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Chapter 1

Presentation of Optimization

Notations

On the euclidean space Rn, the inner product will be denoted by
〈u, v〉 =

∑n
i=1 uivi, the norm is ‖u‖ =

√
〈u, u〉. We denote by B(x, r)

and B(x, r) the closed ball and the open ball of center x and radius r.

If A is a subset of Rn, int A is the intérior of A and cl A the closure of
A. We denote x ≥ y (respectively x > y, x � y) if for all h = 1, . . . , n
xh ≥ yh (respectively for all h = 1, . . . , n xh ≥ yh and there exists at least
one indice for which the inequality is strict, respectively for all h = 1, . . . , n
xh > yh).

If f is a linear form from Rn to R, there exists a unique vector u ∈ Rn

such that f(v) = 〈u, v〉 for all v ∈ Rn.

We denote

Rn
+ = {x ∈ Rn | x1 ≥ 0, . . . , xn ≥ 0} = {x ∈ Rn | x ≥ 0}

Rn
+ \ {0} = {x ∈ Rn | x > 0}

Rn
++ = {x ∈ Rn | x1 > 0, . . . , xn > 0} = {x ∈ Rn | x � 0}

1.1 Mathematical presentation

1.1.1 Definitions

Let us consider f : A → R (where A ⊂ R is the domain of function f) and
C ⊂ A. The problem consists in finding the maximum (respectively the

minimum of f on C). The function f is the objective function and the
set C is the set of feasible points (admissible points), it is often described
by a finite list of constraints.

We will note

(P) max
x∈C

f(x) resp. (Q) min
x∈C

f(x)

Definition 1.1 The point x is solution of (P) (respectively of (Q)) if
x ∈ C and if for all x in C, f(x) ≤ f(x) (respectively f(x) ≥ f(x)).

Definition 1.2 The point x is a local solution of (P) (respectively of
(Q)) if x ∈ C and if there exists ε > 0 such that for all x in C ∩ B(x, ε),
f(x) ≤ f(x) (respectively f(x) ≥ f(x)).

Definition 1.3 We define the value of Problem (P) (respectively of (Q))
the supremum (respectively the infimum ) of the set {f(x) | x ∈ C}. This
value is either finite or infinite.

If the domain C is empty, we will let by convention val(P ) = −∞ and
val(Q) = +∞. We will denote Sol(P ) for the set of solutions of (P).

One should distinguish between c a solution of (P) which is a vec-
tor of Rn and v = f(c) the corresponding value which is an element of
[−∞, +∞]. There might exist several solutions c while the value v is
unique.

Example 1.1
(P) max

x∈R
sin x
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val(P) = 1 while Sol(P) = {π/2 + 2kπ | k ∈ Z}

Example 1.2

(P) max
x∈R

x2

1 + x2

val(P) = 1 while Sol(P) = ∅

Exercise 1.1 (*) Determine the set of solutions, the set of local solu-
tions, and the value of the following problems:

1. (PY )

{
max 1− x2

x ∈ R (PX)

{
max 1− x2

x ∈ ]2, 3[

2. (PZ)

{
min x2 + x + 1
x ∈ R

3. (PT )

{
min x2 + x + 1
x ∈ N

Proposition 1.1 Let f : A → R. Let us consider the optimization prob-
lem (P), maxx∈C f(x) whose value is α, we have

Sol(P) = f−1({α}) ∩ C and Sol(P) = {x ∈ A | f(x) ≥ α} ∩ C.

In particular, this set is closed in A if f is continuous and C is a closed
set.

In particular, if val(P) /∈ R, then Sol(P) = ∅.

Definition 1.4 If (P) and (Q) are two optimization problems, we say
that they are equivalent if their sets of solution are equal (but in general,
their values are not equal).

Exercise 1.2 (*) Let f be a function defined on C. Let us suppose that
ϕ : X → R is an increasing function, where X contains f(C).

(P1)

{
max f(x)
x ∈ C

(P2)

{
max ϕ(f(x))
x ∈ C

(P3)

{
min−ϕ(f(x))
x ∈ C

1. Prove that the three following problems are equivalents.

2. Prove with a counter-exemple that (P1) and (P2) are not necessarily
equivalent if ϕ is only non decreasing.

Exercise 1.3 (**) Let f be a function defined on C. Let us suppose that
ϕ : X → R is an non-decreasing function, where X contains cl(f(C)). We
assume in addition that (P1) has a finite value.

(P1)

{
max f(x)
x ∈ C

(P2)

{
max ϕ(f(x))
x ∈ C

1. Prove that val(P2) ≤ ϕ(val(P1)).

2. Prove that if ϕ is continuous then val(P2) = ϕ(val(P1)).

3. Show that if there exists a solution, then val(P2) = ϕ(val(P1)).

4. Let us consider f(x) = x, C = ]0, 2[ and ϕ : R → R defined by
ϕ(x) = int(x) + x where int(x) denotes the ceiling function (the
ceiling fonction of x is min{n ∈ Z | x ≤ n}). Show that ϕ is
increasing. Compute val(P1), val(P2) and ϕ(val(P1)). Prove that
val(P2) < ϕ(val(P1))

Exercise 1.4 (*) Let X ⊂ Y be two subsets of Rn and f be a function
from X to R. Let us consider two optimization problems:

(PX)

{
max f(x)
x ∈ X

(PY )

{
max f(x)
x ∈ Y

1. Show that val(PX) ≤ val(PY ).

2. If y ∈ Sol(PY ), and if y ∈ X, show that y ∈ Sol(PX). This means :

Sol(PY ) ∩X ⊂ Sol(PX)

3. If x ∈ Sol(PX), and if val(PX) = val(PY ), then prove that x ∈
Sol(PY ). Deduce that

val(PX) = val(PY ) ⇒ Sol(PX) ⊂ Sol(PY )
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4. We assume that for all y in the set Y , there exists x ∈ X such that
f(x) ≥ f(y), show that val(PX) = val(PY ).

5. In the following example, show that Sol(PY ) 6⊂ Sol(PX).

(PX)

{
max 1− x2

x ∈ ]2, 3[
(PY )

{
max 1− x2

x ∈ R

6. Same question for Sol(PX) 6⊂ Sol(PY ).

(PX)

{
max ex(sin x + 2)
x ∈ [0, π]

(PY )

{
max ex(sin x + 2)
x ∈ R

Exercise 1.5 (*) Let X be a nonempty subset of Rn and f , g be contin-
uous functions from X to R. Let us consider two optimization problems:

(PX)


max f(x)
x ∈ X
g(x) < 0

(PY )

{
max f(x)
x ∈ X

Let us assume that x is a local solution of PY that satisfies g(x) < 0.
Prove that x is a local solution of PX .

Exercise 1.6 (**) Let (P) be the optimization problem maxx∈C f(x).
Let us define the set

D = {(x, y) ∈ Rn × R | x ∈ C and y ≤ f(x)}

Let us define g on Rn × R par g(x, y) = y and the optimization problem
(Q), max(x,y)∈D g(x, y).

1. Show that (P) and (Q) have the same value.

2. Show that if x ∈ Sol(P), then (x, f(x)) ∈ Sol(Q).

3. Prove that if (x, y) ∈ Sol(Q), then x ∈ Sol(P), and y = f(x).

4. Are the two problems equivalent ?

Definition 1.5 Let us consider the optimization problem (P),
maxx∈C f(x) (respectively minx∈C f(x). The sequence (xk)k is said to
be a maximizing (respectively minimizing) sequence for (P) if for all k,
xk ∈ C and if the limit of f(xk) exists (either finite or infinite) and is
equal to the value of the problem (P).

Exercise 1.7 (*) Let us consider the following optimization problem
where α is a given parameter:

(PX)

{
min αx2

x ∈ R

1) If α > 0, determine a minimizing sequence.

2) If α = 0, determine a minimizing sequence.

3) If α < 0, does there a minimizing sequence.

Exercise 1.8 (**) Let X be a nonempty subset of Rn, and f be a func-
tion from X to R. Let us consider the following optimization problem:

(PX)

{
max f(x)
x ∈ X

1. Prove that there exists a maximizing sequence (xk)k, i.e. a sequence
of elements in X such that f(xk) → maxx∈X f(x).

2. Prove that there exists a maximizing sequence (yk)k such that f(yk) ≤
(f(yk+1).

3. Let us suppose moreover that Sol(P) = ∅, prove that there exists a
maximizing sequence (zk)k such that f(zk) < (f(zk+1).

1.1.2 Geometric interpretation

Depending wether the optimal point belongs or not to the boundary of
the set of feasible points, we get using the level sets two kinds of pictures.
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Figure 1.1: The optimal point belongs to the boundary

Figure 1.2: The optimal point belongs to the interior

1.2 Examples of economic problems

1.2.1 Consumer theory

In microeconomics, we suppose that u is a utility function from R`
+ to

R. let us give a price vector p = (p1, . . . , p`) and a wealth w ≥ 0. The

consumer’s demand is the set of solutions of

(PX)


max u(x)
p1x1 + . . . + p`x` ≤ w
x1 ≥ 0, . . . , x` ≥ 0

1.2.2 Producer Theory

In microeconomics, we consider a firm which produces the good `, using
goods (1, . . . , ` − 1) as inputs. We describe the production set with f ,
production function from R`−1

+ to R. Let us give a price vector p =
(p1, . . . , p`−1) of the inputs and a level of production y` ≥ 0, The cost
function c((p1, . . . , p`−1), y`) of the firm is the value fo the problem

(P)


min p1y1 + . . . + p`−1y`−1

y` = f(y1, . . . , y`−1)
y1 ≥ 0, . . . , y`−1 ≥ 0

The firm’s demand of inputs corresponds to the set of solutions of (P). In
addition, if we consider the price p` of the unique output, the total offer
(with usual signs’ convention) of the firm is the set of solutions of

(Q)

{
max p`y` − c((p1, . . . , p`−1), y`)
y` ≥ 0

1.2.3 Finance theory

In finance, there are S possible states of the world tomorrow with the
corresponding probabilities π1, . . . πS. Today, we can buy or sell J assets
with price q1, . . . , qJ . If we own one unit of asset j, we will receive if
state s occurs, the amount (possibly negative) aj

s. The investor will try
to maximize the expected value of his stochastic income with respect to
his initial capital w. He will buy a portfolio (z1, . . . , zJ), solution of{

max
∑S

s=1 πs

∑J
j=1 aj

szj∑J
j=1 qjzj ≤ w
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1.2.4 Statistics

In statistics, we determine an estimator using the maximum of the like-
hood, and we determine the regression’s lines by minimizing the sum of
the squares of the “distance to the line” among all possible lines.

1.2.5 Transportation problems

Let us consider a firm with m units of production P1, . . . , Pm, which
produce quantities q1, . . . , qm of a certain good. There are n markets
M1, . . . ,Mn to provide whose respective demands are δ1, . . . , δn. In order
to transport one unit of good from the the unity i to the market j, there is
a cost γij. We try to provide all the markets at the lowest transportation
cost. We have to determine all the flows xij (quantity moved from Pi to
Mj) solution of 

min
∑m

i=1

∑n
j=1 γijxij∑m

i=1 xij ≥ δj for all j,∑n
j=1 xij ≤ qi for all i,

xij ≥ 0, for all i and all j

1.2.6 Constant returns to scale

Let us consider a firm using m processes P1, . . . , Pm of production. The
process Pj is characterized by a vector αj ∈ R`. For a single level of
activity, there are αj

h units of good h produced by the firm if αj
h ≥ 0 and

αj
h units of good h used by the firm in the process if αj

h ≤ 0. The total
amount of activity of Process Pj will be denoted by xj ≥ 0.

A first class of problem consists in furnishing the demand at minimal
cost. There are ` markets (one for each good) with respective demands
δ1, . . . , δn and the marginal cost of Process Pj is γj. The problem consists
in determining all activity levels xj solutions of

max
∑m

j=1 γjxj∑m
i=1 αj

hxj ≥ δi for all i,
xj ≥ 0, for all j

A second class of problem consists in maximizing the income. We as-
sume that the planer owns an initial stock σ1, . . . , σ` of inputs and that the
marginal income of process j is rj. The problem consists in determining
all activity levels xj solutions of

max
∑m

j=1 rjxj∑m
i=1 αj

hxj ≤ σh for all h = 1, . . . , `,
xj ≥ 0, for all j

5



University Paris 1 2008/2009
M1–QEM1 Mr. Gourdel

Chapter 2

Convexity of sets

2.1 Definition

2.1.1 Definition of a convex set

Let E be a vector space, for all couple of elements (x, y) of E, we will
denote by [x, y], the “segment” which is the subset of E defined by

[x, y] = {tx + (1− t)y | t ∈ [0, 1]}

b

b y

x

[x, y] = [y, x]

Figure 2.1: segment

Definition 2.1 A subset C of E is convex if for all (x, y) ∈ C × C, the
set [x, y] is contained in C.

Examples: For all couple of elements (x, y) in E, [x, y] is a convex subset
of E. All vector subspace is affine (see the next part), all affine subspace
is convex. All open (respectively closed) balls are convex. All set of
solutions of linear system (involving equalities, large or strict inequalities)
is convex, in particular any affine half-space. If E = R, we can characterize
the convex subsets which are the intervals.

Exercise 2.1 (*) We recall that a set J included in R is an intervall if
it satisfies the following property :

∀x ∈ J, ∀y ∈ J, ∀z ∈ R, x ≤ z ≤ y ⇒ z ∈ J.

Show that every compact interval of R is a line segment of R and that
the only nonempty convex subsets of R are the intervals.

Exercise 2.2 (*) Use Definition 2.1 in order to show that the following
sets are convex:

a) {(x, y) ∈ R2 | x2 + y2 < 4},

b) {(x, y) ∈ R2 | |x|+ |y| ≤ 2},

c) {(x, y) ∈ R2 | max{|x|, |y|} ≤ 2},

d) the set of the (n× n)-matrices with elements ≥ 0.

Note that there is no notion of concave set. It is important to
emphasize that it not a topologic concept, it can be defined even if the
vector space is not embedded with a topology. Among convex sets, some
of them are open, closed or even neither closed nor open.

Exercise 2.3 (**) Let A be a subset of Rn. We will introduce the fol-
lowing property

Forall x ∈ A, y ∈ A, 1
2
(x + y) ∈ A (P)
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C

Figure 2.2: A convex and closed half space

bb

C

Figure 2.3: A convex half space which is neither closed nor open

1. Prove that this property is satisfied when A is convex.

2. Prove that Q satisfies this property though it is not a convex set.

3. We assume that A is a closed set that satisfies Property (P). We
want to prove that it is a convex set. Let us fix x and y in A, and let
us introduce the set

J = {t ∈ [0, 1], tx + (1− t)y ∈ A}.

C

Figure 2.4: A convex and open half space

a) Prove that J is a closed set containing both 0 and 1.

b) Prove that when t and t′ are in J , then (t + t′)/2 is in J .

c) Let us define for each p ∈ N, the set Jp

Jp =

{
k

2p
| k ∈ N, k ≤ 2p

}
Prove by induction that for each p ∈ N, Jp ⊂ J . (Hint: note that
(1/2)(Jp + Jp) = Jp+1.

d) Prove that J = [0, 1] and that A is convex.

4. Summarize the exercise.

Exercise 2.4 (**) In R2, consider the triangle with vertices x0, x1, x2

(non-collinear points).

1. Prove that for all u ∈ R2, there exists a unique (λ0, λ1, λ2) ∈ R3
+ such

that u = λ0x0 + λ1x1 + λ2x2 and λ0 + λ1 + λ2 = 1. The coefficients
λ0, λ1, λ2 are called the barycentric coordinates of u with respect to
x0, x1, x2.

2. Let y be the midpoint of the side opposite x0 and let z be the inter-
section of the three medians. What are the barycentric coordinates
(with respect to {x0, x1, x2}) of respectively: x0, x1, x2, y, z?

2.1.2 Definition of an affine subspace

Definition 2.2 A subset A of E is affine if for all couple of distinct points
of A, the line defined by those two points is still in A. Formally, if for all
(x, y) ∈ A× A, the set = {tx + (1− t)y | t ∈ R} is included in A.

Note that the empty set is affine. It is easy to check that any translation of
a vector subspace is an affine set. Exercise 2.8 will show that the converse
is true when the set is nonempty.

Let us introduce as a complement the definition of a strictly convex
set (the definition given here is not the most general).
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Definition 2.3 Let C be a subset of E with a nonempty interior, C is
strictly convex if for all (x, y) ∈ cl C × cl C, such that x 6= y, and for all
λ ∈ ]0, 1[, λx + (1− λ)y ∈ int C.

Exercise 2.5 (**) Let C be a subset contained dans E.

1. Prove that C is convex if and only if for all (x, y) ∈ C ×C, such that
x 6= y, and for all λ ∈ ]0, 1[, λx + (1− λ)y ∈ C.

2. Prove that if C is strictly convex, then C is convex.

3. If C is strictly convex and D be a subset of E such that int(C) ⊂
D ⊂ cl(C), prove that D is convex.

4. Give an example of C and D, subsets of R2, such that C is convex,
int(C) ⊂ D ⊂ cl(C) but D is not convex.

2.1.3 Definition of the unit simplex of Rn

Let us now introduce a very important example of convex set in Rn, the
unit simplex (or “usual simplex”) denoted by Sn−1 which is defined by:

Sn−1 = {λ = (λ1, . . . , λn) ∈ Rn
+ |

n∑
i=1

λi = 1}

We can remark that Sn−1 is convex, closed and bounded, consequently it
is a compact set.

2.2 First properties

Definition 2.4 Let (xi)
k
i=1, be k points of Rn. A convex combination (of

length k) of (xi)
k
i=1 is an element x of Rn such that there exists λ ∈ Sk−1

satisfying x =
∑k

i=1 λixi.

Exercise 2.6 (*) If (x, y) is a couple of elements in Rn, show that the
set of convex combinations of x and y is [x, y].

Definition 2.5 Let (xi)
n
i=1, be n points of Rn. An affine combination

of (xi)
n
i=1 is an element x of Rn such that there exists λ ∈ Rn satisfying

x =
∑n

i=1 λixi and
∑n

i=1 λi = 1.

Proposition 2.1 Let C be a subset of E. The set C is convex if and only
if C contains all the convex combinations of finite families of elements of
C.

Proof of Proposition 2.1. It is obvious that if C contains all the
convex combinations of finite families of elements of C then C is a convex
subset of C.

Reciprocally, we prove the result by induction on the cardinal of the
family. if the family has one or two elements, the definition of a convex
subset show that all convex combination of this family remain in C. Let us
assume that this is true for all the families that have at most n elements.
Let (x1, . . . , xn, xn+1) be a family of elements of C. Let λ ∈ Sn and let
x :=

∑n+1
i=1 λixi. Since

∑n+1
i=1 λi = 1, there exists at least one λi which

is not equal to 0. Let us assume with no loss of generality that λ1 6= 0.
Then

x =

(
n∑

i=1

λi

)
n∑

i=1

λi
n∑

i=1

λi

xi

+ λn+1xn+1

using the induction hypothesis, if we define

x′ =
n∑

i=1

λi
n∑

i=1

λi

xi =
n∑

i=1

µixi,

where µi = λi
n∑

i=1

λi

, we can remark that x′ is an element of C since it is a

convex combination of a family of n elements of C. In order to conclude,
if we let λ =

∑n
i=1 λi, λ ∈ [0, 1], this allows us to see x as a convex
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combination of x′ and xn+1 since x = λx′ + (1− λ)xn+1. Consequently x
is in C, which ends the proof. �

Proposition 2.2 Let A be a subset of E. The set A is affine if and only
if A contains all the affine combinations of finite families of elements of
A.

Exercise 2.7 (*) Show Proposition 2.2.

Exercise 2.8 (*) Let A be a nonempty affine subset of E (vector space)
and a ∈ A.

• For any a in A, let us define the translated set Ba := A − {a} =
A+ {−a}. This can reformulated as, x ∈ Ba if and only if x+ a ∈ A.
Check that 0 ∈ Ba.

• Deduce from Proposition 2.2 that Ba is a vector subspace of E.

• Deduce from Proposition 2.2 for if a and a are in A, then Ba = Ba,
which means that the set B is independent of the particular choice
of a.

Consequently, the set B is called the direction of A and we
call affine the dimension of A the dimension of B as a vector
space. We do not care about the dimension of the emptyset.

2.2.1 Stability by intersection

Note that the union of two convex sets is not convex.

Proposition 2.3 Let E be a vector space and let (Ci)i∈I be a family of
convex subsets of E. Then ∩i∈ICi is convex.

Exercise 2.9 (**) Let (Ci)i∈N (respectively (Di)i) be a family of convex
subsets of some vector space E.

1) If for all integer i, Ci ⊂ Ci+1, then ∪i∈NCi is convex.

2) Show that
⋃∞

k=0

⋂∞
j=k Dj is a convex set.

Exercise 2.10 (**) Let (Ci)i∈I be a family of convex subsets of some
vector space E.

Let us now assume that I is any set of indices and that the family of
convex subsets satisfies that for all (i, j) ∈ I × I, there exists k ∈ I such
that Ci ∪ Cj ⊂ Ck. then ∪i∈ICi is convex.

2.2.2 Stability by the sum operation

Proposition 2.4 Let E be a vector space. Let (Ci)i∈I , be a finite family
of convex subsets of E. Then∑

i∈I

Ci := {
∑
i∈I

ci | (ci) ∈
∏
i∈I

Ci}

is a convex subset of E.

The proof is left to the reader, it is worth to notice that for a convex
set 2C = C + C and that this is not true in general.

Exercise 2.11 (**) We recall that if X is a subset of some vector space
E, 2X = {z ∈ E | ∃x ∈ X, z = 2x}.

1. Let C be a convex subset of E. Prove that 2C = C + C.

2. Let us consider in R2, the set A = {(x, y) ∈ R2 | xy = 0}, draw A,
prove that 2A = A, A + A = R2, and deduce that 2A 6= A + A.

2.3 Stability with respect to affine func-

tions

Definition 2.6 Let A and B be two affine subspace, and f : A → B.
The mapping f is affine if for all couple of points (x, y) of A, and for all
t ∈ R,

f(tx + (1− t)y) = tf(x) + (1− t)f(y).

Exercise 2.12 (**) Let A and B be two affine spaces with respective
directions E and F . Let f A → B and a ∈ A.
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1. Prove that f is an affine mapping if and only if there exists a linear
mapping ϕ : E → F such that for all x of A, f(x) = f(a) + ϕ(x− a).

2. Show moreover that ϕ does not depend on the choice of a.

Consequently, ϕ is called the linear mapping associated to the
affine mapping f .

Proposition 2.5 Let E be a vector space.

(i). Let C be a convex subset of E and let α ∈ R. Then αC := {αc | c ∈
C} is convex in E.

(ii). Let f , be an affine mapping from E to some affine subspace A (con-
tained in some vector space F ), and let C be a convex subset of E.
Then f(C) is a convex subset of F .

The proof is left to the reader.

Proposition 2.6 Let f be an affine mapping from A to B. Let us assume
that the affine subspace A is contained in the vector space E while the
affine subspace B is contained in the vector space F . Let C be a convex
subset convex of F . Then f−1(C) is a convex subset de E.

The proof is left to the reader.

Proposition 2.7 Let (Ci)i∈I be a finite family of sets such that each Ci

is a convex subset of the vector space Ei. Then
∏

i∈I Ci is a convex subset
of
∏

i∈I Ei.

The proof is left to the reader.

2.4 Convex hull, affine hull and conic hull

2.4.1 Convex hull and affine hull

Definition 2.7 Let A be a subset of some vector space E.

(i). The convex hull of A, denoted by co(A), is the intersection of all
convex subsets of E containing A.

(ii). The affine hull of A, denoted by Aff(A), is the intersection of all affine
subspaces of E containing A.

Remark 2.1 Note that it follows from the definition that co(∅) = ∅ and
that Aff(∅) = ∅. Since E is convex (and affine), if A is nonempty, co(A)
(respectively Aff A) is well defined and nonempty. Since the set of con-
vex subsets (respectively affine subsets) is stable by intersection, co(A)
(respectively Aff(A)) is the smallest (in the sense of inclusion) convex (re-
spectively affine) subset containing A. this implies for example that if C
is a convex subset containing A, then co(A) ⊂ C.

Proposition 2.8 Let A be a subset of some vector space E.

(i). The set co(A) is the set of all convex combinations of elements
from A.

(ii). The set Aff(A) is the set of all affine combinations of elements
from A.

Proof of Proposition 2.8. (i) Let us denote by B (respectively D), the
set of all convex combinations of elements from A (respectively co(A)).
One has B ⊂ D since A ⊂ (co(A)). Moreover, we can apply Proposition
2.1 together with the convexity of co(A) (cf. the previous remark) in order
to get D = co(A). Consequently B ⊂ co(A).

Let us now show that co(A) ⊂ B. It is clear that A ⊂ B. Hence, in
order to prove this inclusion, il suffices to prove that B is convex. Let x
and y, be two elements of B and t ∈ [0, 1]. By definition of B, there exists
two families (x1 . . . , xn) and (y1, . . . , yp) of elements from A, λ ∈ Sn−1 and
µ ∈ Sp−1 such that x =

∑n
i=1 λixi and y =

∑p
j=1 µjyj. One has

tx + (1− t)y =
n∑

i=1

tλixi +

p∑
j=1

(1− t)µjyj.

10



Then tx + (1− t)y is a convex combination of (x1, . . . , xn, y1 . . . , yp) since

n∑
i=1

tλi +

p∑
j=1

(1− t)µj = t + (1− t) = 1

and therefore, (tλ1, . . . , tλn, (1− t)µ1 . . . , (1− t)µp) belongs to Sn+p−1.

(ii) Similar to first part. �

Definition 2.8 Let us call (convex) polytope, the convex hull of a finite
set.

Example 2.1 Let us define the simplex (denoted by Sn−1) as the subset
of Rn which is the polytope generated by the elements of the canonic
basis. The affine subspace generated by Aff(Sn−1), is the hyperplane
{x ∈ Rn | x1 + . . . + xn = 1}.

Exercise 2.13 (**) Let U and V be two subsets of Rn. We will denote
by co U the closure of the convex set U .
Show that: co U + co V ⊂ co(co U + V ); co U + V ⊂ co(U + V ).
Prove then that co(U + V ) = co U + co V .
If co U is compact, show that co(U + V ) = co U + co V .

Exercise 2.14 (*) Let A and B be convex subsetsof Rn, Let us define
D = co(A∪B) and E = {z = λx + (1− λ)y | x ∈ A, y ∈ B, 0 ≤ λ ≤ 1}.

• Show that E ⊂ D.

• Check that E is convex and contains A. Deduce that

co(A ∪B) = {z = λx + (1− λ)y | x ∈ A, y ∈ B, 0 ≤ λ ≤ 1}.

• More generally, prove that for a finite collection (Ai)p
i=1 of convex

subsets of Rn,
co(
⋃p

i=1 Ai) = {z =
∑p

i=1 λix
i | λi ≥ 0, xi ∈ Ai, i =

1, . . . p,
∑p

i=1 λi = 1}.

Definition 2.9 Let E be a vector space which has a finite dimension, and
A be a nonempty subset, either finite or infinite. We call the dimension
of A the dimension of the affine subspace generated by A.

With this definition, it is easy to show that the unit simplex Sn−1 is
(n− 1)-dimensional.

2.4.2 Cone and Conic hull

Definition 2.10 A subset K of E is a blunt cone of vertex 0 if for all
x ∈ K and for all t > 0, tx belongs to K. If in addition, it contains 0, the
set is a pointed cone of vertex 0.

By translation, we may define the notion of cone of vertex z.

Here, a cone will mean ici pointed cone of vertex 0.

Example, any vector subspace is a cone of vertex 0. If A is an affine
subspace and if a ∈ A, then A is a cone of vertex a. A cone can be
non-convex, K = {(x, y) ∈ R2 | xy = 0}. A bounded nonempty cone is
reduced to its vertex. A nonempty cone K (blunt or pointed) of vertex 0
satisfies 0 ∈ ∂K.

Proposition 2.9 Let K be a subset of E.

(i). K is a pointed cone of vertex 0 if and only if for all x ∈ K and for
all t ≥ 0, tx belongs to K.

(ii). A one K (pointed or blunt) is convex if and only if it is stable by
addition.

Proof of Proposition 2.9. Assertion (i) is trivial.

(ii) Let K be a convex cone. Let x an y be two elements of K. Then
1
2
(x + y) belongs to K since it is convex and x + y can be written as

2(1
2
(x + y)) which belongs to K since it is a cone. Consequently K is

stable by addition.

Let K be a cone stable by addition and let x and y be two elements
of K. One has to show that for all t ∈ ]0, 1[, tx + (1− t)y belongs to K.

11



The vectors tx and (1− t)y are elements of K since it is a cone. Since K
is stable by addition, tx + (1− t)y belongs to K. �

Examples: All space subspace of E is a convex cone of vertex 0. All
set of solutions of a linear system of homogeneous linear equations and
homogeneous linear inequations is a convex cone. The image of a convex
cone of vertex z by an affine mapping f is a convex cone which vertex is
equal to f(z). The inverse image of a convex cone of vertex 0 by a linear
mapping f is a convex cone which vertex is equal to 0.

Definition 2.11 Let A be a nonempty subset of E. The convex conic
hull of A is the intersection of all the convex pointed cone of vertex 0
containing A. It is denoted by K(A).

Since E is a convex cone, the set K(A) is well defined. It is easy to prove
that all intersection of convex cones is also a convex cone. Consequently,

K(A) is the smallest (in the sense of inclusion) convex cone containing
A. It is also obvious that K(A) is the set of all linear combinations with
non-negative coefficients of elements from A.

12
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Chapter 3

The one dimensional results

3.1 Existence results

The main starting point of existence results is Weierstrass’s Theorem and
its corollaries.

Theorem 3.1 (Weierstrass) If the domain is compact, and if f is con-
tinuous then f is bounded and the extremum are reached.

The proof is based on the notion of maximizing sequence (respectively
minimizing). When the domain is not bounded, numerous problems can
be solved using the coercivity condition.

Definition 3.1 The function f : R → R is said coercive if

lim
x→−∞

f(x) = lim
x→+∞

f(x) = +∞.

Exercise 3.1 (*) Let us assume that f : R → R is coercive and con-
tinuous, show that f has a lower bound and that there exists at least a
minimum.

3.2 First order condition

3.2.1 Necessary condition

Proposition 3.1 Let −∞ ≤ a < b ≤ ∞, we let I = [a, b] ∩ R and we
consider f : I → R differentiable on I, if we assume that the problem
maxx∈I f(x) has a local solution x ∈ R, then

1. when x ∈ ]a, b[, one has f ′(x) = 0,

2. when x = a, one has f ′(x) ≤ 0,

3. when x = b, one has f ′(x) ≥ 0.

Exercise 3.2 (*) Let us use the notations of Proposition 3.1.

1. Prove Proposition 3.1.

2. Let us fix a = π. Prove that π is the solution (even it is a global
solution) of maxx∈[π,π] e

x. What is the value of the derivative f ′(a) ?

3.2.2 Alternative formulation in terms of multipliers

Let us focus on the previous problem when the domain is bounded (a and
b finite). The problem maxx∈[a,b] f(x) can be formulated as

(P)


max f(x)
x− b ≤ 0
a− x ≤ 0

i.e (P1)


max f(x)
g1(x) ≤ 0
g2(x) ≤ 0

with the notations g1(x) = x − b and g2(x) = a − x. We can state
Proposition 3.1 under the following version.

13



Proposition 3.2 Let −∞ < a < b < ∞, we let I = [a, b] and we consider
f : I → R differentiable on I, we assume that the problem (P1) has a local
solution x, then there exist multipliers λ1 ≥ 0 and λ2 ≥ 0 such that

f ′(x) = λ1g
′
1(x) + λ2g

′
2(x)

and λ1g1(x) = λ2g2(x) = 0.

Exercise 3.3 (*) Deduce Proposition 3.2 from Proposition 3.1.

Be careful, if we consider the optimization problem,

(P)

{
max x
g1(x) = x2 ≤ 0

(3.1)

It is easy to prove that x = 0 is the unique solution of (P) but nevertherless
the system 

f ′(x) = λ1g
′
1(x)

λ1 ≥ 0
λ1g1(x) = 0

has no solution.

Even with a single variable, the optimality does not imply
the existence of multipliers, we need an additional condition
(“qualification condition”). Solving the previous system dealing
with the existence of multipliers at point x makes sense only if
this point is qualified.

We will now introduce a first version of the notion of qualification.
This is not the better one, though it allow to give an intuition on the
notion.

Definition 3.2 Let us consider the following set of feasible points, the
set O is open and gi are continuous on O.

x ∈ O
g1(x) ≤ 0
. . .
gp(x) ≤ 0

We say that the Slater condition is satisfied for this list of constraints if
there exists a point x̂ such that x̂ ∈ O, and for each i = 1, . . . , p,

either gi is an affine function and gi(x̂) ≤ 0
or
gi is a convex function and gi(x̂) < 0

Note that in the previous definition, the point x̂ is feasible.

Exercise 3.4 (*) Let f : [a, b] → R, let us consider the optimization
problems

(P1)


max f(x) ∈ R
x− b ≤ 0
a− x ≤ 0

(P2)


max f(x)
(x− b)3 ≤ 0
a− x ≤ 0

1) Compare the two problems.

2) Show that the Slater condition is satisfied for (P1).

3) Show that the Slater condition is NOT satisfied for (P2).

Exercise 3.5 (*) Let us consider again the problem

(P)

{
max x
g1(x) = x2 ≤ 0

Show that the Slater qualification condition does not hold.

Proposition 3.3 Let x be a local solution of the optimization problem:

(P)


max f(x)
x ∈ O
g1(x) ≤ 0
. . .
gp(x) ≤ 0

Let us assume that the Slater condition is satisfied and that each function
is differentiable on a neighborhood of x, then, there exists (λi)

p
i=1 ∈ Rp

+

such that {
f ′(x) = λ1g

′
1(x) + . . . + λpg

′
p(x)

λigi(x) = 0 for all i = 1, . . . , p

14



Proof. Let us define the (possibly empty) sets, K = {i ∈ {1, . . . , p} |
gi(x) = 0}, K+ = {i ∈ K | g′i(x) > 0}, K0 = {i ∈ K | g′i(x) = 0}and
K− = {i ∈ K | g′i(x) < 0}. Note that we only need to prove the existence
of (λi)i∈K since when x /∈ K, the “complementary condition” λigi(x) = 0
implies that λi = 0. let us prove the existence of multipliers with respect
to the value of f ′(x).

If f ′(x) = 0, it suffices to let in addition λi = 0, for each i ∈ K.

Let us now consider for example the case where f ′(x) > 0, (a symmet-
ric argument allows to treat the case where f ′(x) < 0). We can introduce
the alternative problem

(P1)

{
max f(x)
gi(x) ≤ 0, for all i ∈ K

Using Exercise 1.4, we know that x is also a local solution of (P1).

Step 1 Let us prove that K+ ∪ K0 is nonempty. First, one can notice that
there exists some ε > 0, such that for each x ∈ ]x, x + ε], gk(x) < 0,
for each k ∈ K−, and f(x) > f(x). The value of ε can be chosen such
that that x is a global solution of

(P2)


max f(x)
gi(x) ≤ 0, for all i ∈ K
x ∈ [x− ε, x + ε]

Since f(x+ε) > f(x), there exists some k ∈ K such that gk(x+ε) > 0.
In view of the choice of ε, we already know that k /∈ K−.

Step 2 Let us know prove that K+ is nonenmpty. If K+ is empty, then k ∈
K0, and the convexity of gk implies that x is a global minimum for gk.
The Slater condition assumes that either gk is affine or gk(x̂) < 0 =
gk(x). The second case is excluded and therefore gk is affine and more
precisely constant. This is not possible since gk(x + ε) > 0 = gk(x).

Step 3 Since K is nonempty, we can choose some k ∈ K, and let λi = 0 if i 6= k

λk =
f ′(x)
g′k(x)

It is obvious that (λi) satisfies all the conditions.

3.3 Convex and concave functions

3.3.1 Definitions

In this part, f is a function defined on U convex subset (interval) of R to
R.

Definition 3.3 The function f is convex (resp. concave) if for all (x, y) ∈
U × U and for all t ∈ [0, 1],

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y).

(respectively) f(tx + (1− t)y) ≥ tf(x) + (1− t)f(y).

The function f is strictly convex if for all (x, y) ∈ U × U such that
x 6= y and for all t ∈ ]0, 1[, f(tx + (1− t)y) < tf(x) + (1− t)f(y).

A function f is convex if and only if −f is concave. Consequently,
the results obtained for convex functions can be translated in terms of
concave functions. These notions can be defined locally.

Definition 3.4 The epigraph and the hypograph (denoted by epi(f) and
hypo(f)) of a function f are the sets (see figure 3.1) defined by

epi(f) = {(x, t) ∈ U × R | t ≥ f(x)}.

hypo(f) = {(x, t) ∈ U × R | t ≤ f(x)}.

Theorem 3.2 The three following properties are equivalent:

(i) f is convex (resp. concave);

(ii) for all k ≥ 2, (xi) ∈ Uk and λ ∈ Sk−1,
f(
∑k

i=1 λixi) ≤ (resp. ≥)
∑k

i=1 λif(xi);

(iii) The epigraph (resp. the hypograph) of f is a convex subset of R2.
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Cf

E(f)

H(f)

Figure 3.1: graph, epigraph and hypograph

Proof of Theorem 3.2. We will only prove the result in the convex
case. It is obvious that (ii) implies (i). Let us now show that (i) implies
(iii). Let (x, λ) and (y, µ) two elements of epi(f) and let t ∈ [0, 1]. It
means that f(x) ≤ λ and f(y) ≤ µ. Since f is convex, f(tx + (1− t)y) ≤
tf(x) + (1 − t)f(y). Then, f(tx + (1 − t)y) ≤ tλ + (1 − t)µ. This is
equivalent to t(x, λ) + (1− t)(y, µ) = (tx + (1− t)y, tλ + (1− t)µ) belongs
to the epigraph of f . Therefore, this set is convex.

We will end the proof by showing that (iii) implies (ii). Let k ≥ 2,
(xi) ∈ (Rn)k and λ ∈ Sk. then, (xi, f(xi)) is an element of the epigraph
of f and since this set is convex,

k∑
i=1

λi(xi, f(xi)) = (
k∑

i=1

λixi,
k∑

i=1

λif(xi))

is an element of epi(f). Then, by definition of the epigraph,
f(
∑k

i=1 λixi) ≤
∑k

i=1 λif(xi). �

Examples:

1. Let us recall a function R → R, is an affine function if there exists α
and β such that for all x in R,

f(x) = αx + β.

Any affine function is both convex and concave, but not strictly. It
can be easily proved that if f is convex and concave on U , then it is
the restriction on U of an affine function.

2. |.| is a convex function.

3. If C is a nonempty convex convex subset of R, the distance to C
defined by dC(x) = inf{|x− c| such that c ∈ C} is convex.

Proposition 3.4 (i) A finite sum of convex functions (resp. concave)
defined on U is convex (resp. concave);

(ii) if f is convex (resp. concave) and λ > 0, λf is convex (resp.
concave);

(iii) The supremum (resp. infimum) of a family of convex functions
(resp. concave) defined on U is convex (resp. concave) on its domain
(when the supremum is finite);

(iv) If f is a convex function (resp. concave) from I to J , intervals of
R, and if ϕ is a convex function (resp. concave) non-decreasing from I to
R then ϕ ◦ f is convex (resp. concave).

(v) if g is an affine function from R to R and f a convex function on
U ⊂ R, then f ◦ g is a convex function on g−1(U).

The proof of this proposition is left to the reader.

Exercise 3.6 (*) Let f be the function defined by f(x) = −|x| on R,

Show that f is convex on [0, +∞[ and on ]−∞, 0] but not on R.

3.3.2 quasi-convex functions

Definition 3.5 Let f be a real-valued function defined on an interval I,
we say that f is quasi-concave if for all α ∈ R, the set {x ∈ I | f(x) ≥ α}
is convex. We say that f is quasi-convex if the sets {x ∈ I | f(x) ≤ α}
are convex.

Exercise 3.7 (*) Let f be a real-valued function defined on an interval
U ,

Show that f is quasi-convex if and only if for all x, y of U and all
λ ∈ [0, 1],

f(λx + (1− λ)y) ≤ max(f(x), f(y))

Proposition 3.5 Let f be a real-valued function defined on an interval,

1) if f is convex, then f is quasi-convex.

2) The function f is quasi-convex if and only if (−f) is quasi-concave.
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3) if f is weakly monotone, then f is both quasi-concave and quasi-
convex.

For example, the exponential function is convex and quasi-concave.

Exercise 3.8 (*) Show Proposition 3.5.

Exercise 3.9 (*) Let U be an open interval of R and f be a function C1

from U to R. Show that f is quasi-convex if and only if

∀x,∈ U, ∀y ∈ U, f(y) ≤ f(x) ⇒ f ′(x)(x− y) ≤ 0.

Exercise 3.10 (*) Let f be the function defined by f(x) = −|x| on R,

Show that f is quasi-convex on [0, +∞[ and on ]−∞, 0] but not on R.

There exists several notions of strict quasi-convexity, and one should
be cautious and check the definition used. Here we will use the following
definition.

Definition 3.6 Let f be a real-valued function defined on an interval U ,
We say that f is strictly quasi-convex if f is quasi-convex and if for all
x, y from U satisfying x 6= y and for all λ ∈ ]0, 1[,

f(λx + (1− λ)y) < max(f(x), f(y))

When the function is continuous, we can propose another characteri-
zation of strict convexity (see exercise 3.11).

Exercise 3.11 (**) Let f be a continuous real-valued function defined
on an interval U , we assume that for all x, y from U satisfying x 6= y,
f(x) = f(y) and for all λ ∈ ]0, 1[,

f(λx + (1− λ)y) < f(x)

Show that f is strictly quasi-convex.

Exercise 3.12 (**) Let U be an open interval of R and f be a strictly
quasi-convex function:

1. Show that if x is a local solution of minx∈U f(x), then it is also a
global solution.

2. If there exists a solution to the minimization problem, then it is
unique.

Exercise 3.13 (**) Let U be an open interval of R and f a function C2

from U → R. We assume that for all x ∈ U , f ′(x) = 0 ⇒ f ′′(x) > 0.

1. The goal of this question is to show by contradiction that f is strictly
quasi-convex :

a) Let x0 6= x1 be two elements of U , such that there exists xλ ∈
]x0, x1[ satisfying f(xλ) ≥ max(f(x0), f(x1)). Show that the problem
maxu∈[x0,x1] f(u) has at least one solution z satisfying z ∈ ]x0, x1[.

b) Show that f ′(z) = 0, and that f ′′(z) > 0. Deduce the contradic-
tion.

2. Let x ∈ U , such that f ′(x) = 0, show that x is the unique global
minimum (necessary and sufficient condition). (Hint, one may use
exercise 3.12).

3. Let g be a function U → R C1, such that g′(x) 6= 0 for all x ∈ U ,
show that g is both strictly quasi-convex and strictly quasi-concave.

Exercise 3.14 1) Show with a counter-example that the sum of two
quasi-convex functions is not necessarily quasi-convex.

2) Show with a counter-example that the sum of a quasi-convex function
and a convex function is not necessarily quasi-convex.

3)Show with a counter-example that the sum of a strictly quasi-convex
function and a strictly convex function is not necessarily quasi-convex.

3.3.3 Regularity of convex functions

We will give in this part important results on the continuity of convex
functions.
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Proposition 3.6 if f is convex (resp. concave) and if x < x′ < x′′ are
elements of I, then (figure 3.2),

f(x′)− f(x)

x′ − x
≤ f(x′′)− f(x)

x′′ − x
≤ f(x′′)− f(x′)

x′′ − x′

O

b

bb

b

b

b

.

x x′ x′′

Figure 3.2: Monotonicity of the slope of a convex function

We can deduce from this that f is Lipschitz and even give an explicit
bound to the Lipschitz constant.

Corollary 3.1 1) Let α ≤ β, f a convex function on I = [α, β], then f
is bounded on I.

2) Let a ≤ b, ε > 0 f be a convex function on I = [a − ε, b + ε], we
assume that on I, f is bounded from below by m and from above by M .
then f is k-Lipschitz on [a, b], for k = (M−m)/ε and therefore continuous
on [a, b].

3) Let f be a convex function on U , then f is locally lipschitz and
continuous on the interior of U .

Proof : 1) Since f is convex, it is also quasi-convex. For all x ∈ [α, β],
f(x) ≤ M = max (f(α), f(β)).

If we denote γ = (α+β)/2 and m = 2f(γ)−M , we want to prove that
for all x ∈ [α, β], f(x) ≥ m. Let us denote by y = 2γ − x, by definition
γ is the middle of {x, y}. The convexity of f allows us to deduce that
f(γ) ≤ (f(x) + f(y))/2. Since f(x) ≤ 2f(γ) − f(y), then m is a lower
bound.

2) Let us recall that f is Lipschitz on X if for all (x, x′) ∈ X × X,
|f(x)− f(x′)| ≤ k|x− x′|. It is easy to prove that a Lipschitz function is
continuous.

If f is bounded from below by m and from above by M , we can write
for all x < y in [a, b],

f(x− ε)− f(x)

(x− ε)− x
≤ f(x)− f(y)

x− y
≤ f(y)− f(y + ε)

y − (y + ε)

Then
M −m

−ε
≤ f(x)− f(y)

x− y
≤ M −m

ε

This allows us to deduce that |f(x)− f(y)| ≤
(

M −m
ε

)
|x− y|.

3) Easy deduction of 1) and of 2). �

Corollary 3.2 Let f be a convex function on some interval U ,

1) if x1 < x2 < x3 < x4 < x5 are elements of U , then

f(x1)− f(x2)

x1 − x2

≤ f(x2)− f(x3)

x2 − x3

≤ f(x3)− f(x4)

x3 − x4

≤ f(x4)− f(x5)

x4 − x5

2) The right and left derivatives exist on the interior of U and moreover
if x1 < x2 are interior points, then

f ′r(x1) ≤
f(x2)− f(x1)

x2 − x1

≤ f ′`(x2).

3) The right and left derivatives are non decreasing on the interior of
U , and more over if x is an interior point, f ′`(x1) ≤ f ′r(x1).

Remark 3.1 Be careful, f may be discontinuous on the boundary of the
domain. For example,

f(x) =

{
1 if x = 0
0 if x > 0

is convex on R+.
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Exercise 3.15 (***) Let f be a function defined on some interval I, and
let x be a point of I. Let us define the set

∂f(x) = {α ∈ R | f(x) ≥ f(x) + α(x− x), for all x ∈ I}.

1. Show that if x is an interior point of I, and if the right and the lef
derivatives exists at point x, then for all α ∈ ∂f(x), we have f ′r(x) ≥ α
and α ≤ f ′l (x).

2. We assume that f is convex. Deduce from Proposition 3.2 that if x
is an interior point of I, ∂f(x) = [f ′l (x), f ′r(x)], in particular, that the
set is nonempty.

3. Let f : R → R defined by f(x) = min(0,−x), determine for all x in
R, the set ∂f(x)

4. We assume that f is convex and that ∂f(x) = {a}, show that f is
differentiable at point x and that f ′(x) = a.

3.3.4 Characterization with derivatives

Let us end this part by studying the possible characterizations when the
first (respectively the second) derivative exists.

Proposition 3.7 Let f be a differentiable function defined on some con-
vex set U ⊂ R. The function f is convex if and only if for all (x, y) ∈
U × U , f(y)− f(x) ≥ f ′(x)(y − x).

Proof of Proposition 3.7. Let us first consider the implication ⇒.
Let (x, y) ∈ U × U . If x = y, there is nothing to prove. Let us assume
now that x 6= y, using mean value Theorem, there exists some c in ]x, y[
if x < y and in ]y, x[ if y < x such that

f(y)− f(x)

y − x
= f ′(c)

The weak monotony of f ′ (See Corollary 3.2) allows us to conclude.

Conversely, we assume that the property on the derivative of f is
satisfied. Let (x, y) ∈ U × U and let t ∈]0, 1[. We have

f(x)− f(x + t(y − x)) ≥ f ′(x + t(y − x))(−t(y − x))

and

f(y)− f(x + t(y − x)) ≥ f ′(x + t(y − x))((1− t)(y − x)).

If we multiply the first inequality by (1 − t), the second inequality by t,
and if we sum, then we get that (1− t)(f(x)− f(x + t(y−x))) + t(f(y)−
f(x + t(y− x))) ≥ (−t(1− t) + t(1− t))f ′(x + t(y− x))(y− x) = 0. Then
f(x + t(y − x)) = f((1− t)x + ty) ≤ (1− t)f(x) + tf(y), i.e. f is convex.
�

The next exercise propose an alternative proof of the converse impli-
cation.

Exercise 3.16 Let f be a differentiable mapping defined on the convex
set U , we assume that for all (x, x′) ∈ U×U , f(x)−f(x′) ≥ f ′(x′)(x−x′).

1) Show that

epi(f) =
⋂

x′∈U

{(x, y) ∈ U × R | y ≥ f(x′) + f ′(x′)(x− x′)}.

2) Using the characterization given by Theorem 3.2, deduce that f is
convex.

The monotony of f ′ characterize entirely the convexity, this can be
formalized in the next proposition.

Proposition 3.8 Let f be a differentiable function on the interval U .
The function f is convex if and only if for all (x, y) ∈ U × U , (f ′(y) −
f ′(x))(y − x) ≥ 0.

Proof of Proposition 3.8. The implication ⇒ is a consequence of the
weak monotony of f ′ (see Corollary 3.2).

For the converse implication, let us consider x and y two elements of
U . Using the proposition 3.7, it suffices to show that f(y)− f(x)− (x−
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y)f ′(x) ≥ 0 in order to prove that f is convex. If x = y, there is nothing
to prove.

We will first consider the case x > y. Since y − x < 0, we have
by assumption that for all t of ]y, x[, (f ′(t) − f ′(x))(t − x) ≥ 0, and
consequently f ′(t)− f ′(x) ≤ 0. If we integrate on [y, x] this inequality, we
get

∫ x

y
(f ′(t)− f ′(x))dt ≤ 0, this means f(y)− f(x)− (x− y)f ′(x) ≥ 0,

The proof of the case x < y is similar. �

Let us now consider the case where f is twice differentiable on U .

Corollary 3.3 Let f be a twice differentiable function on the interval U ,
f is convex if and only if for all x ∈ U , f ′′(x) ≥ 0.

Proof of Proposition 3.3. Indeed, f is convex, if and only if f ′ is
weakly increasing, therefore if and only if f ′′ ≥ 0 on U . �
In order to get a result involving strict convexity, we may use the results
of the next exercise.

Exercise 3.17 1) Show that the function f defined by f(x) = x4 is
strictly convex on R but nevertheless the second derivative is not always
positive on R since f ′′(0) = 0.

2) Let f be a twice differentiable function on the interval U . Show that if
for all x ∈ U , f ′′(x) > 0, then f is strictly convex on U .

3) Let f be a C2 function on U a neighborhood of x, and assume that
f ′′(x) > 0. Show that there exists V a (possibly smaller) neighborhood of
x such that f is strictly convex on V .

4) Let f be a C1 function on some interval U such that f ′ is increasing
(strictly). Prove that f is strictly convex on V .

3.4 Sufficient conditions for optimality

When the problem is not convex, the only case where we can conclude is
the following:

Proposition 3.9 Let −∞ ≤ a < b ≤ ∞, we let I = [a, b] ∩ R and we
consider f : I → R differentiable at point a. If f ′(a) > 0, a is a local
solution of minimization problem.

When the problem is “convex”, we can state:

Proposition 3.10 Let us consider the optimization problem :
max f(x)
x ∈ O
g1(x) ≤ 0
. . .
gp(x) ≤ 0

We assume that x is a feasible point for this system. If the function f
is globally concave, (respectively locally concave at point x), and if the
functions gi are globally convex, (respectively locally convex at point x)
and if there exists (λi)

p
i=1 ∈ Rp

+ such that{
f ′(x) = λ1g

′
1(x) + . . . + λpg

′
p(x)

λigi(x) = 0 for all i = 1, . . . , p.

then, the condition is sufficient, x is a global solution (respectively local)
of the maximization problem.

Proof of the proposition 3.10. Let us call the “Lagrangian” of the
problem L(x) = f(x)−

∑p
i=1 λigi(x). Since this function is globally con-

cave, (respectively locally concave at point x) and L′(x) = 0, we can write
that for all point x feasible (respectively feasible and in a neighborhood of
x), L(x) ≤ L(x). we can conclude if we note that for each feasible point
x, L(x) ≥ f(x) and that L(x) = f(x) (in view of the conditions on the
multipliers). �.

Exercise 3.18 Let us consider the problem:

(P)

{
min x3

−1− x ≤ 0

1) Check that the Slater condition is satisfied, that the objective function
is strictly quasi-concave, that the constraint function is convexe.

2) Write the conditions for the existence of a multiplier at some feasible
point x and show that there exists two solutions: “x = 0 associated to
the multiplier λ = 0” and “x = −1 associated to the multiplier λ = 3”.

3) Show that the point x = 0 is not a solution (even a local solution) of
our optimization problem.
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3.5 Introduction to sensibility analysis

Let us consider in this part an optimization problem with a single inequal-
ity constraint involving one real parameter β

(Pβ)

{
max f(x)
g(x) ≤ β

We assume that the functions f and g are C1 on R and that for all β,
there exists a unique solution xβ. We denote by ϕ(β) the value of (Pβ),
we want to study the behavior of the function ϕ. Note that it is obvious
that when β increases, the set of feasible points is bigger or equal, which
implies that the function ϕ will be non-decreasing.

Theorem 3.3 Let us assume that the function f is strictly concave, g
convex, that for all x of R, g′(x) > 0, and that the limit of f in −∞ is
−∞, then for all β,

1. there exists a unique solution denoted by h(β).

2. the function h is continuous at point β and has a right and left deriva-
tive at each point.

3. the function ϕ is C1 at point β and ϕ′(β) = λβ where λβ is the unique
multiplier associated to the optimal solution h(β).

Proof of Theorem 3.3. According to the question of existence, since
g is increasing, there exists an inverse and the problem can be equivalently
stated as maxx∈]−∞,g−1(β)] f(x). Since limx→−∞ f(x) = −∞, and since f
is continuous (in view of its concavity on R), this problems has a solution
which is unique since f is strictly concave.

Let us first remark that the assumption on g′ implies that each point
of the domain will be qualified. Therefore x is solution of (Pβ) if and only
if there exists a multiplier λ. Then, (x, λ) is solution of (Sβ)

(Sβ)


λ ≥ 0
f ′(x) = λg′(x)
λ(g(x)− β) = 0
g(x)− β ≤ 0

⇔


λ = f ′(x)/g′(x) ≥ 0
(f ′(x)/g′(x))(g(x)− β) = 0
g(x)− β ≤ 0

⇔ (S ′β)


f ′(x) ≥ 0
f ′(x)(g(x)− β) = 0
g(x)− β ≤ 0

One should note that the associated multiplier is unique. In order to
study the regularity of the value function, we will distinguish several case
depending on the sign of the multiplier.

First case: g(h(β)) < β.
In this case, the associated multiplier denoted by λβ is equal to 0. We
have, {

f ′(xβ) = 0
0.(g(xβ)− β) = 0

For all β′ close enough to β, g(h(β)) < β′ and the couple (h(β), 0) is
solution of (Pβ′), i.e. that h(β′) = h(β). The solution is here constant.
Since ϕ(β′) = f(xβ′), we can deduce that ϕ′(β) = 0 = λβ.

Second case : g(xβ) = β and λβ > 0.

We have, (S ′β)

{
f ′(h(β)) > 0
g(h(β))− β = 0

In view of the implicit function theorem, there exists ε > 0, and a
function γ : [β − ε, β + ε] → [h(β) − ε, h(β) + ε], such that for all β′ ∈
[β − ε, β + ε], g(γ(β′)) = β′.

It is obvious that locally γ(β′) is solution of (S ′β′), this means that
locally h = γ, in particular h is C1 in a neighborhood of β. Since ϕ(β′) =
f(h(β′)), we can deduce that

ϕ′(β) = γ′(β)f ′(γ(β)) =
1

g′(h(β))
f ′(h(β)) = λβ

Third case : g(xβ) = β and λβ = 0.
We have, {

f ′(xβ) = 0
g(xβ)− β = 0

• As in the first case, for all β′ > β and close enough to β, the couple
(h(β), 0) is solution of (Pβ′), i.e. that h(β′) = h(β). We can deduce
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that h is continuous on the right, has a right derivative, at point β,
moreover the right derivative ϕ′r(β) = 0 = λβ.

• As in the second case, for all β′ < β close enough to β, in view of
the implicit function theorem, there exists ε > 0, and a function
γ : [β−ε, β +ε] → [xβ−ε, xβ +ε], such that for all β′ ∈ [β−ε, β +ε],
g(γ(β′)) = β′.

It remains to study the sign of the multiplier. Since f ′(γ(β)) = 0,
γ is increasing, we can deduce that the strict concavity of f implies
that f ′(γ(β′)) ≥ 0 for all β′ < β close enough to β. Then γ(β′) is
solution of (S ′β′), i.e. h = γ. We can deduce that h is continuous on
the left, has a left derivative at point β, moreover the left derivative

ϕ′`(β) = γ′(β)f ′(γ(β)) =
1

g′(xβ)
f ′(xβ) = λβ

In this theorem, h is not necessarily C1, while ϕ = f ◦ h is C1. �.

Exercise 3.19 Let β be a real parameter, we consider the problem

(Pβ)

{
max−x2

x ≤ β

Show that
Sol(Pβ) = {0} if β ≥ 0 and {β} if β ≤ 0

Deduce that in particular the solution is not differentiable at point 0 with
respect to β.

Exercise 3.20 Let h defined by h(x) = g(−x).

1) Compare the sets of solutions and the values of the problems

(Pβ)

{
max f(x)
g(x) ≤ β

(Qβ)

{
max f(−x)
h(x) ≤ β

2) Deduce, that in Theorem 3.3, the conclusion remains true if we replace
the condition “for all x, g′(x) > 0” by “for all x, g′(x) < 0”.
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Chapter 4

Finite dimensional optimization

4.1 Existence results

As in dimension 1, the main starting point of existence results is Weier-
strass’s Theorem and its corollaries.

Theorem 4.1 (Weierstrass) Let f be a function whose domain is com-
pact, and if f is continuous then f is bounded and the extrema are reached.

The proof uses the notion of maximizing sequence (cf. Definition 1.5)
and is based on the following lemma.

Lemma 4.1 Let us consider a maximizing sequence (xk)k. If the domain
is closed, the objective function f is continuous, then any cluster point of
(xk)k is a solution to the maximization problem.

When the domain is not bounded, numerous problems can be solved
using the coercivity condition.

Definition 4.1 The function f : A → R is said coercive if

lim
‖x‖→+∞

f(x) = +∞.

Proposition 4.1 Let us assume that f : A → R is coercive and contin-
uous, and that A is closed, then f has a lower bound and there exists at
least a minimum.

Exercise 4.1 (*) Let us consider the following optimization problem.

(P)


min x + y
s.t. x ≥ 0

y ≥ 0
(1 + x)(1 + y) ≤ 2

1. Draw the set of feasible points compact.

2. Prove that we can apply 4.1 to this problem.

Exercise 4.2 (*) Let us consider the following optimization problem.

(P)


max 3x1x2 − x3

2

s.t. x1 ≥ 0
x2 ≥ 0
x1 − 2x2 = 5
2x1 + 5x2 ≥ 20

1. Is the set of feasible points compact ?

2. Prove that we can apply Proposition 4.1 to the “modified” problem

(Q)


min −3x1x2 + x3

2

s.t. x1 ≥ 0
x2 ≥ 0
x1 − 2x2 = 5
2x1 + 5x2 ≥ 20

3. conclude

23



4.2 Convex and quasi-convex functions

4.2.1 Definitions

In this part, f is a function defined on U convex subset of Rn with values
in R.

Definition 4.2 The function f is convex (resp. concave) if for all (x, y) ∈
U × U and for all t ∈ [0, 1],

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y).

(respectively) f(tx + (1− t)y) ≥ tf(x) + (1− t)f(y).

The function f is strictly convex if for all (x, y) ∈ U × U such that
x 6= y and for all t ∈ ]0, 1[, f(tx + (1− t)y) < tf(x) + (1− t)f(y).

Exercise 4.3 (**)

1. Let U be an open convex set on which the function f is assumed to
be convex, We assume moreover that f is continuous on the closure
of U . Show that f is convex on U .

2. Let U = R2
++ = {x ∈ R2 | x1 > 0 and x2 > 0}, let us consider f

defined on U by f(x1, x2) = 4
√

x1x2). Is f strictly concave on U? on
U?

A function f is convex if and only if −f is concave. Consequently,
the results obtained for convex functions can be translated in terms of
concave functions. These notions can be defined locally.

Definition 4.3 Let f be a real-valued function defined on a convex set
U , we say that f is quasi-concave if for all α ∈ R, the set {x ∈ U | f(x) ≥
α} is convex. We say that f is quasi-convex if for all α ∈ R, the set
{x ∈ U | f(x) ≤ α} is convex.

There exist several notions of strict quasi-convexity, and one should
be cautious and check the definition used. Here we will use the following
definition.

Definition 4.4 Let f be a real-valued function defined on a convex set
U , We say that f is strictly quasi-convex if f is quasi-convex and if for all
x, y from U satisfying x 6= y and for all λ ∈ ]0, 1[,

f(λx + (1− λ)y) < max(f(x), f(y))

Exercise 4.4 (**)

1. Let U be an open convex set on which the function f is assumed to
be quasi-convex, We assume moreover that f is continuous on the
closure of U . Show that f is quasi-convex on U .

2. Let U = R2
++ = {x ∈ R2 | x1 > 0 and x2 > 0}, let us consider f

defined on U by f(x1, x2) = 4
√

x1x2). Is f strictly quasi-concave on
U? on U?

Remark 4.1 Let U be a convex subset of Rn. One has the equivalence

• The function f is convex (respectively strictly convex, quasi-convex,
strictly quasi convex) on U ,

• for all x 6= y in U , the function ϕx,y defined from [0, 1] to R by,

ϕx,y(t) = f(ty + (1− t)x) = f(x + t(y − x))

is convex (respectively strictly convex, quasi-convex, strictly quasi
convex) on [0, 1].

Note that ϕx,y is differentiable (resp. twice differentiable) when f is differ-
entiable (resp. twice differentiable) then, ϕ′x,y(t) = 〈∇f(x+t(y−x)), y−x〉
and ϕ′′x,y(t) = 〈Hf (x + t(y − x)))(y − x), y − x〉.

Definition 4.5 The epigraph and the hypograph (denoted by epi(f) and
hypo(f)) of a real-valued function f are the sets (see figure 4.1) defined
by

epi(f) = {(x, t) ∈ U × R | t ≥ f(x)}.

hypo(f) = {(x, t) ∈ U × R | t ≤ f(x)}.
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Figure 4.1: graph and epigraph

Theorem 4.2 The three following properties are equivalent:

1. f is convex (resp. concave);

2. for all k ≥ 2, (xi) ∈ Uk and λ ∈ Sk−1, (unit simplex of Rk)
f(
∑k

i=1 λixi) ≤ (resp. ≥)
∑k

i=1 λif(xi);

3. The epigraph (resp. the hypograph) of f is a convex subset of Rn+1.

Proof of Theorem 4.2. Simple adaptation of the proof of Theorem 3.2

Examples:

1. Any affine real-valued function is both convex and concave, but not
strictly. It can be easily proved that if f is convex and concave on U ,
then it is the restriction to U of an affine function, (still called affine
function by an abuse of language).

2. Each norm is a convex function.

3. If C is a nonempty convex subset of Rn, the distance to C defined by
dC(x) = inf{‖x− c‖ such that c ∈ C} is convex.

Proposition 4.2 1. A finite sum of convex functions (resp. concave)
defined on U is convex (resp. concave);

2. if f is convex (resp. concave) and λ > 0, λf is convex (resp. con-
cave);

3. The supremum (resp. infimum) of a family of convex functions (resp.
concave) defined on U is convex (resp. concave) on its domain (when
the supremum is finite);

4. If f is a convex function (resp. concave) from U (convex set of Rn)
to I (interval of R), and if ϕ is a convex function (resp. concave)
non-decreasing from I to R then ϕ ◦ f is convex (resp. concave) on
U .

5. if g is an affine function from Rn to Rp and f a convex function on
U ⊂ Rp, then f ◦ g is a convex function on g−1(U).

The proof of this proposition is left to the reader.

Exercise 4.5 Let U be a convex set of Rn and f be a convex function:

Show that if x is a local solution of minx∈U f(x), then it is also a global
solution.

Exercise 4.6 (*) Let f be a real-valued function defined on a convex
set U , show that f is quasi-convex if and only if for all x, y of U and all
λ ∈ [0, 1],

f(λx + (1− λ)y) ≤ max(f(x), f(y))

Exercise 4.7 (*) Let U be an open convex set of Rn and f be a strictly
quasi-convex function:

1. Show that if x is a local solution of minx∈U f(x), then it is also a
global solution.

2. If there exists a solution to the minimization problem, then it is
unique.

When the function is regular, we can propose characterizations of
(strict) quasi-convexity (see exercises 4.8 and 4.9).

Exercise 4.8 (*) Let U be an open set of Rn and f be a function C1 on
U . Show that f is quasi-convex if and only if

∀x,∈ U, ∀y ∈ U, f(y) ≤ f(x) ⇒ 〈∇f(x), x− y〉 ≤ 0.
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Exercise 4.9 (*) Let f be a continuous real-valued function defined on a
convex set U , we assume that for all x, y of U satisfying x 6= y, f(x) = f(y)
and for all λ ∈ ]0, 1[,

f(λx + (1− λ)y) < f(x)

Show that f is strictly quasi-convex.

Exercise 4.10 (*) Let U be a convex subset of Rn and f be a quasi-
convex function. We want to study minx∈U f(x).

1. Show that the set of solution to the minimization problem is convex.

2. Prove with a counter-example that a local solution is not necessarily
a global solution. Hint: consider f : R → R, defined by

f(x) =


−x− 1 if x ≤ −1,
0 if x ∈ [−1, 1],
x− 1 if x ≥ 1.

Exercise 4.11 (**) Let U be an open convex set of Rn and f a function
C2 from U → R. We assume that for all x ∈ U , and all v ∈ Rn \ {0},
〈∇f(x), v〉 = 0 ⇒ vtHf (x)v > 0. Show that f is strictly quasi-convex.

Hint: use Exercise 3.13 and Remark 4.1.

4.2.2 Regularity of convex functions

We will give in this part important results on the continuity of convex
functions.

Proposition 4.3 Let U be a convex set, ε > 0 and f be a convex function
on V = U + B(0, ε),

1. We assume that on V , f is bounded from below by m and from above
by M . then f is k-Lipschitz on U , for k = (M −m)/ε and therefore
continuous on U .

2. Let f be a convex function on U , then f is locally lipschitz and con-
tinuous on the interior of U .

Note that this property is false in an infinite dimension setting. For
example, if we consider E = R[X] (polynomial functions), embedded with
the norm

‖P‖ =

deg(P )∑
k=0

|ak|, when P =

deg(P )∑
k=0

akX
k.

It is easy to see that the linear ϕ(and consequently convex) is NOT con-
tinuous, where ϕ(P ) = P ′(0).

4.2.3 Characterization of convexity with derivatives

Let us end this part by studying the possible characterizations when the
first (respectively the second) derivative exists.

Proposition 4.4 Let f be a differentiable function defined on some con-
vex set U ⊂ Rn. The function f is convex if and only if for all
(x, y) ∈ U × U ,

f(y) ≥ f(x) + 〈∇f(x), y − x〉.

Proof of Proposition 4.4.

Let us first consider the implication ⇒. Let (x, y) ∈ U ×U and x 6= y.
In view of Remark 4.1, we know that the function ϕx,y is convex. Since this
function has a derivative, we know that ϕx,y(1)−ϕx,y(0) ≥ ϕ′x,y(0)(1− 0)
which leads to the conclusion.

Conversely, we assume that the property on the gradient of f is sat-
isfied. Let x0 6= x1 in U , let us consider the function ϕx0,x1 . In view of
Proposition 3.7, it suffices to prove that for all t 6= t′ (in [0, 1]),

ϕx0,x1(t
′)− ϕx0,x1(t) ≥ ϕ′x0,x1

(t)(t′ − t)

in order to prove that ϕx0,x1 is convex. If we denote by x = tx1 +(1− t)x0

and y = t′x1 + (1 − t′)x0, the left side of the previous inequality can be
interpreted as f(y)− f(x), while the right side is equal to 〈∇f(x), y− x〉.
Since ϕx0,x1 is convex, it follows from Remark 4.1 that f is convex. �

The next exercise propose an alternative proof of the converse impli-
cation.
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Exercise 4.12 (**) Let f be a differentiable mapping defined on the
convex set U , we assume that for all (x, x′) ∈ U × U , f(x) − f(x′) ≥
〈∇f(x′), x− x′〉.

1. Show that

epi(f) =
⋂

x′∈U

{(x, y) ∈ U × R | y ≥ f(x′) + 〈∇f(x′), x− x′〉}.

2. Using the characterization given by Theorem 4.2, deduce that f is
convex.

Exercise 4.13 (***) Let f be a function defined on some convex set U ,
and let x be an interior point. Let us define the set (cf. Exercise 3.15)

∂f(x) = {α ∈ Rn | f(x) ≥ f(x) + 〈α, x− x〉, for all x ∈ U}

In order to simplify the notations, it may be easier to consider the case
x = 0.

1. Apply Proposition 4.4 in order to show that if f is convex and differ-
entiable at point x, then ∇f(x) ∈ ∂f(x).

2. If f is differentiable at point x, write the Taylor expansion of degree
1 at a neighborhood of x, and deduce that α ∈ ∂f(x) ⇒ α = ∇f(x).

3. We assume that f is convex and that ∂f(x) = {α}, show that f is
differentiable at point x and that ∇f(x) = α.

Proposition 4.5 Let f be a differentiable function on some convex set
U . The function f is convex if and only if for all (x, y) ∈ U × U ,

〈∇f(y)−∇f(x), y − x〉 ≥ 0.

Proof of Proposition 4.5. The implication ⇒ is a consequence of
Remark 4.1. Indeed, we know that the function ϕx,y is convex, which
implies ϕ′x,y(1)− ϕ′x,y(0) ≥ 0. This leads to the conclusion.

For the converse implication, let us consider x and y two elements of
U . We know that for all t of ]0, 1[,

〈∇f(ty + (1− t)x)−∇f(x), (ty + (1− t)x)− x〉 ≥ 0,

and consequently 〈∇f(ty + (1 − t)x), y − x〉 ≥ 〈∇f(x), y − x〉. If we
integrate on [0, 1] this inequality, we get∫ 1

0

(〈∇f(ty + (1− t)x), y − x〉dt ≥ 〈∇f(x), y − x〉,

this means f(y) − f(x) − 〈∇f(x), x − y〉 ≥ 0. Using Proposition 4.4, we
can deduce that f is convex. �

Let us now consider the case where f is twice differentiable on U . We
will denote by Hf (x) the hessian matrix at point x, we recall that this
matrix is symmetric when f is C2.

Definition 4.6 Let M be a symmetric matrix (n, n).

• We say that M is positive semidefinite (respectively negative semidef-
inite) if for all v ∈ Rn, 〈v, Mv〉 ≥ 0 (respectively 〈v, Mv〉 ≤ 0).

• We say that M is positive definite (respectively negative definite) if
for all v ∈ Rn \ {0}, 〈v, Mv〉 > 0 (respectively 〈v, Mv〉 < 0).

Proposition 4.6 Let M be a symmetric matrix (n, n).

• the matrix M has n eigenvalues (possibly equal),

• the matrix M is positive semidefinite (respectively negative semidef-
inite) if and only if all eigenvalues are non-negative, (respectively
non-positive),

• the matrix M is positive definite (respectively negative definite) if and
only if all eigenvalues are positive, (respectively negative).

Exercise 4.14 (*) Let M be a symmetric (n, n)−matrix, then

• if M is positive semidefinite, then det M ≥ 0 and Tr(M) ≥ 0.
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• if M is positive definite, then det M > 0 and Tr(M) > 0.

• if M is negative semidefinite, then Tr(M) ≤ 0 and det M ≤ 0 when
n is odd, det M ≥ 0 when n is even.

• if M is negative definite, then Tr(M) < 0 and det M < 0 when n is
odd, det M > 0 when n is even.

Exercise 4.15 (*) When the dimension is equal to 2, we can reenforce

the conclusion of the previous exercise. Let M =

(
r s
s t

)
be a symmetric

(2, 2)−matrix, then

• the matrix M is positive semidefinite if and only if det M ≥ 0 and
Tr(M) ≥ 0.

• the matrix M is positive definite if and only if det M > 0 and
Tr(M) > 0.

Exercise 4.16 (*) Let M be the following matrix,

M =

 −1 0 0
0 −1 0
0 0 3


Show that det M > 0 and Tr(M) > 0, and that M is not positive semidef-
inite.

Proposition 4.7 Let M be a symmetric matrix, then M is positive defi-
nite if and only if for all k = 1, . . . , n, ∆k > 0, where

∆k =

∣∣∣∣∣∣∣
a11 . . . a1k
...

. . .
...

ak1 . . . akk

∣∣∣∣∣∣∣
Exercise 4.17 (*) 1) Let M be a symmetric matrix, such that M is
positive semidefinite, then for all k = 1, . . . , n, ∆k ≥ 0, where

∆k =

∣∣∣∣∣∣∣
a11 . . . a1k
...

. . .
...

ak1 . . . akk

∣∣∣∣∣∣∣

2) Let M be the following matrix,

M =

 3 0 0
0 0 0
0 0 −1


Prove that for all k = 1, . . . , 3, ∆k ≥ 0, but that M is not positive
semidefinite.

Proposition 4.8 Let f be a twice continuously differentiable function on
U , which is a convex and open subset of Rn. Then, f is convex if and
only if for all x ∈ U , Hf (x) is positive semidefinite.

Proof of Proposition 4.8. Indeed, if f is convex, then for any x
in U and v in Rn, there exists ε > 0, such that y = x + εv ∈ U . We
can consider the function ϕx,y which is convex. We can deduce that
〈εv, Hf (x)εv〉ϕ′′x,y(0) ≥ 0. This implies that Hf (x) is positive semidefi-
nite.

Conversely, let us assume that at each point of U , Hf (x) is positive
semidefinite. Then the computation of ϕ′′x,y (cf. Remark 4.1) allows us to
deduce that ϕx,y is convex. �

A simple adaptation of the previous proof allows us to deduce the
following proposition:

Proposition 4.9 Let f be a twice continuously differentiable function on
some convex set U ,

1) If for all x ∈ U , Hf (x) is positive definite, then f is strictly convex.

2) If at point x, the hessian matrix is positive definite, then f is strictly
convex in some neighborhood of x.

4.3 Unconstrained optimization

4.3.1 Classical case

The problem maxx∈U f(x) is said unconstrained if the set U is an open
subset of Rn.
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Remark 4.2 Let us consider the unconstrained problem minx∈U f(x) and
x ∈ U . The point x is a local solution of this problem if and only if it is
an interior point of the set {x ∈ U | f(x) ≥ f(x)}.

Remark 4.3 The previous remark can only be used for unconstrained
optmization: for example, x = (0, 0) is a local solution of the problem
minx∈U f(x) (where U = R2

+ NOT open and f(x) = x2
1 + x2

2), but the
corresponding set {x ∈ U | f(x) ≥ f(x)} is reduced to {x} and the
interiory property does not hold.

Proposition 4.10 Let us consider the unconstrained problem
minx∈U f(x).

• If x is a local solution, and if f is differentiable at point x, then
∇f(x) = 0, (“critical point”)

• If x is a local solution, and if f is twice continuously differentiable at
point x, then Hf (x) is positive semidefinite,

• If x is a critical point, if f is twice continuously differentiable at
point x, and if Hf (x) is positive definite, then x is a local solution.
In addition, there exists some ε > 0, such that on B(x, ε) ⊂ U , x is
the unique solution.

• If x is a critical point and if f is convex, then x is a global solution.

Proof of Proposition 4.10

It suffices to remark that if x is a local solution, then for any direction
u ∈ Rn, there exists some positive real number ε > 0, such that the
function

ϕ : ]−ε, ε[ → R
ϕ(t) = f(x + tu)

is defined, and that 0 is a (global) minimum.

If f is differentiable at point x, then ϕ has a derivative and ϕ′(0) = 0.
In view of the chain rule theorem, ϕ′(t) = 〈∇f(x + tu), u〉. This leads to
〈∇f(x), u〉 ≥ 0. Since this is true for any u ∈ Rn, we can conclude that
∇f(x) = 0.

If f is twice differentiable at point x, then ϕ has a second derivative and
ϕ′′(0) ≥ 0. In view of the chain rule theorem, ϕ′′(t) = 〈u, Hf (x + tu)(u)〉.
This leads to 〈u, Hf (x)(u)〉 = 0. Since this is true for any u ∈ Rn, we can
conclude that Hf (x) is positive semidefinite.

Note that some results of unconstrained optimization can be used even
if the domain is not open (cf. Exercise 1.5).

Remark 4.4 Let x is a local solution of the problem minx∈X f(x). When
X is a neighborhood of x, there exists some V open subset of C containing
x such that x is a local solution of the problem minx∈V f(x). This allows
to apply the first and second order necessary conditions.

Exercise 4.18 We can reenforce the third result of the previous proposi-
tion. For all k strictly smaller than the smallest eigenvalue of the Hessian
matrix Hf (x) (in particular, k can be chosen positive), there exists some
ε > 0 such that for all x ∈ B(x̄, r), f(x) ≥ f(x̄) + k

2
‖x− x̄‖2.

4.3.2 Extension to affine constraints

Let us consider the following problem{
min f(x)
x ∈ U,Ax = b

The set of feasible points C is {x ∈ U | Ax = b}, where A is a (n× p)-
matrix and b ∈ Rp. This correspond to the case of p affine constraints
represented by the p rows of A and the vector b. If we denote by aj the
vector de Rn corresponding to the j-row of A, the set C is defined by:

x ∈ C if and only if 〈aj, x〉 − bj = 0 for all j = 1, . . . , p.

If we denote by gj(x) = 〈aj, x〉 − bj (which are affine functions), and
J = {1, . . . , p}, the problem can be written as

min f(x)
gj(x) = 0, ∀j ∈ J
x ∈ U
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Note that C can be written as U∩Λ−1(b) where Λ is the linear mapping
defined by x → Λ(x) = Ax. Let x be a local solution of the problem:

min f(x)
Ax = b
x ∈ U

For all u ∈ Ker Λ, note that for all t ∈ R, A(x̄ + tu) = b.

Since U is open et x ∈ U , there exists some ε > 0 such that for all
t ∈ ]−ε, ε[, x̄ + tu ∈ U . Once again, we can consider

ϕu : ]−ε, ε[ → R
ϕu(t) = f(x + tu)

Consequently, for all t ∈ ]−ε, ε[, ϕu(t) := f(x+tu) ≥ ϕu(0) = f(x), which
means that 0 is a minimum de ϕu. This implies that ϕ′u(0) = 0. We can
compute ϕ′u(0) = ∇f(x̄) · u = 0.

Let (u1, . . . uk) be a basis of the kernel

Note that when U is equal to Rn, we can entirely describe C which is
equal to {x}+ Ker Λ. This implies that 0 is a solution of{

min f(x + λ1u1 + . . . + λkuk)
λ1 ∈ R, . . . , λk ∈ R

In the general case, C is equal to U ∩ ({x}+Ker Λ). This implies that
there exists ε > 0, such that 0 is a solution of

min h(λ)
λ1 ∈ R, . . . , λk ∈ R
λ ∈ B(0, ε)

where h(λ) = f(x + λ1u1 + . . . + λkuk).

This leads to ∇h(0) = 0, and we can formulate this result as ∇f(x̄)
is orthogonal to Ker Λ. It follows that ∇f(x) is in the image of Λt, the
transposed of de ϕ. We recall that the matrix of Λt is the matrix where
the rows are the columns of A, the vectors aj. We have the result, there
exists some vector λ in Rp (vector of Lagrange multipliers) such that:

∇f(x̄) =

p∑
j=1

λ̄jaj

Since aj = ∇gj(x), this means that

∇f(x̄) =

p∑
j=1

λ̄j∇gj(x)

4.4 Karush-Kuhn-Tucker

4.4.1 Necessary condition

Let us consider the domain defined by the list of constraints
fi(x) = 0, ∀i ∈ I
gj(x) ≤ 0, ∀j ∈ J
x ∈ U

Among the inequality constraints, we will distinguish those that corre-
spond to affine function. This can be formulated as J is equal to the
partition Ja∪Jna, where gj is affine when j ∈ Ja. The set U is open which
may hide strict inequalities.

Definition 4.7 We say that the Slater condition is satisfied if

• all fi are affine,

• all gj are convex

• there exists x be a feasible point of the previous system, satisfying
moreover gj(x) < 0, for all j ∈ Jna.

Remark 4.5 When all the constraints are affine, then the Slater’s con-
dition is equivalent to to the existence of a feasible point.

Theorem 4.3 (Karush-Kuhn-Tucker) Let us consider the optimiza-
tion problem: 

min f(x)
fi(x) = 0, ∀i ∈ I
gj(x) ≤ 0, ∀j ∈ J
x ∈ U
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where U is an open set. Let x be a local solution of this problem. We
assume that there exists V open neighborhood of x such that f , fi, gj are
continuously differentiable on V . If the Slater condition is satisfied then
there exists λ ∈ RI and µ ∈ RJ

+ such that

∇f(x) +
∑
i∈I

λi∇fi(x) +
∑
j∈J

µj∇gj(x) = 0 (4.1)

and µjgj(x) = 0, for all j ∈ J .

Note that if we distinguish among the inequalities, the set of binding
constraints at point x by J(x) = {j ∈ J | gj(x)}, then the condition 4.1
can be rewritten as,

∇f(x) +
∑
i∈I

λi∇fi(x) +
∑

j∈J(x)

µj∇gj(x) = 0. (4.2)

Note that when j /∈ J(x), in view of the “complementary condition”
(µjgj(x) = 0), we can deduce that the multiplier µj is equal to zero.

Definition 4.8 We will associate to the previous minimization problem,
the following system “Karush-Kuhn-Tucker conditions”

fi(x) = 0, ∀i ∈ I
gj(x) ≤ 0, ∀j ∈ J

λi ∈ R, ∀i ∈ I
µj ≥ 0, ∀j ∈ J
µjgj(x) = 0, for all j ∈ J

∇f(x) +
∑

i∈I λi∇fi(x) +
∑

j∈J µj∇gj(x) = 0

x ∈ U

Exercise 4.19 1. Prove that for all z ∈ R2,


z1 ≥ 0,
z2 ≥ 0,
z1 + z2 = 0,

⇔
{

z1 = 0,
z2 = 0.

2. Prove that for any p ≥ 1, for any α ∈ Rp
+, β ∈ Rp

+,

p∑
i=1

αiβi = 0 ⇔ αiβi = 0, for all i = 1, . . . , p

3. Prove that the Karush-Kuhn-Tucker system is equivalent to there
exists (x, λ, µ) ∈ U × RI × RJ

+ such that
fi(x) = 0, ∀i ∈ I
gj(x) ≤ 0, ∀j ∈ J∑

j∈J µjgj(x) = 0,

∇f(x) +
∑

i∈I λi∇fi(x) +
∑

j∈J µj∇gj(x) = 0

4.4.2 Sufficient conditions for optimality

Definition 4.9 We say that the problem

min f(x)
x ∈ U ,
h1(x) = 0
. . .
hq(x) = 0
g1(x) ≤ 0
. . .
gp(x) ≤ 0

is convex if the functions hj are affine, the functions gi are convex, and if
f is convex 1.

When the problem is convex, we can state:

Proposition 4.11 Let us consider the optimization problem:
min f(x)
g1(x) ≤ 0
. . .
gp(x) ≤ 0
x ∈ U

1for a maximization problem, the objective function is concave.
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Let us assume that x be a feasible point and that U is an open set.
If the function f is convex on U (globally convex), (respectively locally
convex at point x), and if the functions gi are convex on U , (respectively
locally convex at point x) and if there exists (λi)

p
i=1 ∈ Rp

+ such that{
∇f(x) + λ1∇g1(x) + . . . + λp∇gp(x) = 0

λigi(x) = 0 for all i = 1, . . . , p.

then, the condition is sufficient, x is a global solution (respectively local)
of the minimization problem.

Proof of the proposition 4.11. In order to simplify the notation, we
will focus on the global case. Let us call the “Lagrangian” of the problem

L(x, λ) = f(x) +

p∑
i=1

λigi(x).

We can consider the partial function H(x) = L(x, λ), The function H
is convex on U , and x is a critical point of H. So for each x ∈ U (feasible
or not), H(x) ≤ H(x).

We can conclude, if in addition we notice that for each feasible point
x, gi(x) ≤ 0 ⇒ λigi(x) ≤ 0 ⇒ L(x, λ) ≤ f(x) and that L(x, λ) = f(x) (in
view of the complementary relations). �

Corollary 4.1 Let us consider the optimization problem:
min f(x)
x ∈ U
fi(x) = 0, i ∈ I
gj(x) ≤ 0, j ∈ J

Let us assume that x be a feasible point and that U is an open set. If the
function f is (respectively locally at point x) convex, the functions fi are
affine, if for all j ∈ J(x) functions gj are convex on U (respectively locally

at point x), and if there exists (λ) ∈ RI and µ ∈ RJ(x)
+ such that{

∇f(x)−
∑

i∈I λi∇fi(x) +
∑

j∈J(x) µj∇gj(x) = 0

µjgj(x) = 0 for all j ∈ J.

then, the condition is sufficient, (respectively sufficient) x is a solution
(repectively local solution) of the minimization problem.

We can extend in the next exercise Corollary 4.1 by assuming that
the objective function is only quasi-concave but only if the point is not a
critical point (cf. Exercise 3.18).

Exercise 4.20 Let us consider (x, λ, µ) solution of Karush-Kuhn-Tucker
system (Definition 4.8) associated to the minimization problem

min f(x)
fi(x) = 0, ∀i ∈ I
gj(x) ≤ 0, ∀j ∈ J
x ∈ U

We assume in addition that the objective function is quasi-concave on
U and continuous on U , the functions fi are affine, and for all j ∈ J ,
the functions gj are convex on U , The goal of the exercise is to show by
contradiction that if ∇f(x) 6= 0, then x is a solution of the minimization
problem. With no loss of generality, we may assume that x = 0.

1. Let us assume that there exists some feasible point y such that f(y) <
f(0), prove the existence of some ε > 0 such that for all z ∈ B(y, ε),
f(z) < f(x).

2. Let us fix some z ∈ B(y, ε). Show that the function ϕ := ϕ0,z is
quasi-concave and consequently ϕ′(0) ≤ 0.

3. Deduce from ∇f(x) +
∑

i∈I λi∇fi(x) +
∑

j∈J(x) µj∇gj(x) = 0 that

ϕ′(0) ≥ 0.

4. Compute ϕ′(0) and deduce that ∇f(0) ⊥ B(y, ε). Conclude.

4.5 Polarity and orthogonality

4.5.1 Separation theorems

Theorem 4.4 Let A and B be two nonempty disjoint convex subsets of
Rn. If A is compact and B is closed, then there exists y ∈ E, y 6= 0 such
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that:
sup{y · a | a ∈ A} < inf{y · b | b ∈ B}

Theorem 4.5 Let A and B be two nonempty disjoint convex subsets of
Rn. Then there exists a hyperplane separating A and B.

y ∈ E, y 6= 0 such that

sup{y · a | a ∈ A} ≤ inf{y · b | b ∈ B}

4.5.2 definitions

Definition 4.10 Let A be a subset of Rn, the polar cone of A, denoted
by A◦ is defined by

A◦ = {y ∈ E | for all a ∈ A, y · a ≤ 0}

The orthogonal of A, denoted by A⊥ is defined by

A⊥ = {y ∈ E | for all a ∈ A, y · a = 0}

Proposition 4.12 Let A be a subset of Rn

1. A◦ is a closed convex cone (of vertex 0),

2. A⊥ is a linear subspace,

3. A⊥ = A◦ ∩ (−A)◦;

4. If A1 ⊂ A2, then A◦
2 ⊂ A◦

1 and A⊥
2 ⊂ A⊥

1 ;

5. If A 6= ∅, A◦ = (cl(K(A)))◦ and A⊥ = (vect(A))⊥ where vect(A) is
the linear subspace spanned by A.

Exercise 4.21 (*) Prove Proposition 4.12.

Exercise 4.22 Let A be a nonempty subset of Rn

1. A ⊂ A◦◦ := (A◦)◦

2. A◦ = A◦◦◦ := ((A◦)◦)◦

3. A◦◦ = A◦◦◦◦ := (((A◦)◦)◦)◦

Exercise 4.23 Let A be a nonempty subset of Rn

1. If A is a cone subspace, then y belongs to A◦ if and only if a → y · a
is bounded from above on A.

2. If A is a linear subspace, then A◦ = A⊥; y belongs to A⊥ if and only
if a → y · a is bounded from above on A. A vector y belongs to A⊥

if and only if a → y · a is bounded from below on A.

Theorem 4.6 (Bipolar Theorem) If A be a nonempty subset of Rn,
then, (A◦)◦ = cl(K(A)) and (A⊥)⊥ = vect(A), where vect(A) is the linear
subspace spanned by A.

Corollary 4.2 Let A be a nonempty subset of Rn. The set A is a closed
convex cone if and only if A = (A◦)◦. The set A is a linear subspace if
and only if A = (A⊥)⊥.

Corollary 4.3 Let M be a linear subspace of Rn, M = E if and only if
M⊥ = {0}.

Exercise 4.24 Let M be a convex set of Rn. M is a neighborhood of 0
if and only if M◦ = {0}.

4.5.3 Farkas’ lemma

Theorem 4.7 (Farkas’ lemma) Let (ai)i∈I be a finite family of ele-
ments in Rn. Let

A = {
∑
i∈I

λiai | λ ∈ RI
+}

and

B = {y ∈ E | y · ai ≤ 0, for all i ∈ I}

one has A◦ = B and B◦ = A.

The key argument is Exercise 4.26.
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Exercise 4.25 (**) Let (a1, . . . , ap) be a finite subset of E = Rn.

1) Show that co(a1, . . . , ap) is a compact set.

2) Extend this result if E is a normed vector space.

Exercise 4.26 (***) Let (a1, . . . , ap) be a finite subset of E = Rn.

The goal of this exercise is to show by induction on p that the set
K(a1, . . . , ap) which denotes {

∑p
i=1 λiai | λ ∈ Rp

+} is closed.

A) 1) show that if −ap+1 ∈ K(a1, . . . , ap) then

K(a1, . . . , ap+1) =

p+1⋃
i=1

K({aj | j 6= i}).

2) show that if M and N are two closed convex cones of E, such that
M ∩ (−N) = {0} then M + N is closed.

B) 1) Show that the result is true when p = 1.

2) Write the proof (one will have to distinguish wether −ap+1 belongs
or not to K(a1, . . . , ap)).

Corollary 4.4 (Second version of Farkas’ lemma) Let (ai)i∈I and
(bj)j∈J be finite families of elements in Rn. Let

A = {
∑
i∈I

λiai +
∑
j∈J

µjbj | λ ∈ RI
+, µ ∈ RJ}

et

B = {y ∈ E | y · ai ≤ 0, for all i ∈ I, y · bj = 0, for all j ∈ J}

one has A◦ = B and B◦ = A.

Corollary 4.5 Let (ai)i∈I be a finite family of elements in Rn. Let

A = {
∑
i∈I

λiai | λ ∈ RI}

and
B = {y ∈ E | y · ai = 0, pour tout i ∈ I}

One has, A⊥ = B and B⊥ = A.

Exercise 4.27 Let (ai)i=1,...,p be a finite family of elements in Rn. Let
b ∈ Rn satisfying the following property:

For all y ∈ Rn 
y · a1 ≤ 0
. . .
y · ap ≤ 0

⇒ y · b ≤ 0.

Prove (using the hint) that there exists λ ∈ RI
+ such that b =

∑
i∈I λiai.

Hint: Prove that 0 is a solution of the following optimization problem
and write the Karush-Kuhn-Tucker conditions.

max y · b y · a1 ≤ 0
. . .
y · ap ≤ 0

4.6 Tangent and normal cones

Let us now introduce two definitions.

Definition 4.11 Let C be a convex set containing c. The tangent cone
to the set C at point c denoted by TC(c) is

TC(c) = cl{t(c′ − c) | t ≥ 0, c′ ∈ C}

The normal cone to the set C at point c denoted by NC(c) is:

NC(c) = {y ∈ E | y · c ≥ y · c′ ∀c′ ∈ C}.

Exercise 4.28 (*) (i) Let C be a convex set containing c, and D denotes
is translation D := C + {−c}. Show that TC(c) = TD(0) and NC(c) =
ND(0).

(ii) Let c ∈ A ⊂ B, then TA(c) ⊂ TB(c) and NB(c) ⊂ NA(c).

Proposition 4.13 (i) For all c ∈ C, TC(c) and NC(c) are nonempty,
closed and convex cones.

(ii) TC(c) = (NC(c))◦ and NC(c) = (TC(c))◦.

It is very important to emphasize that these notions are local notions,
cf. next exercise.
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Exercise 4.29 (*) Let C1 and C2 be convex sets containing c, if there
exists ε > 0 such that C1 ∩ B(c, ε) = C2 ∩ B(c, ε) then NC1(c) = NC2(c)
and TC1(c) = TC2(c).

Exercise 4.30 (*) Let us consider min x2 +y2 under the constraint 2x+
y ≤ −4.

1) Is the Slater condition satisfied for this problem ?

2) Write the Karush-Kuhn-Tucker conditions of this problem.

3) Solve the Karush-Kuhn-Tucker system.

4) Discuss wether the conditions are necessary/sufficient in order to
solve the optimization problem.

Exercise 4.31 (**)

let us consider the following optimization problems:

(P)


max 3x1x2 − x3

2

s.c. x1 ≥ 0
x2 ≥ 0
x1 − 2x2 = 5
2x1 + 5x2 ≥ 20

(Q)


max 3x1x2 − x3

2

s.c. x1 > 0
x2 > 0
x1 − 2x2 = 5
20− 2x1 − 5x2 ≤ 0

1) Draw the set of feasible points for (P) and comment.

2) Prove that x is feasible for (P) if and only if x is feasible for (Q).
Deduce that the two problems are equivalent.

3) Prove that Sol(P) is nonempty.

4) Write the Karush-Kuhn-Tucker conditions.

5) Solve the Karush-Kun-Tucker conditions.

6) Solve the optimization problem (P)
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Chapter 5

Linear Programming

A linear programming problem consists in finding the maximum (resp.
minimum) value of a linear functional, subject to a finite number of linear
constraints. If c and ai, i = 1, . . . ,m are elements of Rn, and if b =
(b1, . . . , bm) belongs to Rm, the most general form of a linear programming
problem is the following:

Maximize (resp. minimize)

f(x) = c · x

subject to the conditions

ai · x

≤
=
≥

 bi, i = 1, . . . ,m

x ∈ Rn.

The linear functional f(x) is called the objective function. The linear
equations and inequations are called constraints of the problem. The
set of points that satisfy these linear equations or inequations is called
feasible set. An element of this set is a feasible solution; it is an optimal
solution if it solves the maximization (resp. minimization) problem. Let
(P ) and (P ′) be two optimization problems, we recall that (P ) and (P ′)
are equivalent if their sets of solutions are equal.

Note that in general, we can not use Weierstrass theorem neither a
coercivity property of the objective function.

5.1 The main results

5.1.1 existence

Note that in general, we can not use Weierstrass theorem neither a coer-
civity property of the objective function.

Proposition 5.1 Given a linear programming problem (P ) (maximiza-
tion), one of the three following alternatives holds:

- either there is no feasible point for Problem (P ), the value is equal
to −∞, Sol(P ) = ∅.

- either the objective function is not bounded from above on the
nonempty set of feasible points, the value is equal to +∞, Sol(P ) = ∅.

- either the objective function is not bounded from above on the
nonempty set of feasible points, the value is finite and the set of solutions
is nonempty.

5.1.2 Necessary and sufficient conditions of optimal-
ity

Let fk (resp. f ′k) k = 1, . . . , q, hk (resp. h′k) k = 1, . . . , r, g (resp.
g′) be linear functional on Rn, αk (resp. α′k) k = 1, . . . , q, βk (resp.
β′k) k = 1, . . . , r be real numbers. We now consider linear programming
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problems expressed in the following form:

(I)

Minimize g(x) subject to
fk(x) = αk, k = 1, . . . , q
hk(x) ≥ βk, k = 1, . . . , r
x ∈ Rn.

Proposition 5.2 For a feasible solution x to be an optimal solution of
Problem (I), it is both necessary and sufficient that there exist some KKT
multipliers µ1, . . . , µq ∈ R and ν1, . . . , νr ∈ R+.

Note that the Slater condition is satisfied if and only if there exists a
feasible point.

Corollary 5.1 For a feasible solution x to be an optimal solution of Prob-
lem (I), it is both necessary and sufficient that there exist µ1, . . . , µq ∈ R
and ν1, . . . , νr ∈ R+ such that g =

∑q
k=1 µkf

k +
∑r

k=1 νkh
k, with νk = 0 if

hk(x) > βk.

5.2 Saddle point properties

(P )
min f(x) subject to

fi(x) ≤ 0, i ∈ I
x ∈ Rn.

The Lagrangian of minimization Problem (P ) is the function L : Rn ×
RI

+ → R defined by for all (x, λ) = (x, (λi)i∈I),

L(x, λ) = f(x) +
∑
i∈I

λifi(x).

We say that (x, λ) is a saddle-point of L if for all ∀λ ∈ RI
+,∀x ∈ Rn,

L(x, λ) ≥ L(x, λ) ≥ L(x, λ).

Theorem 5.1 (i) If (x, λ) is a saddle-point of L, then x is a solution to
(P ) and (λ) are the Karush-Kuhn-Tucker coefficients associated with x.
Moreover, L(x, λ) = f(x).
(ii) If (x, λ) satisfies Karush-Kuhn-Tucker Conditions for Problem (P ),
then (x, λ) is a saddle-point of L.

In this case, the dual problem can be defined as

(D)
max G(λ) subject to

λ ∈ RI
+.

where

G(λ) = inf
x∈Rn

L(x, λ)

Note that G(λ) = L(x, λ) = f(x) = val(P )

5.3 The duality theorem of linear program-

ming

5.3.1 Canonical form of the duality theorem

Let A be a (m×n)-matrix, b ∈ Rm, c ∈ Rn. Let us consider the following
linear programming problem (P ), here referred to as the primal problem,

(P )

Minimize c · x subject to
Ax ≥ b
x ≥ 0
x ∈ Rn.

and define its dual problem (D)

(D)

Maximize b · p subject to
tpA ≤ tc
p ≥ 0
p ∈ Rm.
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Writing down the dual of the dual leads to the given primal problem.
For this reason, the linear programming problems (P ) and (D) are referred
to as primal problem and dual problem in canonical form. Each one of both
problems is said to be the dual of the other one.

Proposition 5.3 Given the pair of dual linear programming problems
(P ) and (D), one of the two following alternatives holds:

- either (P ) and (D) have a couple (x, p) of optimal solutions satisfy-
ing: p · b = c · x (obviously, the same relation p · b = c · x holds then for
every couple (x, p) of optimal solutions since the primal and the dual have
the same value);

- or neither (P ) nor (D) has an optimal solution and one of both
feasible sets is empty.

In what follows, the duality theorem is used to establish an important
result on linear inequalities which extends Exercise4.27.

5.3.2 Application to nonhomogeneous Farkas’
lemma

Exercise 5.1 (***) Let for every i = 0, 1, . . . ,m, ai ∈ Rn, αi ∈ R be
such that the system ai ·x ≤ αi, i = 1, . . . ,m is consistent. Then in order
that the following implication is true

ai · x ≤ αi, i = 1, . . . ,m ⇒ a0 · x ≤ α0 (5.1)

it is necessary and sufficient that there exist nonnegative real numbers
λi ≥ 0 such that

a0 =
m∑

i=1

λia
i and α0 ≥

m∑
i=1

λiαi.

Exercise 5.2 Let p1 > 0, p2 > 0 and the optimization problem

(P)


min −x1 − x2

s.c. x1 ≥ 0, x2 ≥ 0
p1x1 + p2x2 ≤ 1

1) Write the Karush-Kuhn-Tucker conditions of (P), solve the primal.

2) Write the dual and solve it.
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Chapter 6

Brief presentation of Scilab

6.1 The linear case

6.1.1 Economical motivation

Exemple 6.1 Let us consider a firm which is able to produce two kinds
of output (we do not face indivisibility problems). Each output needs to
spend some time on three workshops.

• Output A requires to spend 1 hour on the first workshop P1, 5 hours
on P2 and 1 hour on P3.

• Output B requires to spend 4 hour on the first workshop P1, 2 hours
on P2 and 2 hours on P3.

The actual renting contract for P1 allows us to use it during 10 hours per
day, 20 hours for P2 and 6 hours for P3. The unit profit for output A is
(respectively B) is 2 e (respectively 3 e).

Let us denote by x and y the quantities of output A and output B.
The profit maximization can be modelled as

max 2x + 3y
s.t. x ≥ 0

y ≥ 0
x + 4y ≤ 10
5x + 2y ≤ 20
x + 2y ≤ 6

(P1)

6.1.2 Graphic solving

In order to determine the set of feasible points, we will draw the line D1

whose equation is x + 4y = 10, D2 whose equation is 5x + 2y = 20 and
finally D3 whose equation is x + 2y = 6. We can draw the figure 6.1.

The graphical analysis (figure 6.2) allows us to determine the optimal
point of this problem. The optimum is unique (“classical case”), the
point is M3 defined by the intersection of D2 and D3. We determine its
coordinates by solving the following system:{

5x + 2y = 20
x + 2y = 6

We can solve and find the production (3,5, 1,25), which corresponds to a
profit of 10, 75e.

At this point, we can determine the multipliers λ ∈ R5
+ which are

solutions of

λ1(−x) = 0
λ2(−y) = 0
λ3(x + 4y − 10) = 0
λ4(5x + 2y − 20) = 0
λ5(x + 2y − 6) = 0(

2
3

)
= λ1

(
−1
0

)
+ λ2

(
0
−1

)
+ λ3

(
1
4

)
+ λ4

(
5
2

)
+ λ5

(
1
2

)
Since the constraints 1, 2 and 3 are not binding, the associated multipliers
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Figure 6.1: feasible set of Problem (P1).

are equal to zero.


λ1 = 0
λ2 = 0
λ3 = 0(

2
3

)
= λ4

(
5
2

)
+ λ5

(
1
2

)

One gets λ4 = 0.125 and λ5 = 1.375.
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Figure 6.2: Optimal point of Example 6.1

6.1.3 Scilab Solver

Let us use the scilab software (www.scilab.org). “Scilab is a scientific
software package for numerical computations providing a powerful open
computing environment for engineering and scientific applications. Scilab
is an open source software. Since 1994 it has been distributed freely along
with the source code via the Internet. It is currently used in educational
and industrial environments around the world.”

Let us transform our problem as 
min−2x1 − 3x2

s.t. x ≥ 0
Ax ≥ b

(P1)

where A is a matrix with three rows and 2 columns and b a column
vector

A =

 1 4
5 2
1 2

 b =

 10
20
6

 .

Let us write the following text file “exemple1.sci”
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// My first Scilab program

P=-[2;3];

b=[10;20;6];

A=[1,4;5,2;1,2]

Z sup=[]; //max value for x, empty here which means that

there is not such constraints

Z inf=[0;0]; //min value for x

[Zopt,lag,CA]=linpro(P,A,b,Z inf,Z sup)

Figure 6.3: Numerical solution

It is easy to understand the syntax of Scilab for defining matrices,
the coefficients are written by rows and separated by a semicolon. The
characters // explains that what follows has to be treated as comments.
At the end of a line, when there is a semicolon, the result will not be
printed on the screen. The syntax of the linpro instruction can be found

with the help (cf. figure 6.4).

Figure 6.4: help window for Instruction linpro.

In the software, we use the menu “File”, in order to select the file “ex-
emple1.sci”. The software does not only give us the point (x, y) solution
but also the value of the problem and a vector of multipliers (which are
not necessarily unique).
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6.1.4 Sensibility analysis

Let us consider now the modified problem (P2), when the work-
shop P1 is available during 11 hours. How will move the produc-
tion (solution of the problem) and the profit (value of the problem)

max 2x + 3y
s.t. x ≥ 0

y ≥ 0
x + 4y ≤ 11
5x + 2y+ ≤ 20
x + 2y ≤ 6

(P2)

This problem is very similar to the original one (P1) (same objective
function, almost same set of feasible points). On the figure 6.5, one can
understand that the domain has been transform by a translation of one
of the lines defining the original set of feasible points. On the picture 6.6,
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Figure 6.5: modification of the feasible corresponding to the translation
of Line D1

it is easy to remark that the change for the set of feasible points does
not imply a change on the coordinates of the optimal point which is still
M3 (3,5, 1,25). Consequently the profit is unchanged.

Remark 6.1 For large values of the available time of Workshop 1, this
constraint is not binding, while it is binding for small enough values.
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Figure 6.6: Graphical solving of Problem (P2)

6.1.5 Second modification of the constraints

Let us consider the same problem as (P1) except that now, the third
workshop will be available during 6 hours and a half. How will move the
production (solution of the problem) and the profit (value of the problem)

This problem can be written as:
max 2x + 3y
s.t. x ≥ 0

y ≥ 0
x + 4y ≤ 10
5x + 2y+ ≤ 20
x + 2y ≤ 6, 5

(P3)

On the picture 6.7, we present the new set of feasible points.

On the picture 6.8, we can check that the new optimal point is the
point defined by {

5x + 2y = 20
x + 2y = 6.5

The solution is (3,375, 1,3125), and corresponds to a profit of 11, 4375.
The additional profit is equal to 0, 6875 e. If the renting of this additional
half hour costs less than 0, 6875 e, renting this additional half hour is a
profitable operation. The “marginal” price of an additonal hour needs
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Figure 6.7: feasible set corresponding to (P3)
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Figure 6.8: graphical solving of (P3)

to be less than 2 ∗ 0.6875 = 1.375. Note that this corresponds to the
value of the multiplier associated with the third workshop (it is the case
here because the multiplier is unique and because the relaxation of the
constraint is not too large).

Each constraint has an implicit price, the shadow price, which is given
by the multiplier.

6.1.6 Alternative program

In order to propose several simulations without changing our scilab pro-
gram, we can consider a new program
// A second program

labels=["Workshop 1";"2";"3"];

[ok,u,v,w]=getvalue("define parameters",labels,...

list("vec",1,"vec",1,"vec",1),["10";"20";"6"]);

P=-[2;3];

A=[1,4;5,2;1,2];

Z sup=[]; //max value for x, empty here which means that

there is not such constraints

Z inf=[0;0]; //min value for x

b=[u;v;w]

// ------------------------

// Calcul de l’optimum

// ------------------------

[Zopt,lag,CA]=linpro(P,A,S,Z inf,Z sup)

The instruction “getvalue” allows to type in a window the values of
the parameters (See Figure 6.9). This allows us to solve both (P2) and

Figure 6.9: the parameters window
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(P3) (See Figure 6.10).

Figure 6.10: Solving (P3)

6.2 The non linear case

6.3 Unconstrained optimization

Let us consider the problem (P5) min x2 + y2. We can use the following
scilab program :

function [f,g,ind]=cost(x,ind)

f=x(1)2̂+x(2)2̂, g=[2*x(1);2*x(2)]

endfunction;

// g is the gradient of f

// here, ind is an unused parameter but which has to be

written

[f,xopt]=optim(cost,[1;2])

Let us start with initial point (1, 2).

Figure 6.11: Solving (P5)

6.3.1 Unconstrained Optimization

Let us consider
max 3x + 3y
sous contraintes x ∈ [2, 10]

y ∈ [−10, 10]
(P6)

The scilab program will give us a 3-dimensional plotting and the solu-
tion.
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// programme exemple3.sci

function [f,g,ind]=cost(x,ind)

f=x(1)^2+x(2)^2, g=[2*x(1);2*x(2)]

endfunction;

function [z]=C(x,y) , z=x^2+y^2, endfunction;

x=2:10;y=-10:10;

z=feval(x,y,C);

xbasc();

plot3d(x,y,z);

[f,xopt,gopt]=optim(cost,’b’,[2;-10],[10;10],[5;5])

// f n’est pas nul

// The gradient at the opt point is ‘‘normal’’

// to the boundary

Figure 6.12: Solving (P6)

We remark that at the optimal point, the gradient of the objective
function is not equal to zero, (it is (4, 0)).
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Figure 6.13: graph of objective function of (P6)
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