q̂ × Θ̂ → C̃ i

× Θ̃ i with δ̃ix = (δ̃ic, δ̃
i
θ ) by

δ̃ix(v̂, q̂, θ̂ )(θ i
-, s) = argmax

{
ûi(c i)

+β i
∫
Z ′

v̂i(θ i, θ̂ (s), z ′)λ̂i(z, dz ′)
}

(4)

18 This correspondence can be empty, when C i
× Θ i is not compact.

19 Recall that V̂ is defined as the Cartesian product of V̂ i for i ∈ I.

over all (c i, θ i) ∈ C i
× Θ i such that (c i, θ i) ∈ b̂i(θ i

-, z, q̂(s)). Finally,
define δ̂ix : V̂ × Q̂ × Θ̂ → Ĉ i

× Θ̂ i with δ̂ix = (δ̂ic, δ̂
i
θ ) by

δ̂ix(v̂, q̂, θ̂ )(s) = δ̃ix(v̂, q̂, θ̂ )(θ̄ i, s) for all (v̂, q̂, θ̂ , s) ∈ V̂ × Q̂ × Θ̂ × S.

Remark 3.3. Notice that the policy function δ̂ix satisfies

δ̂ix(v̂, q̂, θ̂ )(s) ∈ b̂i(θ̄ i, z, q̂(s)) for all

(v̂, q̂, θ̂ , s) ∈ V̂ × Q̂ × Θ̂ × S. (5)

The model with one asset allows us to write the optimal choice
of consumption as a function of the price transition and the choices
of current and previous assets. Thismakes clear the presentation of
the model hereafter. So we have the following definition.

Definition 3.4. Consider Č i the set of all functions c̆ i : Θ i
× Θ i

×

S → C i. Define the consumption map č i : Q̂ → Č i as

č i(q̂)(θ i
-, θ

i, s) = p̂(s)(θ i
- − θ i) + d̂(z)θ i

- + êi(z) for all

(θ i
-, θ

i, s) ∈ Θ i
× Θ i

× S. (6)

Definition 3.5. The transition vector (ĉ, θ̂ , q̂, v̂) ∈ Ĉ × Θ̂ × Q̂ × V̂
is a recursive equilibrium if it satisfies

1. v̂i
= δ̂iv(v̂, q̂, θ̂ ) for all i ∈ I;

2. (ĉ i, θ̂ i) = δ̂ix(v̂, q̂, θ̂ ) for all i ∈ I;
3.

∑
i∈I θ̂ i(s) = 1 for all s ∈ S;

4.
∑

i∈I ĉ i(s) = d̂(z) +
∑

i∈I êi(z) for all s ∈ S.

With our state space, this definition corresponds to the weakly
recursive equilibrium as defined in Kubler and Schmedders (2002).

Example 3.6. Consider a model with one good and one asset
and agents with instantaneous utility function defined by ûi(c i) =

log(c i) for all c i ∈ C i and all i ∈ I. Suppose that Z = {z},
that is, there is no exogenous uncertainty. We must impose that
C i

⊂ R++ and Θ i
⊂ R++ because ûi is defined only for R++. Write

βθ̄ =
∑

i∈I β iθ̄ i and the asset price as

p̂(s) = (βθ̄ )d̂(z)/(1 − βθ̄ ) for all s ∈ S. (7)

Lemma A.9 in the Appendix shows that the recursive equilibrium
(ĉ, θ̂ , q̂, v̂) is given for each s ∈ S and each i ∈ I by

θ̂ i(s) = β iθ̄ i(1 + d̂(z)/p̂(s)) and
ĉ i(s) = (1 − β i)θ̄ i(p̂(s) + d̂(z)).

(8)

The value function is given by

v̂i(θ i
-, s) = ûi((1 − β i)θ i

-)/(1 − β i) + r̂ i(s) for all

(θ i
-, s) ∈ Θ i

× S (9)

where r̂ i : S → R is the fixed point of the operator ρ̂ i defined for
each s ∈ S by

ρ̂ i(r̃ i)(s) = ûi(p̂(s) + d̂(z))
+β iûi(β i(1 + d̂(z)/p̂(s))

)
/(1 − β i) + β i r̃ i(θ̂ (s), z)

which satisfies Blackwell’s sufficient conditions20 and hence it
is a contraction. This ensures the existence of r̂ i satisfying the
functional equation

r̂ i(s) = ûi(p̂(s) + d̂(z)) + β iûi(β i(p̂(s)
+d̂(z))/p̂(s))/(1 − β i) + β i r̂ i(θ̂ (s), z) (10)

20 See Stokey et al. (1989) for more details.
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Fig. 1. Graphics of asset transition θ̂1(θ̄1, 1 − θ̄1, z) on the left and θ̂2(1 − θ̄2, θ̄2, z) on the right.

Fig. 2. Graphics of consumption transitions ĉ1(θ̄1, 1 − θ̄1, z) and ĉ2(θ̄1, 1 − θ̄1, z) on the left and asset price transition p̂(θ̄1, 1 − θ̄1, z) for θ̄1
∈ [0, 1].

for all s ∈ S and hence to state that v̂i satisfies the Bellman equation
v̂i

= δ̂iv(v̂, q̂, θ̂ ) that is21

v̂i(θ i
-, s) = max

{
ûi(c i) + β i

∫
Z ′

v̂i(θ i, θ̂ (s), z ′)λ̂i(z, dz ′)
}

(11)

over all (c i, θ i) ∈ C i
× Θ i such that (c i, θ i) ∈ b̂i(θ i

-, z, q̂(s)). The
policy functions are given for each (θ i

-, s) ∈ Θ i
× S by22

θ̃ i(θ i
-, s) = β iθ i

-(p̂(s) + d̂(z))/p̂(s) and

c̃ i(θ i
-, s) = (1 − β i)θ i

-(p̂(s) + d̂(z)).

Figs. 1 and 2 show the recursive equilibrium forβ1
= 1/4, β2

=

3/4 and d̂(z) = 2. Observe that agent one23 chooses a portfolio
vanishing in the long run for any initial asset endowment (Blume
and Easley, 2006).

When β i
= β for all i ∈ I then the equilibrium price must be

constant. Therefore, the recursive equilibrium is the corresponding
steady state Lucas tree equilibrium (Lucas Jr., 1978) with homoge-
neous agents.24 Explicitly,

p̂(s) = βd̂(z)/(1 − β), θ̂ i(s) = θ̄ i and ĉ i(s) = d̂(z)θ̄ i for all s ∈ S.

21 Note that λ̂i(z) = dirac(z).
22 The value function v̂i is strictly concave on θ i

-. See Stokey et al. (1989) Chapter
4 for more detail. Recall that θ̂ = (θ̂ i)i∈I .
23 Who has lower intertemporal discount rate.
24 Despite the heterogeneity in the asset endowments θ̄ .

The next definition provides more details of how a recursive
equilibrium implements a sequential equilibrium. Observe that
each agent i has initial endowment θ i

- = θ̄ i and optimal choices on
Θ̄ in the equilibrium, that is, each agent chooses themean portfolio
relative to his own type.

Definition 3.7. The transition vector (ĉ, θ̂ , q̂) ∈ Ĉ × Θ̂ × Q̂
implements the process (c, θ, q) ∈ C×Θ×Q with initial condition
(θ̄ , z) ∈ Θ̄ × Z if for all zr ∈ Z r

q0 = q̂(θ̄ , z), θi
0 = θ̂ i(θ̄ , z), c i0 = ĉ i(θ̄ , z)

and recursively for r ∈ N

c ir (z
r ) = ĉ i(θr−1(zr−1), zr ) θi

r (z
r ) = θ̂ i(θr−1(zr−1), zr ) (12)

for all i ∈ I and

qr (z
r ) = q̂(θr−1(zr−1), zr ). (13)

The next result assures that the recursive equilibrium can actu-
ally be used to construct the sequential equilibrium.We prove it in
the Appendix.

Theorem3.8. If (ĉ, θ̂ , q̂, v̂) ∈ Ĉ×Θ̂×Q̂×V̂ is a recursive equilibrium
then its implemented process (ĉ, θ̂, q̂) ∈ C × Θ × Q with initial
condition (θ̄ , z) ∈ Θ̄ × Z is a sequential equilibrium of the economy
with initial state (θ̄ , z).
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Remark 3.9. The proof of Theorem 3.8 embodies arguments that
also show the intertemporal consistency of a sequential equilib-
rium implemented by a recursive equilibrium. Indeed, consider
a process (ĉ, θ̂, q̂) ∈ C × Θ × Q implemented by a recursive
equilibrium (ĉ, θ̂ , q̂) given s1 ∈ S at period one. Fix some period
t and a realization zt ∈ Z t . Define the continuation c̃ t ∈ C as c̃ t0 =

ĉ t (zt ) ∈ C and for each r ∈ N the plan c̃ tr : Z r
→ C as c̃ tr (zr ) =

ĉ t+r (zt+r ). Define q̃t ∈ Q and θ̃t ∈ Θ analogously. In the proof
of Theorem 3.8 we can find that v̂i(θ̂

i
t−1(z

t−1), θ̂t−1(zt−1), zt ) =

ṽi(θ̂
i
t−1(z

t−1), zt , q̃t ) and hence (c̃ it , θ̃
i
t ) ∈ δ̃

i
(θ̂

i
t−1(z

t−1), zt , q̃t ) for all
i ∈ I by Eq. (29). Indeed, (c̃ it , θ̃

i
t ) is given according to equation25

(12) and (ĉ, θ̂ ) by Item 2 of Definition 3.5. As a result, under
assumptions guaranteeing the existence of equilibrium as defined
in 3.5, the state space S is sufficient for characterizing the recursive
equilibrium.

4. Existence result

In this section, we demonstrate the existence of a recursive
equilibrium with state space S = Θ̄ × Z .

Notation 4.1. Define υ̂ i
: X i

× S × V̂ × Θ̂ → R as

υ̂ i(xi, s, v̂, θ̂ ) = ûi(c i) + β i
∫
Z
v̂i(θ i, θ̂ (s), z ′)λ̂i(z, dz ′) (14)

for all (i, xi, s, v̂, θ̂ ) ∈ I × X i
× S × V̂ × Θ̂ .

For each i ∈ I, write ŵi
: S → C i

× Θ i by ŵi(s) = (êi(z) +

θ̄ id̂(z), θ̄ i) for all s ∈ S.
Define the excess demand function ξ̂ : X̂ × S → R2 with

ξ̂ = (ξ̂c, ξ̂a) as ξ̂ (x̂, s) =
∑

i∈I x̂i(s) − ŵi(s). Write δ̂v =
∏

δ̂iv and
δ̂x =

∏
δ̂ix.

We define below the Lipschitz property. This property charac-
terizes a boundary for themaximum slope of a function. For differ-
entiable functions it means that the function must have bounded
derivative.

Definition 4.2. Consider a function f : Y ⊂ RK
→ RL.

1. We say that f isM-Lipschitz forM ∈ R++ if ∥f (y)− f (y′)∥ ≤

M∥y − y′
∥ for all y, y′

∈ Y .
2. We say that f = (f1, . . . , fL) is M-Lipschitz with M ∈ RL

++
if

fl : Y ⊂ RK
→ R is Ml-Lipschitz for l = 1, . . . , L.

3. We say that f isM-Lipschitz for L = 1 andM ∈ RK
++

if the kth
section f (y1, . . . , · , . . . , yK ) : Yk ⊂ R → R is Mk-Lipschitz
for k = 1, . . . , K and all fixed yκ ∈ Yκ for κ ̸= k.

Remark 4.3. Notice that a function f : Y ⊂ RK
→ RL

∈ Lp(M) for
M ∈ RL

++
then f ∈ Lp(∥M∥).

Remark 4.4. We say that ∂ ûi
∈ Lp(M∂ û) when |∂ ûi(ċ i)(1) − ∂ ûi(c̈ i)

(1)|≤ M∂ û|ċ i − c̈ i| for all (ċ, c̈) ∈ C i
× C i.

We now proceed to define a set of functions that would be
later useful in our construction of the fixed point operator and
equilibrium bounds of relevant variables.

Notation 4.5. Consider F̂ the space of all continuous f̂ : Y ⊂ RK
→

RL.Write Lp(̂F ,M, n,N) as the set of allM-Lipschitz functions f̂ ∈ F̂
such that f̂ (Y ) ⊂

∏
l≤L[nl,Nl] ⊂ RL. In absence of ambiguity, we

write shortly the space Lp(̂F ,M, n,N) as Lp(M).

We now define a Lipschitz property of a transition probability
λ̂.

25 That is, replacing r by t + r .

Definition 4.6. Consider F̂ as the set of all bounded continuous
f̂ : Z → R.We say that amap λ̂ : Z → Prob(Z) satisfies λ̂ ∈ Lp(Mλ̂)
if and only if for each (ż, z̈) ∈ Z × Z

sup
{⏐⏐⏐⏐ ∫

Z
f̂ (z ′)λ̂(ż, dz ′) −

∫
Z
f̂ (z ′)λ̂(z̈, dz ′)

⏐⏐⏐⏐ : f̂ ∈ F̂ and |f̂ | ≤ 1
}

≤ Mλ̂∥ż − z̈∥.

The definition below used in Theorem 4.16 establishes bound-
aries of allocations. Despite optimal choices are bounded, under
this assumption, we show that in equilibrium all allocations are
interior. It is well known that those allocations also constitute an
equilibrium even if the choice sets are unbounded.

Definition 4.7. Suppose that Q ⊂ {1} × [np,Np], d̂(Z) ⊂ [nd,Nd]

and êi(Z) ⊂ [ne,Ne] for all i ∈ I. Define Θ i
= [0,Nθ ] and

write C i
= [nc,Nc] where Nc = NpNθ + NdNθ + Ne + γ and

nc = ne − NpNθ − γ for all i ∈ I and a given γ > 0 small enough.
Recall that X = C×Θ and X̂ = Ĉ×Θ̂ with a typical element x̂ ∈ X̂ .

Remark 4.8. Notice that26 č i(q̂) ∈ Lp(Mčθ- ,Mčθ ,Mčs) where
Mčθ- = Np + Nd, Mčθ = Np and Mčs = Mp̂Nθ + Md̂Nθ + Mê.
Moreover,27 č i(q̂)(S) ⊂ Int C i for all i ∈ I.

The definition below is critical for our analysis. It follows exis-
tence of a single asset and allows us to define uniquely the next
period prices via the envelope theorem.

Definition 4.9. Given i ∈ I, write R̂i for space of all continuous
functions r̂ i : Θ i

× Θ i
× S × S → R++. Define the linear map

ϕ̂i
: V̂ × Q̂ → R̂i for each v̂ ∈ V̂ and each q̂ ∈ Q̂ by

ϕ̂i(v̂, q̂)(θ i
-, θ

i, s, s′) =
∂1v̂

i(θ i, s′)
∂ ûi(č i(q̂)(θ i-, θ i, s))

for all

(θ i
-, θ

i, s, s′) ∈ Θ i
× Θ i

× S × S.

Moreover, define p̃i : V̂ × Q̂ × Θ̂ → P̂ for each given (v̂, q̂, θ̂ ) ∈

V̂ × Q̂ × Θ̂ by

p̃i(v̂, q̂, θ̂ )(s) = β i
∫
Z
ϕ̂i(v̂, q̂)(θ̄ i, θ̂ i(s), s, θ̂ (s), z ′)λ̂i(z, dz ′) for all

s ∈ S. (15)

Definition 4.10. ConsiderM = (Mq̂,Mϕ̂) whereMϕ̂ = (Mϕ̂θ- ,Mϕ̂θ ,

Mϕ̂s,Mϕ̂s′ ). Define V̂ i
M as the convex set of all v̂i

∈ V̂ i such that
q̂ ∈ Lp(Mq̂) implies ϕ̂i(v̂, q̂) ∈ Lp(Mϕ̂).

Assumption 4.11 will provide conditions on the primitives
{ûi, λ̂i, d̂, êi, β i

}i∈I of Lucas’model and on the boundary of the price
setQ so that the demand is Lipschitz according to Proposition 4.12.
The Lipschitz condition on the aggregate demand is basically a
sufficient condition to assure the existence of a recursive equilib-
rium with a minimal state space. Moreover, in case of one asset,
the strong concavity is basically a sufficient condition to assure
the Lipschitz property of the demand and hence, the existence of
a Lipschitz recursive equilibrium. The remaining difficulty is to
construct equilibrium bounds of domains. Specifically, we need
to assure our fixed point operator selfmaps spaces of Lipschitz
continuous functions with the same Lipschitz constants.

Assumption 4.11. Assume that there exist vectors

σN = (ne,Ne, nd,Nd, np,Np)

σM = (Mλ̂,M∂ û,Md̂,Mč,Mθ̃ ,Mθ̂ ,Mp̂,Mϕ̂)
(16)

such that nc and Nc are given by Definition 4.7 and

26 Recall that č i is given by (6).
27 See Definition 4.7.
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1. Mϕ̂θ- ≥ (Np + Nd)M∂uNcMčθ-/n
2
c ;

2. Mϕ̂θ ≥ (Np + Nd)M∂u(NcMčθ/n2
c + (Mčθ- + MčθMθ̃ θ- )/nc);

3. Mϕ̂s ≥ (Np + Nd)M∂uNcMčs/n2
c ;

4. Mϕ̂s′ ≥ (Mp̂ + Md̂)∂u
i(nc/Nc) + (Np + Nd)M∂u(MčθMθ̃s +

Mčs)/nc ;
5. αMθ̃ θ- ≥ M∂ û(1 + Nd/np);
6. αn2

pMθ̃s ≥ N∂ û(Mp̂+β i(Mϕ̂s+Mϕ̂s′Mθ̂+NϕMλ̂))+M∂ ûMčs(Np+

β iNϕ);
7. Mθ̂ ≥ Mθ̃ θ- + Mθ̃s

where Nϕ = (Nd + Np)∂ui(nc/Nc).

The following proposition assures that the demand δ̂θ is Lips-
chitz usingMontrucchio (1987). Moreover, it assures that Lipschitz
constants are not expanding, whenmapping v̂ and θ̂ . We postpone
its prove to the Appendix. Recall critical conditions in Items 4, 6
and 7. Notice that it is not necessary to ensure Lipschitz conditions
on the objective function in Definition 4.10 since Montrucchio
(1987) imposes Lipschitz conditions only on the derivative of the
objective function.

Proposition 4.12. Consider {σN , σM} satisfying Assumption 4.11.
Then28

δ̂v(v̂, q̂, θ̂ ) ∈ V̂M and δ̂θ (v̂, q̂, θ̂ ) ∈ Lp(Θ̂,Mθ̂ , nθ ,Nθ )

for all (v̂, q̂, θ̂ ) ∈ V̂M × Lp(Q̂ ,Mq̂, nq,Nq) × Lp(Θ̂,Mθ̂ , nθ ,Nθ ).

The following assumption is used directly on the next proposi-
tion.

Assumption 4.13. Assume that there exist vectors (σN , σM ) as in
(16) such that

1. max{p̃i(v̂, q̂, θ̂ )(s) : i ∈ I} ∈ (np,Np) for all (s, v̂, q̂, θ̂ ) with
v̂ = δ̂v(v̂, q̂, θ̂ );

2. Mp̂ > β i(Mϕ̂θ- + Mϕ̂θMθ̂ + Mϕ̂s + Mϕ̂s′Mθ̂ + NϕMλ̂).

Condition 1 assures a suitable low and high boundary on prices
ensuring excess of demand or supply of aggregate asset choices
respectively.29 Condition 2 ensures that p̃ ∈ Lp(Mp). This implies
that theWalrasian auctioneer has positive profits for all prices out-
side the equilibrium set. It is summarized in the next proposition
(proved in the Appendix).

Proposition 4.14. Suppose Assumption 4.13. Then there exists κ ∈

(0, 1) such that for each v̂ ∈ V̂M , q̂ ∈ Lp(Q̂ ,Mq̂, nq,Nq) and θ̂ ∈

Lp(Θ̂,Mθ̂ , nθ ,Nθ ) if v̂ = δ̂v(v̂, q̂, θ̂ ) and (ĉ, θ̂ ) = δ̂x(v̂, q̂, θ̂ ) then

p̃i(v̂, q̂, θ̂ ) ∈ Lp(̂P, (1 − κ)Mp̂, (1 + κ)np, (1 − κ)Np) for all i ∈ I;

Lemma 4.15 below (proved in the Appendix) shows that it is
not necessary to ensure that the value function is Lipschitz for
the existence theorem. Therefore, the existence theorem is based
on a construction of a certain operator defined only on portfolio
and price transitions. Consider V̂ the set of all continuous maps
ν̂ : Q̂ × Θ̂ → V̂ . Since V̂M is not a closed subset of V̂ under the
sup norm30 we cannot apply Blackwell’s sufficient conditions in
order to obtain a fixed point of a contraction.

28 Recall thatMq̂ = (0,Mp̂) and Nq = (1,Np).
29 Aswe show later in the theorem, existence of boundaries on prices np,Np such
that p̃i(v̂, q̂, θ̂ )(S) ⊂ (np,Np) for all (v̂, q̂, θ̂ ) ∈ V̂ × Q̂ × Θ̂ guarantees existence
of Lipschitz recursive equilibrium. See Example 4.17 for suggestions on how to
construct such boundaries.
30 It is actually a Banach space under a Sobolev norm. However, we do not need
this topology for the existence theorem.

Lemma 4.15. Suppose Assumption 4.11. Then there exists a value
function ν̂ ∈ V̂ with ν̂(q̂, θ̂ ) ∈ V̂M , ν̂(q̂, θ̂ ) = δ̂v(ν̂(q̂, θ̂ ), q̂, θ̂ ) and
δ̂θ (ν̂(q̂, θ̂ ), q̂, θ̂ ) ∈ Lp(Θ̂,Mθ̂ , nθ ,Nθ ) for all (q̂, θ̂ ) ∈ Lp(Q̂ ,Mq̂, nq,

Nq) × Lp(Θ̂,Mθ̂ , nθ ,Nθ ).

The next theorem is a central result of our paper. For this
reason we present its proof but recall that many key ingredi-
ents have been already established in the previous results. Under
Assumptions 4.11 and 4.13 it assures existence of a recursive
equilibrium that is Lipschitz continuous. Observe that our results
work for both stochastic and deterministic economies in contrast
to Brumm et al. (2017). In order to prove this result, we consider
a class of transition prices and policy functions that are Lipschitz
continuous. This allows us to obtain a sup norm compact set of
candidate equilibrium functions. Second, we define the fixed point
operator using the optimization problem (defined on the candidate
space of Lipschitz continuous functions) of the Walrasian auction-
eer. Third we apply the fixed point of Kakutani–Fan–Glicksberg.
Finally we show that the fixed point of our operator satisfies the
market clearing conditions.

Theorem4.16. Suppose that Assumptions 4.11 and 4.13 are satisfied.
Then there exists a continuous recursive equilibrium (ĉ, θ̂ , q̂, v̂) with
(ĉ, θ̂ , q̂) Lipschitz.31

Proof of Theorem 4.16. Write

Ŷ = Lp(Q̂ ,Mq̂, nq,Nq) × Lp(̂X,Mx̂, nx,Nx)

where X̂ = Ĉ ×Θ̂ ,Mx̂ = (Mĉ,Mθ̂ ), nx = (nc, nθ ) andNx = (Nc,Nθ ).
Ascoli’s Theorem (Royden, 1963) assures that Ŷ is compact by the
compactness of S. Consider λ̃ ∈ Prob(S) any probability measure
with full support32 and write Nξ = ∥ξ̂∥. Define the function δ̂q :

X̂ → Lp(Q̂ ,Mq̂, nq,Nq) as

δ̂q(x̂) = argmax
{∫

S
q̂(s)ξ̂ (x̂, s)λ̃(ds) : q̂ ∈ Lp(Q̂ ,Mq̂, nq,Nq)

}
.

Clearly, δ̂q is convex valued and has closed graph by the Dominated
Convergence Theorem and the BergeMaximumTheorem (Alipran-
tis and Border, 1999).

Let δ̂ : Ŷ → Ŷ be the continuous convex valued correspondence
defined by:

δ̂(q̂, x̂) = δ̂q(x̂) × δ̂x(ν̂(q̂, θ̂ ), q̂, θ̂ ) for all (q̂, x̂) ∈ Ŷ .

where ν̂ is given by Lemma 4.15. The operator δ̂ is well defined
under Assumptions 4.11 and 4.13 by applying Lemma 4.15. More-
over, Ŷ is a nonempty compact convex space endowed with a
locally convex Hausdorff topology and δ̂ has closed graph by the
BergeMaximumTheorem (Aliprantis and Border, 1999). Therefore,
δ̂ has a fixed point, say, (ĉ, θ̂ , q̂) by the Kakutani–Fan–Glicksberg
Fixed Point Theorem (Aliprantis andBorder, 1999, Corollary 17.55).
Write v̂ = ν̂(q̂, θ̂ ), (ĉ, θ̂ ) = x̂ = δ̂x(v̂, q̂, θ̂ ) and recall that ĉ i : S →

C i is the ith coordinate of ĉ and θ̂ i
: S → Θ i is the ith coordinate of

θ̂ .
To show themarket clearing conditions, notice that since33 x̂ =

δ̂x(v̂, q̂, θ̂ ) then q̂(s)x̂i(s) ≤ q̂(s)ŵi(s) and hence q̂(s)(x̂i(s)− ŵi(s)) ≤

0 for all s ∈ S and all i ∈ I. Adding over i ∈ I these budget
restrictions then

q̂(s)ξ̂ (x̂, s) ≤ 0 for all s ∈ S. (17)

31 We could apply a fixed point argument using Assumption 4.11 to obtain a
Lipschitz value function. But for this, it is necessary to use a Sobolev norm on the
space V̂ and boundary conditions on the value functions and the set of constants
guaranteeing existence of Lipschitz RCE would be more restrictive. We refer the
reader to a working paper version of this paper for details per this approach.
32 See Aliprantis and Border (1999) for the definition of the support of ameasure.
33 Recall Notation 4.1 for the definition of ŵ and υ̂ .
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Since 0 ∈ X i, then applying the Concave Alternative Theo-
rem (Aliprantis and Border, 1999, Theorem 5.70) there exist ς̂ i

:

S → R+, τ̂ i
: S → R2

+
and τ̌ i

: S → R2
+
with τ̂ i

= (τ̂ i
c, τ̂

i
a) and

τ̌ i
= (τ̌ i

c, τ̌
i
a) such that for each (i, s) ∈ I × S the optimal choice

x̂i(s) maximizes the Lagrangian34

L̂(xi, s) = υ̂ i(xi, s, v̂, θ̂ ) + ς̂ i(s)q̂(s)(ŵi(s) − xi)
+τ̂ i(s)(Nx − xi) + τ̌ i(s)(xi − nx).

Moreover, τ̂ i(s)(Nx − x̂i(s)) = 0 and τ̌ i(s)(x̂i(s) − nx) = 0. Thus,

0 = ∂1L̂(x̂i(s), s)(x̊i)
= ∂1υ̂

i(x̂i(s), s, v̂, θ̂ )(x̊i) − ς̂ i(s)q̂(s)x̊i − τ̂ i(s)x̊i + τ̌ i(s)x̊i

and hence

∂1υ̂
i(x̂i(s), s, v̂, θ̂ )(x̊i) = ς̂ i(s)q̂(s)x̊i + τ̂ i(s)x̊i − τ̌ i(s)x̊i (18)

for all x̊i ∈ R2
+
. Choosing x̊i = (1, 0) and using that ĉ i(s) > nc then

by (14)

ς̂ i(s) = ∂1υ̂
i(x̂i(s), s, v̂, θ̂ )(1, 0) − τ̂ i

c(s) ≤ ∂ ûi(ĉ i(s)) for all i ∈ I.

(19)

Furthermore, choosing x̊i = (0, 1) then Eqs. (14), (15), (18) and
Definition 4.9 imply that35

p̃i(v̂, q̂, θ̂ )(s) ≤ (ς̂ i(s))−1∂1υ̂
i(x̂i(s), s, v̂, θ̂ )(0, 1)

= p̂(s) + τ̂ i
a(s)/ς̂

i(s) − τ̌ i
a(s)/ς̂

i(s)
(20)

for all i ∈ I. Define p̃ : S → R+ by p̃(s) = max{p̃i(v̂, q̂, θ̂ )(s) : i ∈ I}

for all s ∈ S. Then p̃ ∈ Lp((1−κ)Mp̂) by Lemma A.3 since I is finite.
Given s ∈ S, consider ι such that p̃ι(v̂, q̂, θ̂ )(s) = p̃(s). Suppose that
ξ̂a(x̂, s) ≤ 0. Then θ̂ i(s) < Nθ and hence τ̂ i

a(s) = 0 for all i ∈ I.
Therefore, choosing i = ι in (20) we get,

p̃(s)ξ̂a(x̂, s) ≥ p̂(s)ξ̂a(x̂, s) − τ̌ ι
a(s)ξ̂a(x̂, s)/ς̂

ι(s) ≥ p̂(s)ξ̂a(x̂, s).

Suppose that ξ̂a(x̂, s) > 0. Then there exists i ∈ I such that
θ̂ i(s) > θ̄ i

≥ 0 and ĉ i(s) < Nc by (6). Therefore, τ̌ i
a(s) = 0, τ̂ i

c(s) = 0
and

ς̂ i(s) = ∂1υ̂
i(x̂i(s), s, v̂, θ̂ )(1, 0) + τ̌ i

c(s) ≥ ∂ ûi(ĉ i(s)) > 0.

Thus, p̃i(v̂, q̂, θ̂ )(s) ≥ (ς̂ i(s))−1∂1υ̂
i(x̂i(s), s, v̂, θ̂ )(0, 1) and hence by

(18)

p̃(s)ξ̂a(x̂, s) ≥ p̃i(v̂, q̂, θ̂ )(s)ξ̂a(x̂, s) ≥ (p̂(s) + τ̂ i
a(s)/ς̂

i(s))ξ̂a(x̂, s)

≥ p̂(s)ξ̂a(x̂, s).

Since s ∈ S was given arbitrarily then for q̃ = (1, p̃)

q̃(s)ξ̂ (x̂, s) ≥ q̂(s)ξ̂ (x̂, s) for all s ∈ S. (21)

Notice that by definition, ξ̂ (x̂, · ) ∈ Lp(Mξ̂ ) for some Mξ̂ ∈ R+.
Consider

ζ = min{κnp/Nξ , κMp̂/Mξ̂ } (22)

Define p̌ : S → R++ by p̌(s) = p̃(s) + ζ ξ̂a(x̂, s) for all s ∈ S and
q̌ = (1, p̌). Then q̌ ∈ Lp(Q̂ ,Mq̂, nq,Nq) by Proposition 4.14 since
Item 2 given in Assumption 4.13 assures the condition p̌ ∈ Lp(Mp).
Suppose that there exists s ∈ S with ξ̂a(x̂, s) ̸= 0. Since ξ̂ is
continuous and λ̃ has full support, then by (21)∫
S
q̌(s)ξ̂ (x̂, s)λ̃(ds) =

∫
S
q̃(s)ξ̂ (x̂, s)λ̃(ds) +

∫
S
ζ ξ̂ 2

a (x̂, s)λ̃(ds)

34 Recall Definition 4.7.
35 If ς̂ i(s) = 0 and ξ̂a(x̂, s) ≤ 0 then we have a contradiction with the fact that

∂1υ̂
i > 0.

≥

∫
S
q̂(s)ξ̂ (x̂, s)λ̃(ds) +

∫
S
ζ ξ̂ 2

a (x̂, s)λ̃(ds)

>

∫
S
q̂(s)ξ̂ (x̂, s)λ̃(ds).

This is a contradiction since q̌ ∈ Lp(Q̂ ,Mq̂, nq,Nq) and q̂ ∈ δ̂q(x̂).
Thus ξ̂a(x̂, s) = 0 for all s ∈ S. This implies that x̂i(s) ∈ Int X i for
all s ∈ S. Therefore, all inequalities given in (17) must bind since
the objective function is strictly increasing on the consumption and
asset variables. This implies that ξ̂ (x̂, · ) = 0 since q̂ > 0. □

We require demanding conditions on the recursive equilibrium
(i.e. it is given by Lipschitz continuous functions on aminimal state
space) hence the conditions on the primitives are demanding. In
what follows, however, we show a specific example, where all as-
sumptions are easily satisfied by introducing an income tax. Specif-
ically, Example 4.17 below elucidates how to use Assumptions 4.11
and 4.13 to ensure the existence of a recursive equilibrium with a
minimal state space.

Example 4.17. Consider a model with one good and one asset
and agents with instantaneous utility function defined by ûi(c i) =

2(c i)1/2 for all c i ∈ C i and all i ∈ I. Suppose now that there exists
exogenous uncertainty. Assume that there exists an asset income
tax (Coleman, 1991) τ and that the asset is given in net supply Nθ .
Then the new budget correspondence will be given by

b̂i(θ i
-, z, q) = {(c i, θ i) ∈ C i

× Θ i
: c i + pθ i

≤ (p + d̂(z))θ i
-(1 − τ ) + êi(z) + τ̂ i(z)}

where τ̂ i(z) is a lump sum transfer of tax revenues, under balanced
budget constraint.36

Therefore, the right hand side of conditions 1 to 5 of Assump-
tion 4.11 are multiplied by 1 − τ and conditions.37

np <
(1 − τ )β ind∂ui(Nc/nc)
1 − (1 − τ )β i∂ui(Nc/nc)

and

Np >
(1 − τ )β iNd∂ui(nc/Nc)
1 − (1 − τ )β i∂ui(nc/Nc)

(23)

are sufficient to ensure Condition List 1 of Assumption 4.13. We
found the following constants satisfying the modified Assump-
tions 4.11 and 4.13, say, (β,Nθ ,Nϕ, τ , nc,Nc,Me) = (0.9, 0.01,
26.63638, 0.4, 54.75, 55.551, 0.05),

σN = (55, 56, 2, 20.1, 23.112060, 23.972742),

and

σM = (0.002, 0.0012342235, 0.005,Mč,Mθ̃ , 1.5, 0.73872,Mϕ̂),

where

Mč = (26.443645, 23.972742, 0.057417200),
Mθ̃ = (1.1465136, 0.3),
Mϕ̂ = (0.01599411, 0.04664741, 0.000034728081, 0.45380576).

Therefore, there exists a Lipschitz recursive equilibrium for
environmentswhere the parameters are over a certain open neigh-
borhood38 of σN and σM .

Example 4.18. Consider the following numerical example.39 Ex-
ogenous uncertainty is given by two states Z = {z1, z2} and the

36 To make the example straightforward assume individual lump sum transfers
are proportional to endowments and dividends, keeping their Lipschitz properties.
37 See the proof of Proposition 4.14.
38 We can also consider an open neighborhood of the utility function under a
Sobolev norm involving the function and its first and second order derivatives.
39 A Matlab code checking, whether our assumptions are satisfied is available
upon request from the authors.
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Fig. 3. Graphics of θ̄1
↦→ θ̂1(θ̄1, 1 − θ̄1, zk) and θ̄2

↦→ θ̂2(1 − θ̄2, θ̄2, zk) for k = 1, 2.

Fig. 4. Graphics of θi
t (z

t ) and c it (zt ) for i ∈ {1, 2} and t ≤ 400.

transition probability is constant and uniform, that is, λ(z) =

(0.5.0.5) for all z ∈ Z . Preferences are defined by the utility
function ui(c i) = (c i)1/2i and endowments are given by e1(z1) = 1,
e1(z2) = 1, e2(z1) = 1 and e2(z2) = 2. That is, agents have
heterogeneity on risk aversion and aggregate wealth uncertainty.
Agent one has initial asset endowment θ̄1

= 0.1 and Agent two has
initial asset endowment θ̄2

= 0.9. Dividends are given by d̂(z1) = 1
and d̂(z2) = 2.

Fig. 3 shows agents’ asset transition (θ̂1, θ̂2). Notice that θ̂ i has
corner solutions for i = 1, 2.

Fig. 4 shows agents’ consumption dynamics over a Monte Carlo
random sampling. Considering this environment as a model of
an open economy in which each agent represents a country, we
clearly see formation of income cycles without considering any
idiosyncratic cyclical shock.40 For instance, country one decreases
aggregate income and hence consumption and investment choices
on the first periods since Eq. (6) evaluated on the optimal asset
choice θi implies that

c it (z
t )+ p̂(θi

t−1(z
t−1), zt )(θi(zt )−θi

t−1(z
t−1)) = d̂(zt )θi(zt−1)+ êi(zt )

40 Notice that uncertainty is governed by shocks i.i.d.

for all zt ∈ Z t and all t ∈ N.

Remark 4.19. Kubler and Schmedders (2002) present an example
of an infinite-horizon economy with Markovian fundamentals,
where the recursive competitive equilibrium does not exist. In
their example there must exist two different nodes of a tree such
that along the equilibrium path the value of the equilibrium asset
holdings is the same but such that there exist more than one
equilibrium for both of the continuation economies. The coun-
terexample presented in section 5.2 of Kubler and Schmedders
(2002) uses an economy with 2 households with state dependent
CRRA preferences that are not Lipschitz at 0. Second, comparing
the asset structure, they have 3 assets, some with zero dividend
at particular states, and allow for short sales. All of these are ruled
out by our assumption. Third, and most importantly, existence of
a single asset allows us to define uniquely the next period prices
via the envelope theorem (see Definition 4.9 and Eq. (15)). This
precludes ‘‘indeterminacy’’ of the next period price beliefs (on
the natural spate space) and hence rules out sunspot equilibria
constructed in Kubler and Schmedders (2002).
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5. Concluding remarks

The standard methodology used to define a recursive equilib-
rium with a state space containing a large set of variables is given
in Duffie et al. (1994). The authors consider a state space S con-
taining all relevant pay-off variables and a possibly empty valued
correspondence G : S → Prob(S). This correspondence which
embodies exogenous shocks, feasibility and agents’ first order opti-
mality conditions, can be interpreted as intertemporal consistency
in the short run derived from some particularmodel. Ameasurable
subset S ′

⊂ S is said to be self-justified if G(s) ∩ Prob(S ′) ̸= ∅ for
all s ∈ S ′. The set S ′ contains the realizations of the equilibrium
variables given an initial condition on S ′. Additionally, G restricted
to S ′ yields the probability transition induced by the long-run
equilibrium variables. Under regularity assumptions on G, Duffie
et al. (1994) show the existence of a non-empty compact self-
justified set S ′

⊂ S. The Kuratowski–Ryll-Nardzewski Theorem
affirms that G admits a measurable selector. Applying Skorokhod’s
Theorem to this selector they find ameasurable but non-necessary
continuous function defined41 on S ′ which relates two consecutive
realizations of the equilibrium stochastic process and implements
it over all periods.

Concerning a minimal state space recursive equilibrium, in
related papers Kubler and Polemarchakis (2004), Spear (1985)
and Hellwig (1982) point to its possible generic nonexistence, for
models of overlapping generations. Despite the fact that the con-
firmation of this suspicion was fulfilled only with non-existence
examples, Citanna and Siconolfi (2008) argue that they are actually
non-robust for this class of models. Regarding the existence re-
sults, Citanna and Siconolfi (2010) and Brumm and Kubler (2013),
among others conclude the existence of recursive equilibrium for
overlapping generations with a reduced, but not minimal, number
of variables in its domain. Also Kubler and Polemarchakis (2004)
shows the existence of an approximate recursive equilibriumwith
a minimal state space. Unfortunately, all of these results also use
the first order conditions to construct the equilibrium correspon-
dence and hence do not confirm that the implemented sequential
equilibrium is arbitrarily close to an exact equilibrium (see Kubler
and Schmedders (2005)). We also report important results of Ci-
tanna and Siconolfi (2010) and later Citanna and Siconolfi (2012)
for economies with uncertainty and incomplete financial markets
that prove a generic (in a residual set of utilities and endowments)
existence of recursive equilibrium (i.e. nonconfounding simple
time-homogeneous Markov equilibria) for a class of overlapping
generations under assumptions of sufficient ex-ante or ex-post
consumers’ heterogeneity. Finally, the arguments given in Brumm
and Kubler (2013) favoring the mandatory inclusion of additional
variables in the state space cannot be applied to the Lucas tree
model analyzed in our paper because here we consider infinite
lived agents and short sales is not allowed.
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Appendix. Proof of the main results

A.1. Elementary results

Lemma A.1. Suppose that X i
⊂ R2

+
is a compact convex set with

0 ∈ X i and that W i
= R2

+
. Let b̃i : W i

× Q → X i be the budget
correspondence defined by

b̃i(wi, q) = {xi ∈ X i
: qxi ≤ qwi

}.

Then b̃i is continuous.

Proof of Lemma A.1. See Lemma A1 in Raad (2012). □

The following lemmas are useful in the proof of the main result
of this section. They are used to construct an operator whose fixed
point is the recursive equilibrium.

LemmaA.2. Consider Y ametric space and Ŷ the space of all bounded
continuous functions ŷ : Y → Y endowed with the sup metric.
Suppose that f : Y × Ŷ → RL is bounded and continuous with Y × Ŷ
endowedwith the product topology. Then the function g : Y×Ŷ → RL

defined by g(y, ŷ) = f (ŷ(y), ŷ) is continuous.

Proof of Lemma A.2. Assume that42

d((y, ŷ), (y′, ŷ′)) = max{dY (y, y′), dŶ (ŷ, ŷ
′)}.

Fix some (y′, ŷ′) ∈ Y × Ŷ . Given ϵ > 0 take γ > 0 such that

d((y, ŷ), (y′, ŷ′)) ≤ γ implies ∥f (y, ŷ) − f (y′, ŷ′)∥ ≤ ϵ.

Using that ŷ′ is continuous then it is possible to find γ ′ > 0 such
that43

y ∈ Y and dY (y, y′) ≤ γ ′ implies dY (ŷ′(y), ŷ′(y′)) ≤ γ /2.

Take γ −
= min{γ /2, γ ′

}. Since dY (ŷ(y), ŷ′(y′)) ≤ dY (ŷ(y), ŷ′(y)) +

dY (ŷ′(y), ŷ′(y′)) then

d((y, ŷ), (y′, ŷ′)) ≤ γ −
⇒ dŶ (ŷ, ŷ

′) ≤ γ /2 and dY (y, y′) ≤ γ ′

⇒ dY (ŷ(y), ŷ′(y)) ≤ γ /2 and
dY (ŷ′(y), ŷ′(y′)) ≤ γ /2

⇒ dY (ŷ(y), ŷ′(y′)) ≤ γ and dŶ (ŷ, ŷ
′) ≤ γ

⇒ ∥f (ŷ(y), ŷ) − f (ŷ′(y′), ŷ′)∥ ≤ ϵ

⇒ ∥g(y, ŷ) − g(y′, ŷ′)∥ ≤ ϵ.

That is, g is continuous on the point (y′, ŷ′) ∈ Y × Ŷ . Since (y′, ŷ′)
was given arbitrarily, then g is continuous. □

Lemma A.3. Define m̂ : RL
→ R by m̂(y) = max{yk : k ∈

{1, . . . , L}}. Then m̂ ∈ Lp(1).

Proof of Lemma A.3. Take any yk such that yk = m̂(y). Then

m̂(y) = yk = yk − y′

k + y′

k ≤ ∥y − y′
∥ + y′

k ≤ ∥y − y′
∥ + m̂(y′)

and hence m̂(y) − m̂(y′) ≤ ∥y − y′
∥. On the other hand, choosing

y′

k such that y′

k = m̂(y′), then

m̂(y′) = y′

k = y′

k − yk + yk ≤ ∥y − y′
∥ + yk ≤ ∥y − y′

∥ + m̂(y)

and thus |m̂(y) − m̂(y′)| ≤ ∥y − y′
∥. Therefore, m̂ ∈ Lp(1). □

Lemma A.4. Consider Y , Yk ⊂ R with k ∈ {1, 2} and Y ′
⊂ Rn.

Suppose that f : Y1 × Y2 → Y satisfies f ∈ Lp(Mf ) and that
gk : Y ′

→ Yk satisfies gk ∈ Lp(Mgk) for k ∈ {1, 2}. Then h :

42 Clearly, this metric induces the product topology on Y × Ŷ .
43 Observe that γ ′ does depend only on (y′, ŷ′) which is fixed.
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Y ′
→ Y defined by h(y) = f (g1(y), g2(y)) for all y ∈ Y ′ satisfies

h ∈ Lp(Mf max{Mg1,Mg2}). Moreover, when f ∈ Lp(Mf 1,Mf 2) then
h ∈ Lp(Mg1Mf 1 + Mg2Mf 2).

Proof of Lemma A.4.

|h(y) − h(y′)| = |f (g1(y), g2(y)) − f (g1(y′), g2(y′))|
≤ Mf max{|g1(y) − g1(y′)|, |g2(y) − g2(y′)|}
≤ Mf max{Mg1,Mg2}∥y − y′

∥.

For the other statement, notice that

|h(y) − h(y′)| ≤ |f (g1(y), g2(y)) − f (g1(y′), g2(y))|
+ |f (g1(y′), g2(y)) − f (g1(y′), g2(y′))|
≤ (Mf 1Mg1 + Mf 2Mg2)∥y − y′

∥. □

Lemma A.5. Consider Y ⊂ Rn. Suppose that f : Y → Y and g :

Y → Y satisfy f ∈ Lp(Mf ) and g ∈ Lp(Mg ). Then f ◦ g ∈ Lp(MfMg ),
f + g ∈ Lp(Mf + Mg ) and fg ∈ Lp(n(NfMg + NgMf )).

Proof of Lemma A.5. Fix y, y′
∈ Y . Thus

∥f (g(y)) − f (g(y′))∥ ≤ Mf ∥g(y) − g(y′)∥ ≤ MfMg∥y − y′
∥.

The remaining statements come directly from Lemma A.4 for a
suitable choice of f and gk for k ∈ {1, 2}. □

Lemma A.6. Consider f : Y × Z → R bounded continuous and
λ̂ : Z → Prob(Z) measurable. Assume that f ( · , z) ∈ Lp(Mf ) for all
z ∈ Z and λ̂ ∈ Lp(Mλ̂). Then the function g : Y × Z → R defined by

g(y, z) =

∫
Z
f (y, z ′)λ̂(z, dz ′) for all (y, z) ∈ Y × Z

satisfies g ∈ Lp(Mf + NfMλ̂).

Proof of Lemma A.6. Fix (ẏ, ż) ∈ Y × Z and (ÿ, z̈) ∈ Y × Z . Thus

|g(ẏ, ż) − g(ÿ, z̈)| ≤

∫
Z
|f (ẏ, z ′) − f (ÿ, z ′)|λ̂(ż, dz ′)

+ Nf

⏐⏐⏐⏐ ∫
Z
N−1

f f (ÿ, z ′)λ̂(ż, dz ′)

−

∫
Z
N−1

f f (ÿ, z ′)λ̂(z̈, dz ′)
⏐⏐⏐⏐

≤ (Mf + NfMλ̂)∥(ẏ, ż) − (ÿ, z̈)∥. □

Lemma A.7. Suppose that Y is a subset of a Hilbert Space endowed
with the norm | · |. Then for each ÿ, ẏ ∈ Y and 0 ≤ τ ≤ 1

τ (1 − τ )|ÿ − ẏ|2 = τ |ÿ|2 + (1 − τ )|ẏ|2 − |τ ÿ + (1 − τ )ẏ|2

Proof of Lemma A.7. Consider ⟨·, ·⟩ the inner product such that
|y|2 = ⟨y, y⟩. Note that

|τ ÿ + (1 − τ )ẏ|2 = τ 2
|ÿ|2 + (1 − τ )2|ẏ|2 + 2τ (1 − τ )⟨ÿ, ẏ⟩

= τ (1 − τ )(2⟨ÿ, ẏ⟩ − |ÿ|2 − |ẏ|2)

+ τ |ÿ|2 + (1 − τ )|ẏ|2

= −τ (1 − τ )|ÿ − ẏ|2 + τ |ÿ|2 + (1 − τ )|ẏ|2.

Thus,

τ (1 − τ )|ÿ − ẏ|2 = τ |ÿ|2 + (1 − τ )|ẏ|2 − |τy + (1 − τ )ẏ|2. □

A.2. Main results

Lemma A.8. Suppose44 that č i(q̂)(S) ⊂ Int C i for all i ∈ I. Then

∂1δ̂
i
v(v̂, q̂, θ̂ )(θ i

-, s) = (p̂(s) + d̂(z))∂ ûi

× (č i(q̂)(θ i
-, θ̃

i(θ i
-, s), s)) (24)

for all (θ i
-, s) ∈ Θ i

× S.

Proof of Lemma A.8. Since č i(q̂)(S) ⊂ Int C i for all i ∈ I, apply the
Envelop Theorem (Milgrom and Segal, 2002) to Eq. (3). □

Lemma A.9. Write βθ̄ =
∑

i∈I β iθ̄ i. Under assumptions of Exam-
ple 3.6, the recursive equilibrium is given for each s ∈ S by p̂(s) =

βθ̄ d̂(z)/(1 − βθ̄ ),

θ̂ i(s) = β i(p̂(s) + d̂(z))θ̄ i/p̂(s) and ĉ i(s) = (1 − β i)(p̂(s) + d̂(z))θ̄ i.

Proof of Lemma A.9. Consider ṽ = δ̂v(v̂, q̂, θ̂ ) and (c̃, θ̃ ) =

δ̃x(v̂, q̂, θ̂ ). Then

ṽi(θ i
-, s) = max

{
ûi(−p̂(s)θ i

+ (p̂(s) + d̂(z))θ i
-)

+β iv̂i(θ i, θ̂ (s), z)
}

(25)

over all θ i
∈ Θ i such that č i(q̂)(θ i

-, θ
i, s) ≥ 0 where we recall that

v̂i(θ i
-, s) = ûi((1 − β i)θ i

-)/(1 − β i) + r̂ i(s) for all (θ i
-, s) ∈ Θ i

× S.
Therefore, the first order condition45 of Eq. (25) evaluated on θ̇ i is

(1 − β i)p̂(s)θ̇ i
= −β ip̂(s)θ̇ i

+ β i(p̂(s) + d̂(z))θ i
-. (26)

Thus θ̇ i
= θ̃ i(θ i

-, s) = β iθ i
-(1 + d̂(z)/p̂(s)) is the unique solution

that satisfies (26) for all (θ i
-, s) ∈ Θ i

× S. Moreover, using that
ṽi

= δ̂iv(v̂, q̂, θ̂ ) then

ṽi(θ i
-, s) = ûi(c̃ i(θ i

-, s)) + β iv̂i(θ̃ i(θ i
-, s), θ̂ (s), z) for all

(θ i
-, s) ∈ Θ i

× S.

Since c̃ i(θ i
-, s) = (1− β i)θ i

-(p̂(s)+ d̂(z)) for all (θ i
-, s) ∈ Θ i

× S then
by (10)

ṽi(θ i
-, s) = ûi(p̂(s) + d̂(z)) + ûi((1 − β i)θ i

-)

+ β iûi(β i(p̂(s) + d̂(z))/p̂(s))/(1 − β i)

+ β iûi((1 − β i)θ i
-)/(1 − β i) + β i r̂ i(θ̂ (s), z)

= ûi((1 − β i)θ i
-)/(1 − β i) + r̂ i(s)

= v̂i(θ i
-, s)

for all (θ i
-, s) ∈ Θ i

× S. Therefore, ṽi
= v̂i.

Finally, notice that for each s ∈ S

d̂(z)/p̂(s) = (1 − βθ̄ )/(βθ̄ ) and p̂(s) + d̂(z) = d̂(z)/(1 − βθ̄ ).

Thus∑
i∈I

θ̂ i(s) = (1 + d̂(z)/p̂(s))(βθ̄ ) = 1

and∑
i∈I

ĉ i(s) = (p̂(s) + d̂(z))(1 − βθ̄ ) = d̂(z). □

Proof of Theorem 3.8. Since the market clearing conditions come
directly from the definition of the recursive equilibrium, it is suffi-
cient to prove that (ĉ i, θ̂

i
) ∈ δ̃

i
(θ̄ i, z, q̂) for all z ∈ Z and all i ∈ I.

44 Benveniste and Scheinkman (1979) present a similar result.
45 The strict concavity of ûi and v̂i on the first coordinate and the INADA condition
are sufficient for optimality of the solution given by the first order condition.
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Fix s = (θ̄ , z), let (c i, θi) ∈ f i(θ̄ i, z, q̂) be a feasible plan and define

ui
r (c

i, z) = ûi(c i0) +

r∑
τ=1

∫
Zτ

(β i)τ ûi(c iτ (z
τ ))µ̂i

τ (z, dz
τ ).

Consider (ĉ, θ̂ , q̂, v̂) ∈ Ĉ × Θ̂ × Q̂ × V̂ satisfying

v̂ = δ̂v(v̂, q̂, θ̂ ) and (ĉ, θ̂ ) = δ̂x(v̂, q̂, θ̂ ). (27)

Then

v̂i(θ̄ i, s) = sup
{
ûi(c i) + β i

∫
Z
v̂i(θ i, θ̂ (s), z1)λ̂i(z, dz1)

}
≥ ûi(c i0) + β i

∫
Z
v̂i(θi

0, θ̂ (s), z1)λ̂
i(z, dz1).

(28)

where the sup in the first equation is over all (c i, θ i) ∈ C i
×Θ i such

that (c i, θ i) ∈ b̂i(θ̄ i, z, q̂(s)). The above inequality comes from the
fact that (c i, θi) is feasible46 and hence (c i0, θ

i
0) ∈ b̂i(θ̄ i, z, q̂0) =

b̂i(θ̄ i, z, q̂(s)) by the price recursive relation given in Definition 3.7.
Since ĉ0 = ĉ(s) and θ̂0 = θ̂ (s) then by Definition 3.5 Item 2

(ĉ i0, θ̂
i
0) = δ̂ix(v̂, q̂, θ̂ )(s)

that is

v̂i(θ̄ i, s) = ûi(ĉ i0) + β i
∫
Z
v̂i(θ̂

i
0, θ̂ (s), z1)λ̂

i(z, dz1).

Recall that (θ̂ (s), z1) = (θ̂0, z1) for each z1 ∈ Z . Using (27) again
then

v̂i(θi
0, θ̂ (s), z1) = sup

{
ûi(c i) + β i

∫
Z
v̂i(θ i, θ̂ (θ̂0, z1), z2)λ̂i(z1, dz2)

}
≥ ûi(c i1(z1))

+ β i
∫
Z
v̂i(θi

1(z1), θ̂ (θ̂0, z1), z2)λ̂i(z1, dz2).

where the sup in the first equation is over all (c i, θ i) ∈ b̂i
(
θi
0, z1,

q̂(θ̂0, z1)
)
. The above inequality comes from the fact that (c i, θi)

is feasible and hence (c i1(z1), θ
i
1(z1)) ∈ b̂i(θi

0, z1, q̂1(z1)) = b̂i

(θi
0, z1, q̂(θ̂0, z1)) for all z1 ∈ Z . Indeed, the recursive relations

in Definition 3.7 implies that θ̂ (s) = θ̂0 and hence q̂1(z1) =

q̂(θ̂0, z1) = q̂(θ̂0, z1). Since ĉ1(z1) = ĉ(θ̂0, z1) and θ̂1(z1) = θ̂ (θ̂0, z1)
then replacing (θ̄ , z) by (θ̂0, z1) in Definition 3.5 Item 2

(ĉ i1(z1), θ̂
i
1(z1)) = δ̂ix(v̂, q̂, θ̂ )(θ̂0, z1)

and hence

v̂i(θ̂
i
0, θ̂ (s), z1) = ûi(ĉ i1(z1))

+β i
∫
Z
v̂i(θ̂i

1(z1), θ̂ (θ̂0, z1), z2
)
λ̂i(z1, dz2).

Replacing the previous inequalities47 of v̂i in (28) then

v̂i(θ̄ i, s) ≥ ûi(c i0) + β i
∫
Z
ûi(c i1(z1))λ̂

i(z, dz1)

+ (β i)2
∫
Z

∫
Z
v̂i(θi

1(z1), θ̂ (θ̂0, z1), z2)λ̂i(z1, dz2)λ̂i(z, dz1)

= ûi(c i0) + β i
∫
Z
ûi(c i1(z1))µ̂

i
1(z, dz1)

+ (β i)2
∫
Z2

v̂i(θi
1(z1), θ̂ (θ̂0, z1), z2)µ̂i

2(z, dz
2)

= ui
1(c

i, z) + (β i)2
∫
Z2

v̂i(θi
1(z1), θ̂1(z1), z2)µ̂i

2(z, dz
2).

46 That is, (c i, θi) ∈ f i(θ̄ i, z, q̂).
47 See Stokey and Lucas Chapter 9 for more detail about the composition of the
stochastic kernels λ̂i .

It follows from induction on r that

v̂i(θ̄ i, s)≥ui
r−1(c

i, z)

+(β i)r
∫
Z r

v̂i(θi
r−1(z

r−1), θ̂r−1(zr−1), zr )µ̂i
r (z, dz

r ).

Taking the limit as r → ∞ and using that v̂i is bounded then
v̂i(θ̄ i, s) ≥ ui(c i, z) for all (c i, θi) ∈ f i(θ̄ i, z, q̂) since (c i, θi) was
chosen arbitrarily. Therefore, we conclude by (2) that v̂i(θ̄ i, s) ≥

ṽi(θ̄ i, z, q̂).
Define recursively,48

(ĉ ir (z
r ), θ̂

i
r (z

r )) = δ̂ix(v̂, q̂, θ̂ )(θ̂
i
r−1(z

r−1), zr ) for each r ∈ N. (29)

Therefore, (ĉ ir (zr ), θ̂
i
r (z

r )) ∈ b̂i(θ̂
i
r−1(z

r−1), zr , q̂(θ̂r−1(zr−1), zr )) for
all r ∈ N by (5) and hence (ĉ i, θ̂

i
) ∈ f i(θ̄ i, z, q̂) since q̂r (zr ) =

q̂(θ̂r−1(zr−1), zr ) for all r ∈ N by (13).
Replacing (c i, θi) by (ĉ i, θ̂

i
) in the previous arguments then all

inequalities must bind and hence v̂i(θ̄ i, s) = ui(ĉ i, z) ≤ ṽi(θ̄ i, z, q̂).
Therefore, v̂i(θ̄ i, s) = ṽi(θ̄ i, z, q̂) and (ĉ i, θ̂

i
) ∈ δ̃

i
(θ̄ i, z, q̂). □

Proof of Proposition 4.12. Assumption 4.11 assures that V̂M is
invariant under the operator δ̂v defined by (3), that is, for each i ∈ I

δ̂iv(v̂, q̂, θ̂ )(θ i
-, s) = max

{
ûi(c i) + β i

∫
Z
v̂i(θ i, θ̂ (s), z ′)λ̂i(z, dz ′)

}
over all (c i, θ i) ∈ C i

× Θ i such that (c i, θ i) ∈ b̂i(θ i
-, z, q̂(s)). Indeed,

consider (v̂, q̂, θ̂ ) ∈ V̂M×Lp(Q̂ ,Mq̂, nq,Nq)×Lp(Θ̂,Mθ̂ , nθ ,Nθ ) and
write ṽi

= δ̂iv(v̂, q̂, θ̂ ). To show that49 ṽi
∈ V̂ i

M , consider č i as in (6)
and

v̌i(θ i
-, θ

i, s) = ûi(č i(q̂)(θ i
-, θ

i, s))+β i
∫
Z
v̂i(θ i, θ̂ (s), z ′)λ̂i(z, dz ′) (30)

for all (θ i
-, θ

i, s) ∈ Θ i
× Θ i

× S. We claim that ṽi is concave on θ i
-.

Indeed, pick

θ̇ i
= argmax

{
v̌i(θ̇ i

-, θ
i, s) over all θ i

∈ Θ i

such that č i(q̂)(θ̇ i
-, θ

i, s) ≥ 0
}

and

θ̈ i
= argmax

{
v̌i(θ̈ i

-, θ
i, s) over all θ i

∈ Θ i

such that č i(q̂)(θ̈ i
-, θ

i, s) ≥ 0
}
.

Then for τ̇ , τ̈ ∈ [0, 1] with τ̇ + τ̈ = 1

ṽi(τ̇ θ̇ i
- + τ̈ θ̈ i

-, s) ≥ τ̇ ṽi(θ̇ i
-, s) + τ̈ ṽi(θ̈ i

-, s)

because ûi is concave and

č i(q̂)(τ̇ θ̇ i
- + τ̈ θ̈ i

-, τ̇ θ̇ i
+ τ̈ θ̈ i, s) = τ̇ č i(q̂)(θ̇ i

-, θ̇
i, s)

+τ̈ č i(q̂)(θ̈ i
-, θ̈

i, s) ≥ 0.

Moreover, v̌i(θ i
-, · , s) is α(p̂(s))2-concave for each (θ i

-, s) ∈ Θ i
× S.

Indeed, consider (τ̇ , τ̈ ) ∈ [0, 1]2 with τ̇ + τ̈ = 1. By hypothesis,
v̂i( · , s) is concave and ûi is α-concave and hence

ûi(č i(q̂)(θ i
-, (τ̇ θ̇ i

+ τ̈ θ̈ i), s)) ≥ τ̇ ûi(č i(q̂)(θ i
-, θ̇

i, s))

+ τ̈ ûi(č i(q̂)(θ i
-, θ̈

i, s))

+ ατ̇ τ̈ |č i(q̂)(θ i
-, θ̇

i, s)

− č i(q̂)(θ i
-, θ̈

i, s)|2/2

≥ τ̇ ûi(č i(q̂)(θ i
-, θ̇

i, s))

48 This plan is measurable by theMeasurableMaximum Theorem (Aliprantis and
Border, 1999).
49 The following arguments also show directly that ṽi

∈ V̂ i .
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+ τ̈ ûi(č i(q̂)(θ i
-, θ̈

i, s))

+ α(p̂(s))2τ̇ τ̈ |θ̇ − θ̈ |
2
/2.

Consider θ̃ i
= δ̃iθ (v̂, q̂, θ̂ ) where δ̃iθ is given by (4). Then

θ̃ i(θ i
-, s) = argmax

{
v̌i(θ i

-, θ
i, s) over all

θ i
∈ Θ i

: č i(q̂)(θ i
-, θ

i, s) ≥ nc
}
.

To see the Lipschitz constants on the sections of ∂1ṽi, note that

∂2v̌
i(θ i

-, θ
i, s) = −p̂(s)∂ ûi(č i(q̂)(θ i

-, θ
i, s)

)
+ β i

∫
Z
∂1v̂

i(θ i, θ̂ (s), z ′)λ̂i(z, dz ′)

= ∂ ûi(č i(q̂)(θ i
-, θ

i, s))

×

(
−p̂(s) + β i

∫
Z

∂1v̂
i(θ i, θ̂ (s), z ′)

∂ ûi(č i(q̂)(θ i-, θ i, s))
λ̂i(z, dz ′)

)
= ∂ ûi(č i(q̂)(θ i

-, θ
i, s))

×

(
−p̂(s) + β i

∫
Z
ϕ̂i(θ i

-, θ
i, s, θ̂ (s), z ′)λ̂i(z, dz ′)

)
Since p̂ and d̂ do not depend on θ i

-, then we can apply Theorem 3.1
given in Montrucchio (1987) pointwise on s to find the Lipschitz
constant of θ̃ i on the variable θ i

-. Indeed, by Lemmas A.4 and A.5

∂2v̌
i( · , θ i, s) ∈ Lp(p̂(s)M∂ û(p̂(s) + d̂(z))) for all s ∈ S.

Therefore, θ̃ i( · , s) ∈ Lp(M∂ û(1 + d̂(z)/p̂(s))/α), that is,

θ̃ i( · , s) ∈ Lp(M∂ û(1 + Nd/np)/α) for all s ∈ S. (31)

Moreover, ∂2v̌i(θ i
-, θ

i, · ) ∈ Lp(M∂v̌s) where

M∂v̌s = N∂ û(Mp̂ +β i(Mϕ̂s +Mϕ̂s′Mθ̂ +NϕMλ̂))+M∂ ûMčs(Np +β iNϕ).

Therefore, applying Theorem 3.1 given in Montrucchio (1987)

θ̃ i(θ i
-, · ) ∈ Lp(Mθ̃s) where Mθ̃s = M∂v̌s/(αn2

p). (32)

By definition

ṽi(θ i
-, s) = max

{
v̌i(θ i

-, θ
i, s) : over all θ i

∈ Θ i

such that č i(q̂)(θ i
-, θ

i, s) ≥ nc
}
.

Recall that ṽi( · , s) is concave for each fixed s ∈ S. Applying
Lemma A.8 we get

∂1ṽ
i(θ i

-, s) = (p̂(s) + d̂(z))∂ ûi(č i(q̂)(θ i
-, θ̃

i(θ i
-, s), s))

for all (θ i
-, s) ∈ Θ i

× S. (33)

Thus, ϕ̂i(ṽi, q̂) ∈ Lp(Mϕ̂) by Assumption 4.11 Items 1, 2, 3, 4.
Finally, to show that

δ̂θ (v̂, q̂, θ̂ ) ∈ Lp(Θ̂,Mθ̂ , nθ ,Nθ ) (34)

notice that δ̂θ (v̂, q̂, θ̂ )(s) = θ̃ i(θ̄ i, s) for all s ∈ S. Thus Eqs. (31) and
(32) jointly with Conditions 5, 6 and 7 of Assumption 4.11 imply
(34). □

Proof of Proposition 4.14. Consider (c̃ i, θ̃ i) = δ̃ix(v̂, q̂, θ̂ ). Using
that

p̃i(v̂, q̂, θ̂ )(s) = β i
∫
Z
ϕ̂i(θ̄ i, θ̂ i(s), s, θ̂ (s), z ′)λ̂i(z, dz ′) for all s ∈ S

it is straightforward to conclude that p̃ ∈ Lp((1 − κ)Mp̃) for some
κ ∈ (0, 1) by List 2 of Assumption 4.13.

For the case of income tax, Eq. (24) given in LemmaA.8 becomes

∂1v̂
i(θ i

-, s) = (1 − τ )(p̂(s) + d̂(z))∂ ûi(č i(q̂)(θ i
-, θ̃

i(θ i
-, s), s))

for all (θ i
-, s) ∈ Θ i

× S.

Moreover, nϕ ≥ (1− τ )(np + nd)∂ui(Nc/nc) and Nϕ ≤ (1− τ )(Np +

Nd)∂ui(nc/Nc) then (23) implies that

np < (1 − τ )β i(np + nd)∂ui(Nc/nc) and
Np > (1 − τ )β i(Np + Nd)∂ui(nc/Nc).

Therefore, np < p̃i(v̂, q̂, θ̂ )(s) < Np for all (i, s, v̂, q̂, θ̂ ) ∈ I × S ×

V̂ × Q̂ × Θ̂ . □

Proof of Lemma 4.15. Clearly, δ̂v is continuous by the Berge
MaximumTheorem (Aliprantis and Border, 1999), Lemmas A.1 and
A.2. Consider any ν̂1 ∈ V̂ with ν̂1(Q̂ × Θ̂) ⊂ V̂M and define
recursively for n > 1

ν̂n(q̂, θ̂ ) = δ̂v(ν̂n−1(q̂, θ̂ ), q̂, θ̂ ) for all (q̂, θ̂ ) ∈ Q̂ × Θ̂.

Fix an arbitrary (q̂, θ̂ ) ∈ Q̂ × Θ̂ . Then {ν̂n(q̂, θ̂ )}n∈N is a Cauchy
sequence on the sup norm (Stokey et al., 1989) converging to
ν̂(q̂, θ̂ ) and clearly ν̂(q̂, θ̂ ) = δ̂v(ν̂(q̂, θ̂ ), q̂, θ̂ ) since δ̂v is continuous.
Applying Lemma A.8 we get50 as in (33)

∂1ν̂
i
n(q̂, θ̂ )(θ

i
-, s) = (p̂(s) + d̂(z))∂ ûi

× (č i(q̂)(θ i
-, δ̃

i
θ (ν̂n−1(q̂, θ̂ ), q̂, θ̂ )(θ i

-, s), s))

for all (θ i
-, s) ∈ Θ i

× S where we recall that č i is given by (6).
Moreover, ϕ̂i(ν̂ i

n(q̂, θ̂ ), q̂) ∈ Lp(Mϕ̂) for all n ∈ N by the same
arguments given in Proposition 4.12. Therefore,

∂1ν̂
i(q̂, θ̂ )(θ i

-, s) = (p̂(s) + d̂(z))∂ ûi

× (č i(q̂)(θ i
-, δ̃

i
θ (ν̂(q̂, θ̂ ), q̂, θ̂ )(θ

i
-, s), s))

because {δ̃iθ (ν̂n−1(q̂, θ̂ ), q̂, θ̂ )}n∈N converges on the sup norm by the
BergeMaximumTheoremwhich ensures the continuity of δ̃iθ . Thus,
all arguments given in Proposition 4.12 can be replicated again
to show that δ̂θ (ν̂(q̂, θ̂ ), q̂, θ̂ ) ∈ Lp(Θ̂,Mθ̂ , nθ ,Nθ ) for all (q̂, θ̂ ) ∈

Lp(Q̂ ,Mq̂, nq,Nq) × Lp(Θ̂,Mθ̂ , nθ ,Nθ ) and that ν̂(q̂, θ̂ ) ∈ V̂M . □

Remark A.10. For J goods and ûi
: C i

⊂ RJ
+ → R an α-concave

utility function it is easy to see that all arguments above can be
applied. Indeed, assume that the good one has unitary price, write
c i
−1 = (c i2, . . . , c

i
J ), q̂−1 = (q̂2, . . . , q̂J ), define

č i1(q̂)(θ
i
-, θ

i, c i
−1, s

′) = p̂(s)(θ i
- − θ i) − q̂−1(s)c i−1 + d̂(z)θ i

- + êi(z)

and

v̌i(θ i
-, θ

i, c i
−1, s

′) = ûi(č i1(q̂)(θ
i
-, θ

i, c i
−1, s

′), c i
−1)

+β i
∫
Z
v̂i(θ i, θ̂ (s), z ′)λ̂i(z, dz ′).

Then

∂3v̌
i(θ i

-, θ
i, c i

−1, s
′)(c̊ i

−1) = −

∑
j≥2

q̂j(s)c̊ ij∂1û
i

× (č i1(q̂)(θ
i
-, θ

i, c i
−1, s

′), c i
−1)

+

∑
j≥2

c̊ ij∂jû
i(č i1(q̂)(θ

i
-, θ

i, c i
−1, s

′), c i
−1).

Therefore, define

ϕ̌(v̂, q̂)(θ i
-, θ

i, c i
−1, s, s

′) = v̂i(θ i, s′)/∂1ûi(č i1(q̂)(θ
i
-, θ

i, c i
−1, s), c

i
−1)

for all (θ i
-, θ

i, c i
−1, s, s

′) ∈ Θ i
× Θ i

× C i
−1 × S × S.

50 Recall that q̂ = (1, p̂).
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