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KF((K, L)+ LF,(K,L)=hF(K,L) (1)

Suppose & =1 (i.e., we have constant returns to scale) and there is perfect competition.
Then factor prices are given by the corresponding marginal products, and equation (1)
says that when capital and labor are paid their equilibrium prices, total output is just
exhausted. If % > 1, however (i.c., when we have increasing returns), factors cannot be
paid their marginal product, because the required amount is larger than total output.

7 It can be shown that if F is homogeneous of degree 1, then its partial derivatives are
homogeneous of degree 0, that is, for any 2> 0, F(K, L) = Fy(AK, AL), and similarly
for F,. See Chapter 4.

8 A similar model with a Cobb-Douglas technology was proposed simultaneously by
Swan (1956), Hence, we sometimes speak of the Solow-Swan model.

9 The first equality in this expression follows by L'Hépital’s rule whenever f( ) is
unbounded. -

10 Notice that firms return undepreciated capital to the old workers after production takes
place. Because the old “eat everything,” the young have to start from scratch each
period.

11 Technical progress can be handled in the same way as population growth, Let g be the

rate of labor-augmenting technical progress, i.e., Ayy = (1 + g)A,, and define Z = K/AL.
Then we have

" Lys = SLAW(Z,), F(Z,1)+(1-8)]
= 1 1 =
AH—I 1 (1 + H)(l + g)ArL.' : ( + n’)(l + g)Z 1 (

where Aw(Z) is the salary per worker, Notice, however, that this equation will not, in
general, have a constant-Z solution. If preferences are homothetic, however, the savings
function is of the form s(y, R) = s(R)y, and the previous expression simplifies to

(1 nNL+ )2, = 5[ F(Z, )+ (1- 6) A Z,)
which does have a steady state,

12 It is shown in the proof that #(0) > 1 requires that w’(0) > 1, Galor and Ryder (1989)
have shown that this condition is stronger than the Inada condition f*(0) = o, Hence,
the Inada condition is not sufficient to guarantee the existence of a nontrivial steady
state,

13 Because Z is a function of A, which is not abservable, it may instead be better to work
with the growth rate of the capital stock per worker, Although data on this variable are
indeed available for some countries, their quality is in general rather poor, and the
available figures may not be fully cotnparable across countries. Hence, it may be better
to use a transformation of (1) that will allow us to work directly with (more reliable)
data on investment flows, rather than with capital stocks,

14 See Barro and Sala-i-Martin (1990, 1992) and Mankiw, Romer, and Weil (1992) for
empirical applications of this methodology,

15 Because 7 is in logs, this is approximately the deviation from the steady state in
percentage terms,

16 This can also be done inside the function. Thus we could replace the statement in /7]
by

Soll=NDSolve[{z'[t]==F[z[t], 0.25, 0.69, 0.03, 0.02,
0.01),z[0]==251/2}, =, {t, O, 100}1
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An Introduction to Dynamic Optimization

This chapter contains an introduction to dynamic optimizz?tion. In Section 1
we develop some basic elements of dynamic programming 'thzft are thep
used in Section 2 in an informal derivation of the maximum principle. Appli-
cations will be discussed in Chapter 13,

1. Dynamic Programming

Consider a system, economic or otherwise, whose evolution over time can
be at least partially controlled by the actions of a decision-maker., At each
point in time s, the state of the system can be described by a dated' vector
of real variables, x, e R", which we call the state vector. In each period the
decision-maker chooses a vector of controf or decision variables, u, € R™.
Together, the current state of the system and the choices of contr‘ols deter-
mine the value of the state vector for the following period according to the
(possibly time-dependent) law of motion

Xspt = My (xs; us) * (1)

Thus, different choices of the control variables will yield different time paths
of the system. It will be assumed that the decision-maker has_ prefereflc.:es
defined over such time paths that can be summarized by a time-additive
return or objective function

T-1

W, = Zfs(xss u,) (2)

se=d
For simplicity, we will take as given the planning horizon and the initial
and terminal values of the state vector. Thus, we consider the problem faced
by a planner who inherits at time ¢ a predetermined stat.:e vecftor X, cares
only about what happens between times f and 7 (< «0), and is ophged to leave
the state vector with value x; at the end of the planning period. The agent
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can also be constrained by further restrictions on the state and contro]
vectors, which we will write (%, u,) € C, for each s.

Given the initial state of the system, x,, and a sequence Uenr = {u,; s =1,
t+1,...,T- 1} of control variables, the evolution of the state vector is
determined by the law of motion (1). Thus, x, and u,r_y induce a sequence of
states xyr=[x; s=r+ L,..., 7). We will write Zyr = U, U Xuix} and say
that a such sequence is admissibje if both states and controls are feasible at
all times and the terminal valye of the state vector is €qual to the required
value, x;. The set of a]] sequences z,; admissible from g given initial state
vector x, will be denoted by ®(x,), or by ®(x,, x;) when we also want to make
explicit the terminal constraint op the state. When we want to indicate
explicitly the initial and termina] conditions on this sequence, we will write
(Mg, X, x7), and we will denote the portion of z,r between points g and b
in time by z(ur., x, x,)|2.

In this notation the decision-maker’s objective function can be written

Wla,t,T-1)= 3 £ (x, 1) @)

Notice that W( ) is given by the sum of the instantaneous or period return
functions {f,}, where each [ is a function only of time and the current state

and control vectors and does not depend on either past or future values of
X Or u,

(@) The Principle of Optimality and Bellman’s Equation

‘The problem the agent faces is that of choosing the time path of the control
variables so as to maximize the objective function W, subject to the law
of motion (1) and appropriate feasibility constraints, taking as given the
planning horizon (g, T) and the initial and terminal values of the state vector.
We will denote by V() the value function for the planner’s problem (i.e., the
maximum attainable value of the objective function). Clearly, V() will be a
function of the parameters of the maximization problem (the initial and

they exist. Formally, the problem can be written

Vix,t,x,, T) = max{W[z(u ., x,, x.), 1, T-1]
uy- |
-1
= Zfs(xs, Us) St X =ms(xs,u,), t, T, x,,
andxr given, (x,,u,)e C, c R™™ for each s} (DP)

If Tis finite (which may not be the case), (DP) can be calued ke b o

¥
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lying the Lagrange or Kuhn-Tucker theorf:ms).. Th(? structgre iti’)lf atltslz
e f, permits some important simplifications and w | abo
iy mme?veitil%nﬁnite-h()rizt)n problems (to which the standar .t. e
o do 1 d?a wl ). The features that make things easier are the adchtm?f
opar d'o' IlOtf‘rj‘trl)ql;) 3é)l.)'e-::tive function and the simple structqre of the law ;)
Sepﬁfablllty 0 eth t] for each s, f; (the period return function) and m; (t Z
oo of 11 tl'le fa(éit eand only on; and on the current values of the state an :
o lm(;trli(;%)leseliut not on their past or futurc vglues, and that the tota
(;:?ut;r(l) i: simply t,he sum of the. pel."iodl‘retll.:)r:l fi’;it;ofi (s, 27) be o
Th‘is _PI"OPETW kilzfetg? iiﬂ?::;lltslgaillgpirfiiéed. statesl! between end points )2
gﬁglimﬁdﬁuj and b be positive integers, with t<a<b<T-1.Then w
Ty

can write the return function in the form
b1 ’ T-1 b,T—l
Wit t,T~1)= Wzl ,a~1)+ W(zal, 2, b—1)+W(zel, ™, )
[ SR A

the
i ith a state—-control sequence over tI
i total payoff associated wi _ o e
Thatl > lt:llrfniﬁg hcl))rizon is simply the sum of the payoffs assc;cmtf_:gdv:lUSing
forent portions of the sequence over the correspond1_ng su pieri hic.h ine
ii?ezzicll)itivity property, it is casy to establish the following resuit, w g
18 \

an important property of the optimal solution of (DP).

“ v = u*
InCi, 3 hty‘ Let z:‘:sz(“;fT—ls X, Xf) { s »
1.1. The principle of optima ‘ ! o
Tf e;)fen:he optimal solution of (DP) between given end pfi;mi S(;;dt)x%nbe(t ;;Pe
;SH Given arbitrary points a and b, with t<a<bs ;I‘——I, e };}: nd x4 be the
i;responding terms of the optimal state sequence (X%}. Then the op
c

L}

tion to

b=I
vixi a,xhb)= max{W(za,,,_,, a,b-1)= sZ}f&(x,‘, u,)

g, b -1
. o
st X, = M.(X, Us ), 8, b, x¥, and x§ given,

(x,,u,)eC, € R™™ for each s} (DP.ab)

is given by z¥rl5.
i i lan
hly speaking, the theorem says that each poru‘on of the opt:ir;a:lpt ar
. Rotlil[gna]yon its own right. More precisely, any portlon of agl :,2 N
i (zgry is an optimal trajectory for an appropriate subpro
jec

i to be equal
i i strain the end-point values of the state vector g o
in which we con Tt n f tha ~rtimal ctate cannience for the who
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Proof. We proceed b icti
y contradiction. Let ®(x* x¥) be th i
+ . ’ e
trajectories z,,,_, between end points (x oy i notenme

N " . .
: : % a) and (x%, b). This set is not em t

?s 1tth contams at least the relevant portion of the optimal sequegcsg
or the whole problem, z¥r_1)?, which exists by assumption. Now suppose

s b1 1 .

th?t z‘.’“ a 18 not optimal for the subperiod from a to b. Then there exists

';V easnblbc_:1 sequence .between these end points, Zap-i, Such that Wz p) >
(Z¥212™). By the tme-additivity of the objective function "

% -1 T-]
* T-1
W(z,,.rt )+W(z;,.,“1)+W(z,.TL )>W(zf.,’ )
1Ijelrllce, we have found a sequence zfr it Uzl , U zfrgli ™ that yields a
gher return than zf;.,. Moreover, because this sequence is feasible by

Problem 1.2, A violation of the

. principle of optimali ;
who lives three periods and max ’ ptimality. Consider an agent

imizes a utility function of the form
V)= U+ (ZUg'f‘ﬁUg

3 ] n t f C
1 ( ) I

Ul(cl,cz,c3)=1n(clczc_q,), Uz(Cz,C3)=lﬂ(C2C3), and Us{c;)=Inc,

and the budget constraint is of the form
An=A-c (A given, and A, = 0
where A is wealth.

. It\;otlce t'hat the {‘{?turn function is additive, but not separable over periods
¢ period-1 utility, for example, depends on (expected) constmption at’

times 2 and 3. Hence, the assumpti
' nce, ptions of Theorem 1.1 do not h
we will see, the principle of optimality fails, old and, as

(i) Compute the optimal consumption
c'={(cl, c}, cl).

(i) Next, consider what happens as the agent be

1, he consumes cl, receives utility U,

then faces the problem of maximizing

plan from the perspective of time 1,

gins to implement this plan. At time
anq has leftover wealth A, = A;—c}. He
utility over the remainder of his life,

max V2 = OcUg + ﬂUg

tsubjfzct to o+ ¢y = A, Compute the new optimal plan, ¢* =
it with the last portion of ¢!. Has :
WhV? DOCS the Rallmao s oreetd e ¢ 31

2
(¢}, c3), and compare
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The principle of optimality has an important implication, sometimes
called time consistency: Suppose we compute the optimal path from the
beginning of the planning period and start moving along it. After a while,
we stop and recalculate the optimal solution from the current time and state,
The principle of optimality tells us that the solution of this new problem will
be the remainder of the original optimal plan. Hence, the decision-maker
will not be tempted to “change his mind.”

This property allows us to approach the problem sequentially, leaving for
tomorrow decisions about future controls, thus breaking up the original
dynamic problem into a sequence of static subproblems. To make this
precise, consider one particutar decomposition of the problem, that into (i)
today’s choice of controls and (ji} all the rest of the plan. By the additivity
of the objective function, we can write

V{x:, 6 20, T) =max Wz(wy, X, xr)t, T—1]
U, -1

=, H‘la:?i lﬁ(un xt)+ Wiz(wes, o, X, xr), t+1,T~1]}
i, Wi+, T~

where the maximization is subject to the usual constraints and, in particular,
Xt = m{X, u,). The structure of the problem allows us to approach the choice
of the current (1) and future (uuyy_1) controls sequentially. Notice that states
and controls dated £+ 1 or higher do not affect the current return, given
by f(u, x,), and that the current state and control vectors (x, u,) affect
future returns only through their effects on tomorrow’s state, x,.,. Thus, we
can solve the problem in two steps: Given any choice of the current control,
tomorrow we will face the problem of choosing Uy S0 as to maximize
W(z(Wes01, Xens X0, £+ 1, T-1], taking as given the state x,, resulting from
today’s decision ~ a problem identical with today’s except for the initial state
and time. Having solved this problem, today’s decision reduces to choosing
u,, taking into account both its direct contribution to the current return
and its indirect contribution to future payoffs through its effect on
tomorrow’s state. The principle of optimality assures us that this stepwise or
sequential maximization process will yield the same result as simultaneous
determination of the whole control path, Thus, we can write

Vix, 0, %, T)= max{f (4, %)+ Wiz 51, %, ¥2), £ +1, T = 1]}
Hg U4, T~ 1
= max{ﬁ (uuxr) + max {W[z(ul+1,T—1: Kia xT)’ t+1, r —1]}
1y w41, T-1L

s.t.x,, =m, (xn u!)}

Finallv obcerve that the pavoff resulting from the inside maximization is
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nﬂ{lax{ﬁ (u, ! x[)+ ax {W[z(u""l'T“I’ Kot xT)’ (+1,7T - 1}} 8.6 ox,,, = m, (JC;, u;)

U4, T-1

= H}‘ax{ﬁ (u[: Xr)+ V(-x.'ﬂ, [+ 1; X T) s.t. Xeyp = ", (x“ u!)}

and we arrive at Bellman’s equation,
V(i t; %7, T) = max{f, (u, )+ V(to, £+ 1; xy, T)st.xe =m,(x,u,)} (BE)

This expression formally characterizes the optimal choice of the current
control vector as the solution of a static optimization problem in which the

the optimal value of the current control, u% as a function 8{x) of time
and the current state, Tomorrow’s state is then given by x4 =mfgdx,), x],
and a solution to a similar problem (with x,, now given) then yields
tomorrow’s optimal control, (Notice that time enters both the value and
policy functions as a Scparate argument, reflecting the fact that periods may
differ in factors other than the state vector.,)

The recursive relation given by (BE) is useful in that it allows us to con-
ceptually transform a dynamic choice problem into a sequence of static
problems we already know how to handle, at least in principle. But notice
that the maximization in Bellman’s equation is not really a standard problem

problem does not really solve it, nor put it in a form we can solve directly.
The Bellman equation, however, does provide the basis for an alternative
approach to the problem that wil] indeed lead to an operational solution
method. In the sections that follow we will consider two cases: finite-horizon
problems, and infinite-horizon problems with some additional restrictions.

(i) Solution of Finite-Horizon Problems through Backward Induction

Dynamic programming problems over a finite planning horizon do not
present any conceptual difficulties. The value and policy functions cap be
obtained by starting from the end and working backward, The optimal
control sequence can then be computed by applying the sequence of policy
functions, g, . . ., 8§r1, to the initial state vector.

One period before the end of the planning period the problem reduces to
choosing the last control, taking as given the terminal value of the cfafe

nml‘f“;ﬂn PR e T

T -wwﬁu-!m* i
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. ro1s U1 ) = X7 given}
V(xp, T— 1) = Tflx{fﬁl (uT—l ’ x'm) s.tomy (X, Ur 1)

ion inside the max
\ i known value function insi :

i at this stage there is no un . ression,
Notice th.a]:ence v (xfl T -1) is well defined by th.e f.oreg?mfg 1expS traight—
opel‘?t?f; fully ;peciﬁed problem its computation is, n pflf;‘ifi; Sint. bt
an(iva?d On the other hand, the value of x 7118 not k1110}vn 2ti0n Vlz. T,— 1),
fﬁl’ doe:s not matter, for we are interested in the whole fun ’

is .
. tate vector.
ts value for a specific s al than
rathe'r thancédurﬂ will also work for a class of problems more g]:e’:nnecrlo11 e
o .
thTstlswp; have considered thus far. In particular, tWe ;:él lae t athe agent
0 . : or
. terminal state vec
n of a predetermined tnal , . by a scrap
assumptlf) taking irll)to account its contribution to his payoff, glv;zxifnization
ChOOSle " value function S(x;)." In this case, the last-stage
or salvage

becomes t )
. = 1 X7, M-
Vi(xra, T+ 1)= Igﬁf({fr—l (rs, Xrq)+ S(xr) 8.l X7 -1

lue function, the
] iod: u%., = gy(xr). As for the va 0
inning of the period: u., = gra . ot & the
th? beg;ntll?e gargument is not known at this stage, but what we w

value o

fmgj[ion i%ﬂ T-1), we can go back one step and compute the value
wen T-1s ]

function for the previous period,

T-1
V(xr-z, T- 2) = fgf_i;({ff‘_z {vr 2, x'r_z) + V(xT—l > )

St Xy =Mr_2 (xT—z, uTwz)}

: i i *_ = . xT_g). Pro-
obtaining also the corresponding policy function, urp=gr 2

g ) y p 1

- = ,u
V(x,,t) = max{f; (u, )+ V (%, 1 +1 X7, T) 8.t Xyt = (20, )}
£ 1]

» &¢ k4

¥ y {g * ’
q

= m,(x,, ),
induced sequence of states, X, .
given by u¥= g(x,), and the ind q

(ii) Discounting and Stationarity

: i t be used when
: i lution algorithm canno _
clear that the foregoing solutic - m which to
i[lthhOll:Ldn?: o harizon is infinite. for there is no terminal date fro
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problems can be dealt with and in many cases are easier to solve than finite-
horizon problems. In this section we introduce some notation and impose
some additional structure on the dynamic programming problem before

briefly discussing a particular class of infinite-horizon problems that will be
analyzed in greater detail later.

Discounting, In many situations, payoffs accruing at different points in
time are valued differently by the decision-maker, Typically, those that are
realized further into the future are valued less than those that accrue
immediately. Although our earlier specification of a time-dependent period
return function f(x,, 4;) implicitly allows for this possibility, it will be
convenient to bring it out explicitly by introducing a sequence of period-

specific weights. In particular, we will assume that the period return function

at time s is of the form fi(xg v} = oGF(x,, u,), where the discount factor O, 1s
a nonnegative real number, and consider an agent who faces a problem of
the form

T-1
V(x0,0)=max2a,ﬂ(x,.,us)
ugT-1 £
subject to the usual constraints. We will interpret F,( ) as the payoff
that accrues at time s, valued from the perspective of time g itself, and £,( )
= 0,£( ) as the same payoff “discounted back” to the beginning of the plan-
ning period at time zero, Thus, multiplication of the current payoff Fy( )
by & brings it back to time-zero units, and division of the discounted payoff
fi( ') by the same factor brings it forward to time-g units. Because first-
period returns need no discounting, we set O equal to 1,

As time passes and the agent gets to period ¢, he faces the subproblem of
maximizing the remainder of the objective function,

7-1
V(va t) = {nn'fufz (ZSE;(XS, ux-)
b1 ey

Notice that the value function j
able payoff evaluated from the
return is multiplied by the corr
over the subperiod startin
“current” valuations (as
tion by

n this expression gives the maximum attain-
perspective of time zero, because each period
esponding discount factor. When maximizing
g at ¢, however, it is often more convenient to make
of time £). Thus, we define the current value func-

-1
V(x,1) = mangiﬁ(xs, i)
i

; U1

V”(x,,t):

i
As usual, suceessive subnrobleme are Lol 4 1 on o
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V(x, 1) = max{a,F (%, 4, )+ V (X, 1 +1)}

y S Of

Ve(x,, 1) = max{F,{x,, u)+ BV (Xu1, t +1)}

i i or, 3, = o/, discounts values from ¢+
oy thf:1 ?nle—iflertl)()d(x,disl:roiﬁgz tfﬁzin bf::k to zero, dividing by o, takes them
e tlp"f"h gin:]eerrretation of this expression is almost exac?ly the same
et tfot?c;, utfdiscounted version of the Bellman equation: Gw.en“ifomor-
o ﬂ’lat atox V(x4 £ + 1) gives the maximum attainable payoff in t:)mog-
TOW,S Sta'{?t’ xr::r’lits " %‘c; bring it back to “today’s units,” wc.m}lltlply V() 3;
o The 4 " 1 .olicy is then to choose u, so as to maximize the sumlo
ﬁr).d?yl?s ;EEE? reium and the discounted value of tomorrow’s current value

function.

i st it can
Infinite Horizon, Stationary Problem. In many problems of 1tlult'erethe one-
bM assurned that the period return function, the la“N of mo 1011;l it
Pzriod discount factor, and the feasible set C to which states an

must belong are all time-invariant, that is,
F,=F m,=m, C,=C, B.=p (Vs)

This assumption allows some further simphﬁf:atlonstigfl 1;1(1;; elzézll?:irgl
Notice that with a constant 8, we ‘have Oy = ﬁo%.Thls ::cfl:; o I;mSt ther it
the assumption that o= 1, implies that_the dls‘coun ror must &
form ¢, = . Thus, the subproblem starting at time ¢ can

71
Ve (x,, £) = max ¥ b F(x,,u,)
up, -1 =p

nt value
) . ‘o ot arate argument of the curre
nite-horizon case, ¢ is still a sep: o other
En t;?OfIiI as subproblems that start at different dates dlffer from eacrlémain-
u[; only’in the initial value of the state vector but als‘o in thf: tlm;:S e
?no until the end of the planning period. If the planning hor‘lgoﬁtical ThuS:
hogwever this is no longer the case, and all subproblerir:m aieel qunctio.n s o
AP . i roblems, the current valu

or infinite-horizon stationary p ion becomes
iunction of the initial state alone, V*(x,), and the Bellman equati

Ve(x,)=max{F(x, )+ BV (%)}

j ime-i iant. This is an
It follows that the policy function, u}= g(x,), is also tm:je 1n;fa1;31; this 5 an
important simplification, because we now have to find only
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As noted earlier, the backward-induction algorithm cannot be used
to solve infinite-horizon problems. The following observation, however,
provides the basis for a way to deal with such problems, as we will see later,
Given a function v( } from R" to R, we can define an operator T mapping
the space of such functions into itself:

Tv(x) = rn{:dx{F(x, u)+ Pv(y) sty =m(x,u), (x,u)eC}

The Bellman equation can then be written V° = TV, Hence, a function V
solves Bellman’s equation if and only if it is a fixed point of the operator T.
Under certain assumptions, the contraction mapping theorem can be used
to establish the existence and uniqueness of a solution to Bellman’s
equation and to determine some properties of interest of such a function.

(iti) Uncertainty
Dynamic programming is particularly usetul when dealing with problems
that involve uncertainty in a dynamic setting. Provided we ignore some tech-
nical problems, the previous discussion can be casily extended to deal with
stochastic problems.
Imagine that instead of a deterministic law of motion we have a stochastic
law: x, and u, no longer determine the value of X1, but only its probability

distribution, described by a distribution function of the form G(xui; X, 1),
where

G(ysxett) = pr(xa <y| x,u)

Agents now maximize expected utility, At time ¢, they choose u,, not knowing
for certain the value of next period’s state. Whatever x,,, turns out to be,
they will optimize from tomorrow on, obtaining a value of V*(x,y, t+1).
From today’s perspective, then, u, must be chosen so as to maximize the
sum of the current return and the discounted value of the expectation of
V(Xu, ¢+ 1), computed using G( ). Hence, the Bellman equation becomes

VC()C;, f) = maX{E(un xr)"*’ﬁ: IVL'(JC;H, t+ 1) dG(le; X, u')}

(b) Some Results for Stationary Discounted Problems

In this section we will analyze in greater detail a class of infinite-horizon
problems. Given a predetermined state vector X, a decision-maker faces the
problem of maximizing the objective function

©o
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! i oo = {ua" XSH} € (I)(x!)’
i e (0,1), over the set of feasible sequerlxces Z,
wgzrf X .(= m)(xs, u,). We will assume that the series W, converges (althoutglh
gossibl;:co plus or minus infinity) for all feasible sequences z,.. and that the
feasibility constraints are of the form

u, € T(x,)

i ints i i in R™ The
where T is a correspondence mapping p01'nts in R® into sets in R
problem faced by the agent can then be written

V”(x,):max{zﬁs“'F(x_;, 1)

St X = (X, 1), 8 €T(X, ) X, given} {DP.oo)

. : . ¢
and the current value functionV*(x,) gives the maximum latta;r%ablie V\?Vhflfo?n
the objective function whenever the problem pas a solutlt?n. e io rom
our previous discussion that if the value function does exist, then it satis

the Bellman equation:

Ve(a) = max{ Pl )+ BV () sty =m0} (BE)

The converse of this statement, howe'fver, is not necessali?ljizl tru;u'll“lgz
Bellman equation may have several solutions, and only one of t ;:1:10 an e
the value function for the programming problem. ﬂence, u;e nee o
lish conditions under which we can be sure that a given solution o

the value function we seek.

Theorem 1.3. Let the function v:R® —> R solve the Bellman equation (BE)
and satisfy the boundedness condition

limP"v(x.)=0 (0)

n—302

for any sequence {X,] feasible from the initial state X, Suppose, moreover, that
#*
there exists a sequence Z%.= X\ {u¥, X3 }, where u? solves

v(x.)= max {F(x,,u.)+Bv[mGo, v.)] (BE.5)

] t value function for the
for each s and X%, = m(x¥, ut). Then v is the curren fu
programming problem, and z¥.. solves (DP.oo) .

Proof To show that v( ) is the value function for the programming problem,
we need to show that for any given initial state x,,
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f’I‘haF blls, v(x,) is an upper bound for the value of the problem over the set of
casible sequences, and there is a feasible sequence that attains this value

Iﬁtz"""zxulus;x_y ‘s> b . ‘
by (BE.s), ! +1;§ 2 ¢} be an arbitrary sequence feasible from x,. Then,

v(x,) = max {F(x,,u, Y+ Pv(x, ) 2 Flo,, 1)+ fv(x,.)

wrel{x)

b4 F(x,, U, ) + ﬁ[F(x:Hs L2798 ) + )Bv(x:+2 )]

i

>,..2 ; B (s, )+ B () (3)

Taking the limit of this express
essi oo :
condition (0), pression as n — oo, and using the boundedness

v(x,) 2 W,(zt,,,)ﬂ-llii_{nﬁ"ﬂv(x,m) = Wi(z,.)

{f)(;rt ;1;13;) fzislible ;:quence z... Hence, v(x,) is an upper bound for the value
em. Moreover, the sequence z¥..=x, U {u* x* i
(BE.s) attains this value. Notice that by def,initi(;n 5 of solutons to
o _
v(xx) = max F(x’j‘, us)+,6’v[m(xf, us)}} = F(x’j.‘, ui")+ﬁv(x* )

usel() ol

Hence, all the weak i ities i iti
Her nequalities in (3) hold as equalities, and we conclude

which proves the theorem., 0

qugg;er:lhls says tlhat if we can find a bounded solution to the Bellman
» the original problem reduces to a se i i
¢ . quence of static maximiza-
Cg;s. "(I)'here is, howe.ver, no assurance that such a solution will exist in all
e sl.lasur nex.t taskbls to identify conditions under which the Bellman equa
a unque bounded solution. The discussi i i ,
: niqu . . 1on relies heavily on th
reader’s familiarity with the con ' and the
cepts of a complete metric s
. : ) pace and the
contraction mapping theorem (for a review of this material, see Secti 7
Chapter 2), , ool

We define the operator ; . .
functions by p T mapping real-valued functions into real-valued

Tv(x) = max{F(x, u)+ Bv[m(x, u))}

uel(x)

Then the Bellman equation can be written in the form

- v N L,
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Thus, we sec that finding a solution to the Bellman equation is equivalent
to finding a fixed point of the operator T. If we can show that under ap-
propriate assumptions, T is a contraction mapping a complete metric space
into itself, we can invoke the contraction mapping theorem to establish the
existence and uniqueness of an appropriate solution to (BE).

We recall from Chapter 2 (see Theorem 7.12) that the space C(X) of
bounded, continuous real-valued functions defined on a set X in R" is a
complete metric space under the sup norm, defined by

If1, =sup{lf (x)p x € X}

Next we will check that under certain continuity and boundedness restric-
tions on the objective function, the law of motion, and the constraint cor-
respondence, the operator 7' maps C(X) into itself (i.e., T maps continuous
bounded functions into continuous bounded functions) and that T is a con-
traction. By the contraction mapping theorem, it follows that (BE’) has a
unique bounded solution in C(X) that, by Theorem 1.3, is the value func-

tion we are seeking,
In what follows, we will make the following assumption.

Assumption 1.4. Continuity. The period return function F is bounded and
continuous, the law of motion m is continuous, the constraint correspondence
[ is continuous,? and the set I'{x) is nonempty and compact for each x.

Under these conditions we can establish the following result.

Theorem 1.5. Suppose that Assumption 1.4 holds. Then T is an operator
mapping continuous bounded functions into continuous bounded functions.
Moreover T : C(X) —> C(X) is a contraction and the[efore has a unique
fixed point V in C(X). This V is the value function for the corresponding

dynamic programming problem.
Moreover, under Assumption 1.4, the solution function for the maximiza-

tion in (BE) is the policy correspondence g( ) for the programming problem,
giving the set of optimal values of the control u as a function of the state, and

g( ) is nonempty and uhc.

Proof
o Let v e C(X). Under our assumptions, the maximization problem that defines the

operator T,

Tv(x) = max {F(x,u)+ Blmlx, u}l}

is, for each x, that of maximizing a continuous function on a compact set, Hence,

e Fo U T o T
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both v and F are bounded, Tv is also bounded; and because F and v are conting-
ous and the constraint correspondence is continuous and compact-valued, the
s theorem of the maximum (Theorem 2.1 in Chapter 7) guarantees the continuity
: of Tv. Hence, T'maps C(X) into itself, Moreover, by the theorem of the maximum,
the solution mapping for this maximization (Le., the policy function g(x)), is a nop-
empty and uhc correspondence.
o ; ¢ To establish that 7'is a contraction, we make use of Blackwell’s sufficient con-
D ditions (see Theorem 7.19 in Chapter 2). We have to show that 7 satisfies

(1) monotonicity: V f, g e C(X LX) <gx)V X = Tf(x) < Tg(x), and
(i) discounting:5 e (0, 1) s.th. V fe CX),xe X,a20: T[f{x) + a] < Tf(x) + fa.

First, suppose that w(y) < v(y} for all y in X. Then for each (x, u), wlm(x, u)] <
v[m(x, u)], and therefore

1) = max{ Fx, )+ Bom(e, )]} > max (F(x, )+ (e, wl} = Tw()

Thus, T is monotone. Next, note that for any positive constant a, we have
Tlv(x)+a]= max {F(x, u)+ Blvmix, u)] + a}}
= max{F(x,u)+ f[m(x, u)]} + Pa=Tv(x)+ fa

wel(x)

Hence, T' discounts. Because it satisfies both of Blackwell’s conditions, 7 is a
contraction,

* Because T is a contraction on a complete metric space, it follows directly from

the contraction mapping theorem (Theorem 7.15 in Chapter 2) that it has a unique
fixed point V.,

* By Theorem 1.3, the bounded continuous function V is the value function for

the corresponding dynamic programming problem. Moreover, the solution

mapping for the maximum problem in the Bellman equation is the optimal policy
correspendence. a

It also follows from the contraction mapping theorem that if, starting with

an arbitrary continuous and bounded function V., we define a sequence {V,}
of functions by

I/nki = Wn

this sequence converges to the value function V. This fact can sometimes be
used to find the value function,
Knowing when the Bellman equation has a unique bounded solution (i.e.,
. when the value function is well defined) is an important first step, but one
" ‘ that is of little practical heip. To go further we need to establish conditions
mn under which V will have certain desirable properties.
BRATEY In the remainder of this section we will use the foregoing results relating
Y the value function with the bounded solution of the Bellman equation to

J P P T o
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concave, and the policy correspondence is a C(.)ntinuouls functlolll.tFor tglls;
we will rely on the following result: Recall that if (.X ,dyisa compI :te Eztric |
space and Y is a closed subset of X, then (Y,d) is also. } Come; metric :.
space (Theorem 7.9 in Chapter 2). Now suppose .that T: —-;) X is a con- |
traction in X and, moreover, that 7' maps Y into itself. Then 7'1s

. * e | '
traction in ¥, and it follows that the unique fixed point of 7 on X must be i

in Y. A slight twist on this result yields the following theorem.

Theorem 1.6. Let (X, d) be a complete metric space, and let T : X—>Xbe

a contraction with fixed point v € X. Further, let Y be a closetfi :mbls'efY of X, ‘ o
and assume that T maps points in Y into some subset 7. of Y (i.e, T:Y —> b

7). Then the unique fixed point v of T in X will be in Z. :

Problem 1.7. Prove Theorem 1.6. e

We will show that the set ND(X) of nondecreasing bounded an; Y
continuous functions is a closed subset of C(X) Ef.l‘ld t.hat the: olpe.ratoras_
in the Bellman equation maps nondecreasing functions into strlt?t y 1ac$ust
ing functions. [t follows by Theorem 1.6 tha}t the value func:I(:)rlliSh et
be strictly increasing. A similar argument will allow us to esta

concavity.

Lemma 1.8. Consider the normed vector space [C(X), ||'lls ],. where C(X) is ‘.':,t EET'
the set of bounded continuous functions {: R" 2X —> R, with the sup norm | I

It = sup IE(x)|; x € X}. Let ND(X) be the set of nondecreasing bounded and
co;tinuous functions on X. Then ND(X) is a closed subset of C(X).

Recall that a function f: X —> R is said to be nondécreasing if

VX(),JQEX, x1>xU:>f(xl)af(xU)

and strictly increasing if

ng,x1 eX, x> =>f(x1)>f(x0)

Proof. Let {f,} be a sequence of nondecreasing continuous.fun;ti(on}?‘ ctc:rg
at (in €t intwise) to a function f (which 1
rgent (in the sup norm and hence poin .
gZugnded( and continuous, by the completeness of C(X)). To.estabhsh .that
ND(X) is a closed subset of C(X), it suffices to show that f Icsl nonc?sm e;f,—
i i ints in X such that xy > x,, and consider the
ing. Let x; and x, be arbitrary pom K
sequence of real numbers {f.(x1) - f,,(xo)}.. Because [f,,}. - f, {f.{x1) f,,gx:)g
converees to fix.) — f(x). and because f, is nondecreasing, Fulxy) = fulxo) 2
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is nonnegative. This establishes that the limit function f{ ) is also
nondecreasing,. O

Assumption 1.9. Monotonicity, Assume that F( } is strictly increasing in x,

m( ) is increasing in x, and the constraint correspondence I'( ) is increasing
in the sense that

% 230 = T(x;) 2 T(x,)

Lemma 1.10. Let T:C(X) —> C( X) be the operator defined by

Tv(x)= L{?,f(‘if{F(X’ u)+Bvimfx, u)j}

and assume that Assumption 1.9 (monotonicity) holds. Then T maps nonde-
creasing functions into strictly increasing functions.

Problem 1.11. Prove Lemma 1.10.

Combining these two lemmas with Theorem 1.6, the following result is
immediate.

Theorem 1.12. Suppose that Assumptions 1.4 and 1.9 (continuity and
monotonicity) hold. Then the value function V is strictly increasing in the
state X,

To summarize, we know that under the continuity assumption the Bellman
equation has a unique continuous and bounded solution V that is the value
function for the corresponding programming problem. This function can be
characterized as a fixed point of an appropriately defined operator 7': C(X)
—> C(X). We have shown that the set of nondecreasing bounded and con-
tinuous functions ND(X) is a closed subset of C(X) and that under Assump-
tion 1.9, T maps nondecreasing functions into strictly increasing functions.
It follows that the value function must be strictly increasing. Intuitively,
our assumptions ensure that an “increase” in the state is strictly desirable
because it strictly increases the current return and does not reduce future
opportunities.

We will now develop a very similar argument to show that under certain

conditions, V is strictly concave, Recall that a function [f1s said to be (weakly)
concave if

Vaxo,xi€X, Ae[0,1], (1-A)F(x0)+ Af () < FI(1 = Do + A, 1
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¥ %01 € X, A€(0,1), (1= A)F(x0)+ AF () < FI(L— A)xo + Ax:

Lemma 1.13. Consider the normed vector space [C(X), |'lls], where Il is the
sup norm, and assume X is a convex set. The set of (weakly} concave
t4

functions in C(X) is a closed subset of C(X).

Problem 1.14. Prove Lemma 1.13.

Assumption 1.15. Concavity. Assume that F is strictly concave, m is concave,
for each x the constraint set I'(x) is convex, and the constraint cor-

respondence T is convex in the sense that

VXU,Xj e X, ;‘.E[O, 1], Uy EF(X(]), i eI‘(xl)
=>(1—/1)u0 +/1u1 Er[(l—l)xo“l‘ﬂx]]

Lemma 1.16. Let T : C(X) —> C(X) be the operator defined by
Tv(x)= mra(x){F(x, w)+fvfm(x, u)f}

and assume that the concavity and monotonicity assumptz:ons hold, Then T
maps weakly concave functions into strictly concave functions.

Problem 1.17. Prove Lemma 1.16.

Using Lemmas 1.13 and 1.16 and Theorem 1.6, it follows that uqder th.e
continuity, monotonicity, and concavity assumptions, the value function Vis

strictly concave,

Theorem 1.18. Suppose the continuity, monotonicity, and concm-zzty assump-
tions hold. Then the value function V is strictly concave and .smctly increas-
ing, and the policy correspondence g( ) is a continuous function,

Proof The first part of the theorem is immediate. Nlloreover-, we know l:ly
the maximum theorem and Theorem 1.5 that the optimal po%lcy corlt'faspous
dence is uhc. Because any single-valued uhc corresponclencg is 5111 co?hmu;u_
function (see Section 11 of Chapter 2), we need only 'esta}nllsh .t at bets o
tion u* to the maximization in the Bellman equation is unique, bu .
follows immediately by the strict concavity of J-F, the concavity of mlg-), ?il;l;e
the concavity and monotonicity of V, all of wh;ch ensure th‘at‘ the objec




566 An Introduction to Dynamic Optimization

Differlentiability of the Value Function. The maximization in the Bellm

equation is a static optimization problem that looks like an ordinaE;n
Lagrange or Kuhn-Tucker problem. Hence, one is tempted to write thy
Lagrangean function and differentiate it with respect to u to obtain a set i
ﬁrst-c?rclelj 'conditions and then proceed in the usual way (by app! i:
the implicit-function theorem or differentiating implicitly thepf)ifrstg
ordF:r condiltions) to establish the comparative-statics properties of th-
?ptm?al pgllcy function. This approach, however, presupposes that all thz
nl:)r;c‘if:;?inds. involved are twice differentiable, an assumption that generally is

The basic problem arises because the value function for the problem

V( ), appears also inside the maximization operator. Whereas we are fre ,
t_o Ir.la}ke whatever assumptions we want about () and F( ), the differ ;
tiability of V() must be established rather than directly assun;ed It canebn-
shown that V() will be (once or twice) differentiable for a ce'rtain clase
of prfjblems, but not in general’ As a result, the standard approach tS
studying the comparative-statics properties of maximization systems i 0'
generally available for the case of dynamic programming prob}Iems P!

2. Optimal Control

We now switch from discrete time to continuous time and develop the basic
elements of optimal control theory. A central result of this section is a set
of. necessary conditions for an optimum in a certain class of dynamic opti

le-atIOI’l problems, the so-called maximum principle of Pontryagin. We Efli
derive the maximum principle from a dynamic programming fornllulatiol

Roughl‘y, we start with a discrete-time problem, apply the dynamic rn.
gramming techniques discussed earlier, and consider what happens i pt}?_
limit as the length of the period goes to zero, pem e

The continuous-time analo
: gue of the problem studied i i
section can be writien " the preceding

V(x0,0)= max [ (w0, (Ol = [ ale) PLult), x(0), ] de

u(t)0sisT
+ o T)S[x(T)] s.t. x(0) = x, given,
and x(r) = mfu(s), x(1), t]} (P0)

r\;lilere, as before, x is the state vectdr, and u the vector of control variables
r e salvage or scrap function S( ) is used to allow for the possibility that
e may place some value on the state at the end of the planning horizon T

(which may or may not be finit i
/ e). We will assume that the disc
correspondinge to neriod 7 ic of the farm ount factor
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oft) = em(-L p(s) dS)

which reduces to the more familiar ¢ whenever the discount rate p is con-
stant over time.’ The notation x{¢) indicates that the state is a function of
time. For convenience, we will often replace this functional notation by the
subscript notation x, to indicate dependence on time, or omit the s when
they are not particularly needed. We will often treat x and u as if they
were single variables, but the reader should keep in mind that they are
vectors,

The problem is similar to the one analyzed in Section 1 except that the
planner now must choose a control trajectory (i.e., a function of time, u(7),
defined for ¢ e [0, T, that describes the values of the instruments at each
point in time), rather than a control sequence {u}i. Given a control
path u’(t)|Ls, the corresponding trajectory of the state vector, (Do, 1
determined by the law of motion, %= m(u, x, t), and the initial condition
x(0) = xo. Evaluating W,, we obtain the value of the given trajectories,
Wo(12(6)| Lo, x°(1)|Lo). Our goal is to characterize the time paths of u and x
that will yield the largest possible value for the objective function. This wiil
be achieved by transforming the dynamic maximization problem (P.0) into
a combination of two more familiar problems: a static maximization at each
point in time, and a system of ordinary differential equations.

(@) The Maximum Principlé

We begin with an intuitive discussion of the logic of the maximum princi-
ple. At each point in time ¢ the planner finds herself with some predeter-
mined value of the state x, and must choose a con‘trol vector u, that will
determine both the immediate payoff F( ) and the rate of change of the
state variables x,.° Current decisions, therefore, have two effects on total
value: an immediate one through F( ), and an indirect one through the
induced change in x. Clearly, a control chosen to maximize just the current
return is unlikely to be optimal. We need some way (o take into account the
effects of current decisions on future opportunities. Intuitively, the maximum
principle achieves this by attaching a price to the stocks of state variables.
The idea is to introduce a modified objective function that will add to the
immediate return the value of the change in the state vector due to current
decisions. To this end, we introduce a new set of variables g,, one for each
component of the state vector. These variables, known as multipliers
or costate variables, can be interpreted as the prices associated with the

state variables. The modified objective function, known as the current-value
Tt o thhan Aeafinaed ag
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Some Applications of Dynamic Optimization

In this chapter we will review some applications of dynamic optimization to
economics. In Section 1 we develop two models of search to illustrate the
use of dynamic programming in a stochastic setting. Section 2 analyzes the
decision problem faced by a social planner who maximizes the utility of an
infinitely-lived representative agent in a one-good neoclassical economy. In
Section 3 we study the optimal investment policy of a competitive firm when
the installation of capital is costly. Finally, in Section 4 we develop the
Cass-Koopmans model of a dynamic competitive eéconomy and use it to

analyze the welfare cost of factor taxes, Section 5 concludes with a series of
problems,

1. Search Models

Search theory provides a simple and yet interesting application of dynamic
programming to economics. In the basic search model, wage offers drawn
from a given distribution arrive at fixed or random intervals, and an agent
simply decides whether to accept one of them and become employed or
reject them and continue searching for a better opportunity. We have, then,
a very simple problem in stochastic dynamic programming: The control is
simply a take-it-or-leave-it decision, and the distribution of the state vari-

ables (the offers) is time-invariant and does not depend on either the state
or the control.

The first part of this section introduces the basic ¢
of job search. In addition to its interest as an appli
gramming, this model provides a useful counterp
model of a competitive labor market. In the latter
assumed to take place instantaneously and at no co
that the market clears continuously. Hence,
ment. In the search model, on the other han
to remain temporarily unemployed in orde

microeconomic” model
cation of dynamic pro-
oint to the neoclassical
model, transactions are
st, and wages are set so
there is no room for unemploy-
d, it may be optimal for an agent
t to wait for a better opportunity
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than those available today. Hence, the search model provides a us.efuLfrallmei
work for analyzing how rational agents will respond to changgs in kt e ev(f;,!E
i benefits, the abundance and riskiness
r duration of unemployment -
Zmployment offers, and many other questions that can hardly be addressed
ithin the neoclassical model. ' _
! The search model, however, does not necessarily require a departure from
the spirit of the neoclassical model. Notice, in pz.xrtlc'ulellr, th:.at the unemd-l
ployment that naturally arises in any search mode.l is frlftl}(:nal in nat;ug; a}gb
i he explicit modeling of the proces
essentially voluntary. Hence, t . s of Job
i i than a model with a natural ra
search may well yield nothing more ! _ _ !
unemployr)r(lent. On the other hand, it is relatively easy to mc.orporate add.lt
tional features into a search model that add a strong Keynesian flavor t0_1 .
If we are willing to assume that an increase in the level of al,ggl:tig_;;a:lt?l actlv(;
i w
i i i ial trading partners to locate each other, .
ity makes it easier for potentia ; - e
hgve a participation externality that generates 1nefﬁaen]c;{. apdtthe I:I?is;;:lbitlo
i i ilibyri ing the door for public interve
ity of multiple equilibria, thus opening . :
in};prove thillegs. A “macro” model with these features will be developed in
the second part of the section.

(a) The Basic Model of Job Search

Consider an infinitely-lived, risk-neutral worker who maximizes (the expec-
tation of) the discounted value of lifetime income,

{500}

where income at time ¢, y,, is equal to the wage rate (x)«f(ni emglcged nvrlg)lrokyzrg
- i fit (b) for the unemployed. Une
and to a government-provided bene ‘ Vo o
i t offer each period. All jobs are p
workers also receive one employmen et
h period. Wages, however, may
manent and pay the same wage eac : t
' i i dom variable that we assume (0
oss jobs. Hence, x is a (nonnegative) ran ' \ o
gzrdraifn from a time-invariant distribution described by a cumulative dis
i i ' = <w).
ibution function (cdf) F( ), where F(w) = pr(x - .
m?‘;'?)l;ker who has just received an offer has two options: Qne is tq acccﬁ)t
the job and work forever at the specified wage x;' the ogher lf to rfeﬁect f;;rset
i ive. We will denote the value of the
offer and wait for a better one to arrive.
option (accepting and being employed at wage x) b}; Wa%), ba;ld v;ha(t: ;;fatr}ll;
jecti ini nemploye . ,
nd (rejecting the offer and remaining unem ) _
iffc(ox) tlge i)resent value of lifetime earnings on a job paying salary x, is an
increasing function of x given by
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We(x)

) W

e

x* X

Figure 13.1. Value function and reservation wage for the search problem.

On the other hand, W, is not a function of x: The expected present value of
lifetime earnings for an unemployed worker is independent of the wage
offer he has just rejected.

A rational worker will choose the action that will yield the larger value.
Thus, the expected value of lifetime income for an agent who has just
received an offer x is given by the value function

v(x) = max[W, (x.), W,] o)

and he accepts the offer if and only if Wo(x) 2 W, (i.e., if the value of being
employed at the offered wage exceeds the value of being unemployed). As
illustrated in Figure 13.1, the optimal decision strategy takes the form of a
reservation-wage rule. Because W(x) is increasing in the salary, and W, is
independent of it, a job will be accepted if and only if it pays a wage that is
higher than some critical value x*, This critical or reservation wage is defined
as the value of x that makes the agent indifferent between taking the job
and remaining unemployed, that is, x* solves W.(x*) =W,

It remains, of course, to determine the reservation wage x* or, equiva-
lently, the value of being unemployed, W,. As a first step, consider the situ-
ation of a worker who is currently unemployed (i.e., who has just rejected
an offer): His income today is the unemployment benefit b; tomorrow he
will receive a new offer, x, and will accept it or reject it depending on whether
or not its value exceeds W, Hence, his current value one period hence (from
tomorrow’s perspective) will be given by v(x) = max[W,(x), W,]. As of today,
however, the realization of x is NOt KNOWR. <0 we ean el ol « ot or
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we have to discount it by one period. Formally, then, the value of being
unemployed is defined recursively by

W, = b+ BE{max{W, (x), W]} 3)

We can now characterize the reservation salary. By definition, x*‘ is ?he
value of x that makes the agent indifferent between accepting and rejecting
the offer. Hence, x* satisfies

and therefore
x* = (1 - B)Wr (4)
Substituting (3) into (4),
x*=W,~-BW, = b+ﬁE{max[Wﬂ (x), Wr]} - BW,

Bringing the (constant) last term into the expectation and the max opera-

tor, we obtain x* = b+ BE{max[W, (x) - W,, 0]} ©

an equation that can be solved for x*. This expression can be simplified as
follows. We begin by writing out the expectation,

x* = b+ B[ max[ W, (x)- W, 0] dF (x) (6)
and observing that the resulting integral can be broken up into two parts:
[ max{W, - W,,0]dF = | max[W, - W,,0]dF+ [l max[W. — W, 01dF
0

Notice that over the first interval of integration we have x < x*,implying that

W,(x) < W,; thus, max[W,(x) - W,, 0] =0 for x € (0, x*], and the first integral

vanishes. For x € (x*, «), on the other hand, we have W,(x) > W,, implying
max[W,(x) — W,, 0] = W,(x) — W.. Hence, (6) reduces to

x* = b+ B [Wa(x) - W,]1dF(x)
Finally, recalling that W, =x*/(1 — f) and W,(x) = x/(1 - B), we arrive at the
fundamental reservation-wage equation,

Wbt i-f—ﬁj;(x-xk) dF(x) (R)

which implicitly defines the reservation wage x* as a functi?n of th-e para-
meters of the model and the distribution of wage offers. This equation can

1 na L DY . B P VOO, & §
- 2 T T
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Continuous-Time and Stochastic-Offer Arrivals

One of the crucial determinants of how selective a worker can afford to be
in regard to wage offers is the availability of job opportunities. The model
in the preceding section, which assumes that the worker receives an offer
every period, ignores this aspect of the problem. We will now relax this
restrictive assumption and extend the model to incorporate a measure of
the “scarcity” of work opportunities through a parameter that reflects the
rate of arrival of job offers. We will also illustrate how to go from discrete
time to continuous time - a formulation that, although less intuitive when it
comes to the derivation of the valuation equations, turns out to be more con-
venient in many cases.

We will make two changes with respect to the earlier model. The first will
be to parameterize the length of the period. We will assume that all periods
have the same duration # and reinterpret the wage and the unemployment
benefit as rates per unit of time. Thus, an unemployed worker’s income
during a period is now b#, and an employed worker earns xh. We will also
assume that the one-period discount factor is a function B(R) of the length
of the period. To go from discrete time to continuous time, we will take limits
as the length of the period goes to zero.

Second, we will now model the arrival of wage offers as a stochastic
process. We will assume that an unemployed worker has probability A% of
receiving an offer during the current period. In the limit, as & goes to zero,
offer arrivals follow a Poisson process with parameter A, which can be inter-
preted as the instantaneous probability of receiving an offer,

'The solution procedure is similar to that used earlier. The value of accept-
ing a job that pays salary x per unit of time is given by

W, (x) = g}ﬁ(h)re'fh = 1 —-x;(h) (1)

and the value of rejecting it, W,, is still independent of x. The reservation
wage x* is the salary that makes the agent indifferent between accepting and
rejecting employment and therefore satisfies

W, (x*)=W,
:>x*=l;f-(~h—)w. (2)

To characterize W,, consider the prospects of an unemployed worker,
which are now slightly more complicated by the fact that he no longer
knows when the next offer will arrive. During the current period, his only

v st~ v o~ Y 21 . q
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In the second case, his value next period will again be W.. In the ﬁlst case,
his payoff next period will be given by v(x) = max{W,(x), W], but ecattls(f?l
the realization of x is not known today, we have to compute the exgaec e

return. Finally, all values accruing tomorrow must be chscounted. y one
period. Hence, the expected value of being currently unemployed Is given

by
W, = bh+ B(h{ALE max{W,(x), W, ]+ (1~ 2h)}W,} (3)
The next step is to manipulate this expression so that we canlsubstitute it
into the right-hand side of (2). Subtracting f(h)W, from both sides of (3),
[1—B(h)IW, = bh+ B(h)E{Ah max[W,(x), W,]|-AnW.}
= bh+ B(h)ARE{E max{W,(x}- W,,0]}
and dividing by A,
LBy, — o R (max{, () - W, 0T @)
h [3
Substituting (4) into (3) and simplifying, we could qbtain a.reservatlon-
wage equation very similar to the one in the preceding section. Instead,

let us go to continuous time. For this, Jet the discount faf:tor be of the
form B(k)=e™. Then we have (using L'Hopital’s rule in the second

expression})

. . 1-p(h) 5
limf(k)=1 and lim=—07"—=p (5)
Taking limits as & —» 0, (1) yields W,(x) =x/p, (2) becomes
x* = pW, ¢ (2
and (4) implies? |
pW, = b+ AE{max{W,(x)- W,,0]} 4"

Substituting (4) into (2') and proceeding as in the preceding section, we
obtain the reservation-wage equation:

x* = pW, = b+ A[ max{W,(x) - W,, 01 dF(x)

Now, if x < x*, the agent rejects the offer, that is, W(x) < W,, and thereforz:l
max[W,(x) — W,, 0] = 0. On the other hand, if x> x*, then W,(x)> W, a1}11
therefore max[W.(x) — W,, 0] = W,(x) - W,. Hence, we can break up L e
domain of integration into two parts, (0, x*) and (x*, «), and observing that
the inteoral avar the firet interval vanishes. we have
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Fina!ly, substituting W, =x*/(p) and W,(x) =x/(p) in this expression, we
obtain the fundamental reservation-wage equation:

A
x*¥=b+—] (x~x*)dF(x
S L= ar) (R)
This equation has an intuitive interpretation. Rearrange it to get
A o
x*-b =;L*(x-x*)dF(x)

tl‘hen the left-hand side measures the immediate opportunity cost of reject-
ing an offer, and the right-hand side gives the present value of the expected

gain from continued search. The reservation wage, by definition, equates the
two quantities,

It is straightforward to do comparative statics using this expression. Write
H(x*;b,A, p)=x* —h— %_‘:(x —x*)dF(x)=0
and compute the partial derivatives of /| ()’
H, =1—%( L0 aP @)~ (ot -y ()
=1+%EdF(x)=1+%[l —F(x*)] >0

Hy,=-1<0

H, =—%E(x-x*)dF(x)<0

H, =£’;Lj(x—x*)d}?(x)>0

By the implicit-function theorem,

dx* H, dx* H dx*
=Tt 50, Xt ar_
&b H, A m.o % ad =g <O

That is, an increase in the unemployment benefit leads to an increase in
the reservation salary, as workers can now afford to wait longer for a better
offel.‘ (an increase in b reduces the opportunity cost of rejecting any offer).
An increase in A means that jobs become less scarce, and it has a similar
effect (the expected cost of rejecting an offer is now lower because the
expected delay until a new one arrives is shorter). Finally, an increase in p
means that future benefits are discounted at a higher rate (agents are less
patient); because the expected benefits of continued search will accrue in
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(b) A Search-Based Macro Model

Standard neoclassical models implicitly rely on the Walrasian auctioneer to
perform two crucial tasks. One is setting prices so that markets will clear
continuously. The second can be called trade coordination: The auctioneer
is assumed to provide clearing services that will make it unnecessary for the
parties to a transaction to physically locate each other, thus simplifying
the task of matching desired quantities. In short, these models assume that
the allocation of resources is a costless and frictionless process, One impli-
cation of this assumption, if we take it literally, is that there is no room for
involuntary unemployment. Extensions of the neoclassical model can gen-
erate fluctuations in employment levels as agents adjust their labor supply
in response to price or productivity shocks, but the labor market must clear
continuously, like any other market.

Search models do away with the trade-coordination function of the auc-
tioneer and explicitly model the fact that many transactions must take place
between individuals who must first find each other. Trade thus becomes a
costly and time-consuming process. Applied to labor markets, this kind of
model leads to the emergence of frictional unemployment, for agents will
be inactive during some of the time that they wait for an acceptable job.

Moreover, this view of the process of resource allocation naturally sug-
gests an important externality associated with the exchange technology: It
seems likely that the greater the number of people who want to trade at any
given time, the easier it will be for each of them to locate a suitable partner.
Loosely speaking, because an increase in the level of economic activity
makes it easier for the parties to an exchange to find each other, individual
decisions have external effects over the opportunities available to other
agents, One result of this phenomenon is that the equilibrium will not be
Pareto-optimal, as agents will fail to take into account the external effects
of their actions. Another implication is the possibility of multiple equilibria,
as either pessimistic or optimistic expectations tend to become self-fulfilling,
Thus, there is a role for government policy, both in correcting for external-
ities and in helping the economy select a good equilibrium. Policy may be
useful as a device for improving coordination between agents in a way the
market cannot achieve because of the presence of external effects.

The search model has served as a framework for some contributions to a
literature which shows that macro models with “Keynesian” properties can
be built from solid micro foundations. The remainder of this section devel-
ops one such model, due to Diamond (1982) and Diamond and Fudenberg
(19809Y in which an acent must first search for production opportunities and
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optimally low level of economic activity may arise as a result of the difficulty
of coordinating exchange in an economy with many agents.

Diamond’s Search Model

Imagine a tropical island inhabited by infinitely-lived natives who walk
around the beaches looking for coconut trees {production opportunities),
Having found a tree, an agent must decide whether or not to climb it. If he
does, he comes down with a coconut, but he is not finished yet; An ancient
taboo forbids the consumption of one’s own coconuts, Hence, the agent must
find another native with whom to trade coconuts (one for one) before
cating.* Having done this, he continues to search for additional production
opportunities.

All trees have exactly one piece of fruit, but they may differ in height (pro-
duction cost). Consumption of a coconut yields utility y. Production costs
(the disutility of climbing) are proportional to the height of the tree, which
is a nonnegative random variable, ¢, bounded below by ¢ and drawn from a
known distribution with cdf G( ). That is, G(x) = pr(c < x), and G(c)=0.
Agents maximize the expected value of discounted lifetime utility,

V= EZiOe‘”‘fU,,, where U, =y, —c

Notice that although time is continuous, production and consumption take
place at discrete intervals, At a given time ¢, the agent may be engaged in
production (climbing a tree), in which case his instantaneous utility is —c, in
eating (with utility y), or in doing neither, in which case his instantaneous
utility is zero.

An agent who is not engaged in production or consumption may be in
either of two states. We will say that he is unemployed if he is looking for a
production opportunity and that he is employed if he is carrying a coconut
and is looking for someone with whom to trade, The arrivals of production
opportunities and trading partners follow Poisson processes, with para-
meters that are taken as given by each individual agent. We will denote by
a the instantaneous probability of finding a tree, and by b{e) the instanta-
neous probability of finding a trading partner.

A crucial assumption of the model is that & is an increasing function of
the aggregate employment rate e. That is, the larger the number of people
who are walking around with coconuts in their hands, the easier it will be
for them to bump into each other. We will assume that

b(0)=0, b'(e)>0, and b"(e)<0

i
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£ activity will be suboptimally low. As we willl see, t'he externality 1s Eligsi:
the ro yf the possibility of multiple equilibria, for it makes both optu '
o oo imi m potentially self-fulfilling, For example, if r.nost agents be!le\;e
- pescsll'mlswilll)be easy, they will have an incentive to chr'nb.even relatively
g;z:lt:feelsr.l ng they all do, then finding a tr.ading partner will indeed be casy,
thus validating ex post their initial optimism.

Production Decisions. The only decision that an agent .has to t?kehm'tl:
ol i hether or not to climb a tree he has just run mtg As in thejo |
i Wd 1. the decision rule takes the form of a reservatlop level: Agents
Se'amh mot zli of those production opportunities whose cost 15 smaller than

o aCCFTF al level ¢* (i.e., natives will climb ail sufficiently low trees).. -
50{}1@ ;;;;therize the reservation cost, we will proceecll as l')eflore, bign(lir::;g_

i 1(1) discrete-time version of the model and then taking limits as the -
“'Jlt af tlh eriod, h, goes to zero. In what follows, then, the relevant trar.md
Eg?l %robibpilities’w’ill be ah and bh foihon_e period, and the one-perio

i i i hy=e".
dlslgourétt:a;;owzg)bfhgl‘;ir;:;fé lzfetime utility of an employed ;vgrl;:r
wheﬁnthe emploeyment rate is equal to e, anq by W.(e) thel vaégewcz) N :r a%

d given e,’ and consider the situation of an employ ycer o
‘{nemfk\)gfth gprobability b(e)h he will find a trading partner dur;)ng the
Strxrrlfen.t period, consume his coconu(t ;akrlning.uult)l:g(n);)él :I:;g z};?;u ;Zoand
. With probability 1 — b(e)h he wi e U

i?ﬁ?frfefiider\r?;loyid. Thus, his expected payoff is given by

We(e) = bhLy-+ BURWi(ew)}+ (1 BRI (1)

i i t
here we have taken into account the fact that from this period l1:t0 t?:le n;ce
val?ich starts at ¢+h) the employment rate may dchanget,S aS ESH agcting
d unemployed agents.
ted values of both employed am ‘ . Sut 5
z)((E;;V (e)) from both sides of the foregoing expression and dividing bo

sides by h, we obtain

- eun)— Wele )]
_ BUDW.(e,) = bhy+ B AW, (eus)+ (1~ BRYW. ()
[1 ﬁ( )] ( ) = bh'y—" ﬁ(h)[bh'[vvu (eth )] - We(€,+;, )] + [“’fu (eH-'l) - Wc(el)]

LA We(e)
2 LBy e =ty B MW ) = Wi+ )
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expectations may not be sufficient to fully close the model: Even if agents
know the structure of the model and can compute the equilibrium paths
there is uncertainty concerning the actual path of the economy, for agent;
cannot know for sure which equilibrium will be selected.

2. Optimal Growth in Discrete Time

(?ons1der an economy populated by a constant number of identical infinitely-
lived a_gents. There is a single good that can be consumed directly or used
as capital in production. The preferences of a representative individual are
described by a utility function of the form

3.pU() )

\yhere Be '(0, 1) is the rate of time discount, a measure of the agent’s “impa-
t1epce, s copsumptlon at time ¢, and the period utility function U( ) is a
st.rlct}y increasing and strictly concave C* function. All agents are endowed
with one unit of labor time each period.

Production of the single good requires both labor (L) and capital (K).

The production technology is described by a strictly concave production
function,

Y =F(K, L)

where we int;arpret Y as gross output (i.e., new production plus undepreci-
ated capital).’ We assume that F( ) is C* and is strictly increasing and exhibits
constant returns to scale (i.e., is homogeneous of degree 1). Thus, if both

inputs are changed by the same factor A, output changes also by a factor of
A, and we have

F(AK,AL)= AF(K,L) )

This property of the production function allows a convenient normalization.
In (2),let A =1/L, and note that

F(K/L, L/Ly=(/L)F(K,L)= F(K,L)= LF(K/L,1)

If we write k for the pet-capita capital stock (K/L) and define the per-capita
production function by

f(k)= F(k,1) 3)

we can write total output as
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y=fk) )

Imagine that this economy is regulated by a benevolent, all-powerful
social planner who makes production, consumption, and investment deci-
sions so as to maximize the lifetime utility of the representative individual.
The planner chooses a sequence [y Kint)imo OF consumption levels and capital
stocks so as to maximize the utility function (1), taking as given the
production technology, and subject to a resource-availability constraint.
Working in per-capita terms, the initial capital stock ko is given, and at each

point in time, consumption and investment must satisfy the constraint
flk)=c+ ki (3)

That is, cutrent output per capita, including undepreciated capital, f(k,), can
be either consumed today or used for tomorrow’s production.

At any given point in time f, the initial capital stock k, describes com-
pletely the state of the system and determines the economy’s consumption
possibilities for the current period and all future time. Given k,, the planner’s
immediate concern is to choose current consumption. Alternatively, because
k.. + ¢, must add up to current output, we can think of the planner as choos-
ing an investment level k,.;. Hence, the planner’s problem can be written

V( ko) = max {iﬁ’U[f( kr)— kr+1] s.t. 0< ki S,f(kr )’ ko given} (P)

{kee 1Yrmg N 1=0
The constraint says that next period’s capital stock cannot be negative and
cannot exceed current gross output. To rule out corner solutions, we will
assume that both the production function and the period utility function
satisfy the following conditions:

F0)=0, FO)=w f(=)=0, U(0)=e and U(=)=0 ()

Following our discussion in Chapter 12, the (current) value function for
the plannet’s problem satisfies the Bellman equation,

V(k)= IilalX{U[f(k‘)_ ko BV (k) st 0 ko flk} (BE.P)

Under our assumptions regarding prefercnces and technology, all but one
of the conditions that would guarantee the existence and uniqueness of a
bounded, continuous, strictly increasing and strictly concave solution to
(BE.P) are satisfied. In particular, recall that Theorem 1.5 in Chapter 12
required the period return. function to be bounded. In the current context,
however. the period utility function U( ) and the production function

- [P
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Imagine, for a moment, that consumption is zero in all periods. Then the
evolution of the capital stock is described by the difference equation

kHl = f( kz) (7)

It is easy to show (see the discussion of the Solow model in Chapter 11) that
under our assumptions, the phase diagram for this equation is as shown in
Figure 13.6, with a unique and globally stable steady state, ky. Hence, even
if all output is invested each period, there is a maximum sustainable per-
capita capital stock. We can therefore restrict ourselves to values of & in the
interval [0, k). Because U[f(k)] is certainly bounded in this set, we can apply
Theorems 1.5 and 1.18 in Chapter 12 to obtain the following result,

Proposition 2.1, The Bellman equation (BE.P) has a unique continuous and
bounded solution V. This function is the value function for the planner’s
problem (P) and is strictly increasing and strictly concave. Moreover, the
policy correspondence g( ) giving next period’s optimal capital stock as a func-
tion of today’s state k, is a well-defined and continuous function.

Given this result, we can establish some important properties of the policy
function by studying the maximization inside the Bellman equation. We
begin by using Theorem 2.15 in Chapter 6 to show that V() is ditferentiable.
This will allow us to use the first-order condition for the maximization in
(BE.P) to characterize the optimal investment decision.
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Proof. Fix some k! in (0, ky), and let k), be a solution of the problem
V(k))= Hk]ﬂX{U [F(k?) = ke ]+ BV (k1) s.b. 0S ko S F(K?)}  (BE.P)
Next, define the function
W(k,)=U[f(k )~ ki ]+ BV (i)

for k, within some e-ball with center at k%, B(k?). Under assumption (6), k%,
will be an interior solution of this problem, that is, 0 < kY., < f(k). By the con-
tinuity of f, £ can be chosen small enough that f{k,) > k}\, for all k, e B.(k?),
that is, so that k2 is still feasible for all k, € B(k?). On the other hand, k7,
is not necessarily optimal for an arbitrary &, in B.(k?). Hence,

W(k) = UL (k) ~ ki + BV (k) S maxfUL £ (k) = a1+ BV (ot )} = V ()
for all k, € B(k?), and
W(k?)=V(k])
because k%, is optimal for kf. Moreover, W( ) is a differentiable function of

k,, because U( ) and f( ) are differentiable, and V(k},;) is just a constant.
Hence, by Theorem 2.15 in Chapter 6, V() is differentiable at k7, and

V(K =W (kd) = U (k?)~ ka1f'(k?) -

Because V() is differentiable, an interior solution of the maximization
inside the Bellman equation is characterized by the first-order condition

U’[f(kr) - kr+1] = ﬁv’(km) . (8
which implicitly defines the policy function
krtl =5 (kr)

Without additional restrictions there will be no guarantee that V will be
twice differentiable. Hence, we cannot differentiate {8) again to establish the
comparative-statics properties of the function g( ). As we will see, hov‘:vever,
equation (8) and the concavity of the value function provide sufﬁ.clent infor-
mation to establish some important properties of the policy function and the
optimal sequence of capital stocks.

In some cases it will be useful to rewrite (8) in an alternative way. By
Proposition 2.2, applied at time ¢ + 1, we have that

V’(krﬂ) = U’[f(ktﬂ) - kH-Z]f’(kHl) = U’(CH-] )f'(km) (9)
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U'le,)= ﬁU’(CHl)fl(km) (10

'To interpret this equation, consider reducing period-t consumption by one
unit in order to invest it and increase consumption at ¢ + 1. On the one hand,
there is a utility loss of U"(c,) in period ¢, On the other, an additional unit of
investment will allow consumption to be higher by f'(k..;) units next period,
yielding a utility gain of U'(c,.\)f’ (k). Because this utility gain comes one
period later, however, we must discount it by 3. The Euler equation says that
along an optimal path, today’s loss and tomorrow’s gain must be equal, for
otherwise a feasible rearrangement of the consumption/investment plan
would increase its total value, implying that the original plan could not have
been optimal. Hence, along an optimal trajectory, the planner must be indif-
ferent, at the margin, between using an additional unit of output for current
consumption or for investment,

There are now two different ways to proceed. One is to work directly with
the first-order condition (8): the other is to analyze the two-equation system
formed by the Euler equation (10) and the constraint (5), reinterpreted as
the law of motion for the capital stock,

ki = f(k)~c, (59

We will work through the first approach and let the reader explore the
second approach through a series of problems.

(a) Properties of the Policy Function and
the Optimal Capital Sequence

Given the policy function g( ), the optimal time path for the capital stock is
the solution of the difference equation k., = g(k,). We know that the optimal
sequence, {k#, must satisfy the first-order condition (8) and the Euler equa-
tion (10) and that the value function V() is strictly concave and increasing.
In this section, we will use this information to establish some properties of
&() and {k¥}.

We begin by characterizing the steady state of the system., Setting k, = k..,
= &2 = k in the Euler equation (10), we obtain

Ul (k)= k= BU'f (k) ~ k] £ (k)
= f'(k)=1/8 (11)

an equation that implicitly defines the steady-state capital stock & as a func-
tion of the discount rate 8.° Because f() is strictly concave, the marginal
product of capital, f'(k), is a strictly decreasing function of the capital stock,
implying that equation (11) has at most one solution. The assumptions that

Ny Fyasy "

Optimal Growth in Discrete Time 603

k. Moreover, we have k< ky, as k cannot be larger than the maximumn sus-
tainable capital stock described earlier. ‘

Next, we show that the policy function g( ) is an increasing function of &,
This result is then used to establish that the optimal sequence of capital
stocks {k¥]iZ; is monotonic and converges asymptotically io the steady state
for any given initial stock k; > 0.

Proposition 2.3. The policy function k¥, = g(k,) is increasing in k.

Proof. By contradiction. Suppose g( } is not increasing everywhere. Then
there exist capital stocks k" and k" such that &” > &k’ and

g(k”) < g(k') (1)
Because V() is concave, moreover, V’( ) is decreasing, and (1) implies
Vgt >V g(k)] 2
By the first-order condition
U1f(k )= k] =BV (k) (8)

inequality (2) implies
UTf(E") - gk > U f (k) - g(k)]
Now, Because U( ) is strictly concave by assumption, the foregoing expres-
sion implies that
FU") - glk”) < f(K) - g(K") = g(k")— g(K") > f(k")~ f(k') >0

where the last inequality holds because f{ ) is increasing, But then g(k”) >
g(k"), which contradicts (1). O

* Proposition 2.4. The optimal capital sequence (K}, defined recursively by k¥,

= p(k¥), with k, given, is monotonic.

Proof Suppose k%> ko. Because g( ) is increasing, we have
Kz = g(kT)2 glko) = K
which implies, in turn,
ks =g(k7)2 g(kT)=k3
and so forth. Similarly, if k¥ < k;, then

k5 = g(ki) s glko) = ki
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Proposition 2.5. If the initial capital stock k, is above the steady state k, then

{k¥ decreases monotonically; if k, < k then {k¥,} increases monotonically.

Proof. Because V() is strictly concave, V'( ) is strictly decreasing, Hence
k"> k' = VI(k")y<V'(k’) (1)
Consider two successive capital stocks, k¥ and &}, where k%, = g(k$). By (1),
k¥ — k¥ and V'(k¥) — V'(k#;) will have opposite signs, that is,
(k7 ~ ki )[V/(KT) - V'(k51)]$0 (=0 at the steady state)  (2)
By equations (8) and (9), we have
(8)= V'(ki'n) = (/DU F(KT) - ki)
(9)= V/(ki) = UL F(kY) = k) f ' (k7)
Substituting these expressions in (2),
(k7 ~ka {U [ f (k7) = kil (T) ~ (U DU £ (k7)) — ]} < 0
and, dividing by U’( ) > 0,

(k7 — k) F/ (k) - (1/B)] <0 3)

Recall that at the steady state, (k) = 1/8, and f'( ) is decreasing, by the
concavity of f{ ). Hence,

o if k¥< k, we have (k¥ > (1/8), and (3) implies that k¥< k#,, that is, (k¥ is increas-
ing, and

e if k¥>k we have f'(kf) <(1/B), and (3) implies that k¥> k%, that is, {k% is
decreasing. O

Proposition 2.6. The optimal capital sequence {k}¥} converges (monotoni-
cally)} to the steady-state capital stock k for any initial k, > 0.

Proof. Note that {k¥ is monotonic and bounded (above by &y, below by
zero or, alternatively, by &, and k). Because every monotonic bounded
sequence converges, (k1] has a limit that we will call k*, By the continuity of
the policy function g( ), k* must be a fixed point of g( }, for

s * . .
fr =limict = limg ) = g limbc) = ()

Hence, k* is a steady state. Because there is a unique steady state k, we con-
clude that k% — & O
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value function and the first-order condition for the maximization in the
Bellman equation, we have established that the optimal capital sequence {kA
converges monotonically to the steady state of the system. We can then use
the constraint again to infer the optimal path of consumption over time. We
now illustrate a second and probably more instructive approach to analyz-
ing the dynamics of the optimal-growth model. The basic idea is to treat the
system formed by the Euler equation and the transition law for the capital
stock,

U’(Ci) = ﬁU’(CHl)f'(kH‘l) (11)
Ky zf(k!)_"cf (12)

as an ordinary system of difference equations and study its dynamics in the
standard way. Thus, we first solve for the steady state; then we construct a
phase diagram and compute the eigenvalues of the Jacobian matrix at the
steady state to check for stability.

Setting ¢, = ¢4 =c and k, =k, =k in (11) and (12), we get

(11) = U"(c) = BU' () f (k) = Bf (k) =1 (13)
(12)=c=flk)-k 14

As we have seen, equation (13) has a unique solution k. Given k, equation
(14) can be solved for steady-state consumption ¢.

The system (11)—~(12) is not quite in the “standard form.” In particular, we
would like to have each variable (k.; and c.;) as a function of the lagged
values k, and ¢, To this end, we solve (12) for k,,, substitute the result into
(11), and apply the implicit-function theorem to the resulting equation to
obtain a function ¢( ) giving c,; as a function of &, and . This yields the
system

kg = f(kr) -G = (P(k:s Cl) (15)
U,(C!) =BU (¢ )f’[f(kr) -] &> Cu = o(k,, Cr) (16)

Problem 2.7. Apply the implicit-function theorem to compute the partial
derivatives of the function ¢(k,, ¢;) defined implicitly by equation (16), and
determine their sign.

Problem 2.8. Setting ¢;=cy=c and k,=ky=k in (15) and (16), draw the
phase lines Ak, =0 and Ac,=0. To complete the phase diagram, determine
the directions of motion along the ¢ and k axes in each of the four regions
into which the state plane (c, x) is divided by the phase lines.
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eigenvalues of the Jacobijan matrix for the system are positive real numbers
lying on opposite sides of 1.

The phase diagram we have constructed shows the orbits of the system
(15)-(16), but only one of these trajectories cotresponds to the solution of

of the capital stock should be taken as given; this yields one initial condi-
tion, k(1= 0) = k,, a given constant, specifying that the system starts out from
some point on a vertical line through k&, in the phase plane, On the other
hand, there is no naturaj initial condition for the free variable ¢, so we need
another way to identify the optimal path,

It turns out that the optimal consumption/investment plan is the one
described by the saddle-path trajectory. An intnitive way to see this is by

period. In either case, consumption becomes zero and remains so thereafter.
It is clear that such paths cannot be optimal, leaving us with only the saddle
path.

A more formal way to identify the optimal path is through a so-called
transversality condition. In some sense, the problem is the same as in a static
maximization problem: The first-order conditions (the Euler equations here)
identify possible candidates for a maximum, but they are also satisfied by
points that are not maxima, To find an optimum, we need an additional cri-
terion, some sort of second-order condition relating to the concavity of the

a similar role in the present context, and as we will see, the sufficiency proof
relies heavily on the concavity of the objective function.

An alternative way to think of the transversality condition is as a termi-
nal condition for the system of difference equations. Consider first a finite-
horizon version of the planning problem we are studying. In that case Ky
is the capital stock to be left “at the end of time™; it is clear that the optimal
thing to do is to leave nothing, so kp,; =0, providing us with a second bound
ary condition to identify the particular solution of (185 16\ shoe - 1 o0
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i i hat similar way, as the
i iti terpreted in a somew : .
sality condition can be in : | s the
transizzrmentythal: as t — oo the suitably discounted value of the cafp(l)trz:ll ; fock
rflqll.llld o to zero. Intuitively, we want to prevent; the plamm:':x:[i Orn m aceu
; l(l)latiné too much capital at the expense of deferring consump
m

M * ol 0 u { ts I ]}l aso
1

sality condition i
limB U’ () ' (ko) kr = 0 (T)
T e

then it solves the planner’s problem.

Proof Let s* = ¥ isfyi iti f the
fying the conditions o

f Leg ko |, k) be a sequence satls. :

iVo c;sitiotn and ; = klu !u {;, k.,) an arbitrary feasible sequence. To establish

prop , . y

that s* is optimal, we show that
d = Wa(s¥) - Wa(s) = 3 B[U(cT) - U(c)] 20
t=0

a v idat i st as
That is, the total “utility value” of the candidate sequence s* is at lea
b

that of any feasible sequence. | ot for c.
lar’%‘e :EOW this, it \Sw(vii] be convenient to solve the resource constraint £
0 ?

i = f(k) =€ = € = Fk)— ke
and write the period utility function as
Uk:, ki) = ULF (ko) = K]
It is easy to show that the function U(k,, k...) is concave. Moreover, we have
Uik, ki) = U’[f(k,) ~klf'(k)>0 (1)
Uk, k) = =U'[ (k) ~ kia] <0 (2)
In this notation the Euler equation can be written

Uf (k)= k] = BULf (k1) - kel f (i)

3
= U, (k, k) + BU, (km, kr+2) =0

Next, write d in the form
r
d = Wols*) - Wo(s) = lim Y. B IU(KT, kia) = U k., ka)}
- T—ee =0

and observe that, by the concavity of U(ky, k.1), *
E £
f”k k 1< U(k* kid-}- U1 (k:k. ktA)(kr —kT)+U2(kT; k.’+1)(km - kr+1)
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* g
UKy, ki )= Uk, ko) 2 U (K, kil — ke )+ U (IF, 12 (K, - k) (4)
Hence, we have

- T
| d=lim %“ BLUK, k)~ Uk, k)

.
2 lim 3 B{UL (KT, I (K — ke )+ U (I, %), kit )}

7 f=()

v = B{UL (K3, kYK — ko )+ U (Ko, K1)k = ko))

| (UK, I YKY = ke )+ U (I, I Y - ko).

| B{U, (k:k, krﬂ-‘n)(k:k - k,)+U2(k:k, kil)(k:t-] — ke )}
UK, Kkl = o)+ U (I, IS )(RE k)b +...

Observe that the initial capital stock is given and thus is the same in both

:'cmd s*; hence k¥ — k; =0, and the first term in the sum vanishes, The remain-
mg terms can be rearranged to give

d=lim{ 3540k, K+ BUKS, KK — k)

t=1

+ ﬁTUZ (k?:‘a k?ﬂ )(k?ﬂ - kT+1)} (5)
Next, recall that s* is assumed to satisfy the Euler equation
UZ(k:k:kil)'l'ﬁUl(k::ls k:iz)=0 (3)

Hence the terms in the summation vanish, and we have

" @ = Wols )= Wa(s) 2 lim BU, (K7, ik (ki — k)

i Moreover, we have kyy, 2 0, by the feasibility constraint, and Uy( ) <0, by

; (2). Hence, t.he product Uy(k#, k3,,) (~kp1) is positive, and we have, using the
Euler equation,

d = Wols*) = Wo(s) 2 limB" Uy (K7, k. iy
T + £ ¥ ? ’
= I BT (., k7.2 Jl o = —lim 70 () (e Ky = 0

where the next-to-last equality follows from (1), and the last limit i zero, by
the transversality condition (T). ,

In conclusion, we have shown that
d=Wy(s*)~Wy(s)20

Becau‘se the sequence s* that satisfies both the Euler equation and the trans-
versality condition must yield a greater value than any other feasible
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Problem 2.11. Show that the function U(k, k) defined in the proof of
Proposition 2.10 is concave.

To conclude, it is easy to verify that the saddle-path solution satisfies the
transversality condition (T) and is therefore optimal. For this solution, both
¢, and k, converge to finite values ¢ and k. Hence, &, U'(c), and f'(k) are just
finite constants, and :

lim 8" () (k) =0

because S € (0, 1). Along explosive paths, however, either k or ¢ will become
zero. In that case, (k) — o0 or U’(c) — oo, so (T) may not hold.

3. Investment with Installation Costs

In the standard static model the firm is assumed to maximize current profits,
defined as the difference between output and contemporaneous factor pay-
ments, Letting K and L denote labor and capital inputs, and w and R the
wage and the rental rate of capital in units of output, the firm’s problem can
be written

max F(K, L)~wL - RK ¢y

The solution functions for this problem are factor demands giving optimal
input levels as functions of factor prices:

K*=K(w,r) and L*=L(w,r)
This formulation assumes that the firm can rent inputs in “spot markets” and
put them to work immediately and at no cost. This clearly unrealistic
assumption may lead, at best, to a theory of the determination of the optimal
capital stock, but it has no implications (or very naive ones) for the optimal
investment policy.

In practice, capital is typically purchased, rather than rented, and its instal-
lation may involve considerable delays and adjustment costs. Thus, a firm’s
stock of “installed capital” becomes a sluggish state variable, and investment
decisions must be made taking into account their effect on the entire time
path of profits, rather than on a period-by-period basis.

"The first part of this section analyzes the optimal investment policy for a
competitive firm when the installation of capital is costly. In the second part,
we go from partial to general equilibrium and study the time paths of invest-
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the sequence; second, we verify that this function is bounded and continy-
ous; third, we show that {f,} — fin the sup norm,

* Given a Cauchy sequence of bounded continuous functions {/), take some x in
X and consider the sequence of real numbers {f,(x)). Note that given any posi-
tive integers m and n, we have

£n@) - £ < supllfu(y) - £ y € XY = I ~ il

Because {f,} is a Cauchy sequence, by choosing m and » hi gh enough we can make
Ifin(x) — £{x)| arbitrarily small for any x. Hence, {£.(x}} is a Cauchy sequence of
real numbers for any x, and because R is complete with the usual metric, {f,(x)}
converges to some (finite) real limit, say f(x).

We can therefore construct a function f that assigns to each x in X the limit
fix) of the sequence of real numbers (f,(x)}. This function, which is bounded
by construction, will be our candidate for the limit of the sequence of functions
{7

* To establish the continuity of f, fix an arbitrary point x in X and some &> 0.
Because {f,) — f in the sup norm, there exists a positive integer N; such that
f — fulls < &3 for all n > N,, Hence,

Ifn(x)— f(x)l < Supy!f(}’)_ fn(}’)l = "f"fnlL < 3/3 (1)

for any x and all » > N,. Moreover, because [ is continuous, there is some & >0
such that for the given x,

s}~ £u(y < &/3 for all y such that |ix - y 5 <& )

where |Mlz is the Euclidean norm in R". Using (1), (2), and the triangle in-
equality, the continuity of f at x follows: For any y € By (x), and choosing n > N,
we have

)~ FOI =P = £,e)+ @) = £, 0N+ 15,00 - £
SIF = £l +160- £00+1F - £l <2

© Finally, we will show that ||f- f,)l, = 0 as n — . Fix some £>0 and note that
because {f,} is Cauchy, there is some N, such that

1 = fall, <&/2 forallm,n>N, (3)
By (3) and the triangle inequality, given any x in X, we have

lﬁa (x)" f(x)l s |f;l (x)'— fm(x)l + [fm (x) - f(x)l < ”fn - fm" + Iﬁn (x) - f(x)l
< 8/2 + ]ﬁu(x) - f(x)l
for all m, n > N,. Moreover, because { Jn()} = fx), we can choose m (separately

for cach x if need be) so that If,,(x) — A(x)| < &/2. Hence, N, is such that given any
n>N,,
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Thus, for 1 sufficiently high, ¢ is an upper bound for {If,(x) - f(x)l; x € X), and
because ||f, — fil; is the smallest such upper bound, we conclude that || fi~Al<e
for all n> N, that is, {f;} — f. =

(b) Operators and the Contraction Mapping Theorem

A function T X —> X from a metric space to itself is cometimes called an
operator. We say that an operator is a contraction if its application to any
two points of X brings them closer to each other. More formally, we have
the following definition:

Definition 7.13. Contraction, Let (X, d) be a metric space, and 7: X —> X
an operator in it. We say that T is a contraction of modulus B if for some
B e (0,1) we have this: Vx,y e X, d(Tx, Ty) < Bd(x, y). The notation Tx is
sometimes used instead of 7(x).

Theorem 7.14. Every contraction is a continuous mapping.

Proof. Let T be a contraction on (X, 4). We want to show that
Ve>0, 38>0s.th. d(x, y)<8=d(Tx, Ty)< e
As T is a contraction, we have that for all x, y € X and some B € (0, 1), .
d(Tx, Ty) < Bd(x, y)

Given some ¢, choose & so that §< &B; then the definition of continuity is
satisfied, because

LY

d(Tx, Ty)<Bd(x, y}<BS<e O

Example 7.15. Let f:[a,b] —> [a,b] be a continuous function with
positive slope always smaller than 1. Then f is a contraction, because
) - foo(y-x)<B<1. Figure 2.11 suggests that no matter how we draw
it, f must cut the 45° line, that is, it must have at least one fixed point z such
that f(Z) =z,

Take any point x, in [a, b] and define a sequence {x.(x0)} recursively by

X = fxa), X2 = flx1 )0y Xow = fx,)

Graphically, the sequence is constructed as follows: Given the initial
value x,, we use the graph of the function to find the value of xi. then we
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45,

b

z = §(z) f
X2
Xy = f(XG
a

a Xg Xy zZ b

Figure 2.11. A contraction mapping.

the graph of f to find x,, and so on. The figure suggests that no matter where

we choose the initial point x, in [a, b], the sequence converges to the fixed

point z. [

The following theorem says that this result can be generalized to any con-
traction defined on a complete metric space.

Theorem 7.16. Contraction mapping theorem. Let (X, d) be a complete
metric space, and T:X —> X a contraction with modulus § < 1. Then

(i) T has precisely one fixed point x* in X (i.e, 3/ x*e X sth. Tx*=x*), and
(ii) the sequence (X,(xo)}, defined by

x; =Txg, X2 =TXy, .., Xy = TXs

converges o x* for any starting point X; in X,

Proof

e Existence: Take an arbitrary point x, in X and define the sequence {x,(x,)} by
X = Txo, X2 =T, 000y Xy = T,

We will first show that this sequence is Cauchy, Then, given that (X, d) is a com-
plete metric space, the sequence converges to a point x* in X, We will then show
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By using the definition of contraction repeatedly, we see that the distance
between two successive terms of the sequence (x,(x,)} is bounded and decreasing

in £
d(xu+1 y xu) = d(Txn + Txn-—l ) S Bd(xn ] xr!—l)
= Sd(Txn_] » Tx,,_2 ) = Bzd(x,,,] ’ xuﬁz)
<. <Bd(x, %) (1)

Next, consider the distance between two arbitrary terms of the sequence, x,,
and x,,, with m < s, Using the triangle inequality,

d(x“ s X ) < z::; d()ﬁ‘ﬂ B x,-) [by (1)]
< E:':n B‘d()ﬁ , xﬂ) = B"ld(xl , xD) Z::;n—l 8

m

<B"d{x,, xq) Z::‘]Bi = iE_”B' d(xy, xo) (2)

Because B <1, B%(1 - 3) — 0 as m — <. It follows that, given an arbitrary £> 0,
we can choose m and » sufficiently large that d(x,, x,) < £; hence, {x,(x,)} is
Cauchy for any x,, and given that (X, 4) is complete by assumption, every such
sequence will have a limit in X. Take one such point and call it x*.

Next, we show that x* is a fixed point of T. Being a contraction, T is continuous.
Hence we can “take the limit out of the function” and write

T(x*)= T(lim xn) = lim T(x, } = lim x,; = x*

* Uniqueness: Nothing we have said so far implies uniqueness. It remains to show
that x* is independent of the choice of the initial point x, or, equivalently, that
there is only one fixed point of T. We will prove that if 7 has two fixed points,

they must be equal.
Assume that x” and x” are both fixed points of T (i.e., 7x"=x" and Tx" = x"),

Because T'is a contraction, we have, for some B € (0, 1),
dix’, x")=d(Tx’, Tx") < Bd{x’, x”)

Because < 1, this can hold only if d(x’, x”) =0 (i.e., if x" = x"), for otherwise we
would arrive at

dlx’, x"Y< dix’, x")
a contradication. ([l
The following exercise generalizes this result, It is not necessary

that T itself be a contraction; it is enough that its nth iteration (7") be a
contraction for 7 to have precisely one fixed point. 7" is defined recursively

[ B I
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Problem 7.17. Let (X, d) be a complete metric space, and T:X —> X' a
function whose nth iteration 7" is a contraction. Show that T has a unique

fixed point.

The contraction mapping theorem is a very useful result. It can be used
to prove the existence and uniqueness of solutions to several types of
equations, including differential equations and some functional equations
that arise in connection with dynamic-optimization problems. Moreover,
the second part of the theorem suggests a method (the method of succes-
sive approximations) for calculating solutions to equations that can be
written in the form 7x=x, where T is a contraction: Beginning with a
convenient trial solution, we construct a sequence {x,} recursively with
Xy = Tx,. If we can find the limit of the sequence, we will also have found
the solution to the equation. Otherwise, we can approximate the solution to
any desired degree of accuracy by computing sufficiently many terms of the
sequence.’

The following theorem says, loosely speaking, that if a continuity
condition holds, we can do comparative statics with fixed points of
contractions.

Theorem 7.18. Continuous dependence of the fixed point on paramelters. Let
(X, d) and (Q, p) be two metric spaces, and T(x, o) a function X X £ —> X
If (X, d) is complete, if { is continuous in o, and if for each «.€ L2 the func-
tion Ty, defined by To(x) =T(x, o) for each x € X, is a contraction, then the
solution function z.: Q —> X, with x* = z(o), which gives the fixed point as a
function of the parameters, is continuous.

Proof Consider a convergent sequence of parameter values, [} — o. To
establish the continuity of z, it is sufficient to show that

dlz(e,), 2{@)] > 0 as {a,} — o (1)

By definition, the function z satisfies the identity Tuz(@) =z(¢) for any o
Using this expression in (1), we have

diz{e,), ()] = d[Ta, (et ), Toz(e)]  (by the triangle inequality)
< [T, 2(0n ), T 2( )1+ dl T, 2(00), Toz(01)]
< Bd[z(o,), 2(@)]+d[To, 2(00), Toz(e)]

where the second inequality uses the assumption that 7,, is a contraction,
with modulus B, £ 8 « (0, 1). Thus,
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from where
dlelen), o)) S T dl T, 2(0), ot

Now, T'is continuous in ¢, so the right-hand side of this expression goes to
zero as {o,} = « Hence, (1) holds, and z( ) is continuous. 0

Recall that given a complete metric space (X, d) and a closed subset C
of X, (C,d) is also a complete metric space (Theorem 7.9). Now suppose
that 7: X —> X is a contraction and maps C into itself (i.e., if x € C, then
Tx € C). In that case, T'is a contraction on C, and the unique fixed point of
T in X must lie in C. Sometimes this observation allows us to establish
certain propettics of a fixed point by applying the contraction mapping
theorem twice - first in a “large” space X to establish existence, and then
again in a closed subset of X in order to show that the fixed point has certain
properties, For example, if (X, d) is the space of continuous real and
bounded functions with the sup norm (see Section 1), then the subset of X
formed by nondecreasing functions is closed. Hence, if a contraction 7 in
(X, d) maps nondecreasing functions into nondecreasing functions, the fixed
point of T will be a nondecreasing function.

It is not always easy to determine whether or not a given function is a
contraction. The following theorem, due to Blackwell, gives sufficient con-
ditions for an operator in a useful function space to be a contraction. The

advar‘ﬂiage of this result is that in some economic applications, Blackwell’s
conditions are very easy to verify.

Theorem 7.19. Blackwell’s sufficient conditions for a contraction. Lét B(R”,
R) be the set of bounded functions f:R" —> R, with the sup norm. If an
operator T:B(R", R) —» B(R", R) satisfies the two conditions

(l) m.onoronicity: V1 ge B(R" R), f(x) <g(x) V x = Ti(x) < Tg(x) Vx,
(i) discounting: 3fe (0,1) sth. Vfe B(R% R), xe R", and .20, we have
T/E(x) + o] < T/E(x)] + for

then T'is a contraction.

Proof. For any f, g € B(R®, R), we have

f=g+(f-g)<g+|f-gl

By assumptions (i) and (ii),
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Interchanging the roles of fand g, we obtain, by the same logic,
Tg<T(f+|g~ f)<Tf+Blg— fll=Tf - Tg 2-Blf - gl

Combining the two inequalities, we obtain the desired result:

I7f - Tl < B]f -l O

8. Compactness and the Extreme-Value Theorem

Let f be a real-valued function defined on some set in a metric space. A
problem that frequently arises is that of finding the element of A that will
maximize or minimize f. In order to guarantee that such a point exists,
certain restrictions have to be placed on both the function and the set. For
example, we have seen that if £ is a function from a set of real numbers A
to R, a sufficient condition for the existence of a maximum is that f be con-
tinuous and A be a closed and bounded interval. One of the purposes of this
section is to extend this result on continuous functions to more general sets.

This brings us to the study of compactness.

(a) Compactness and Some Characterizations

To introduce the notion of compactness, we need some terminology.

Definition 8.1. Cover and open cover. A collection of sets U={U;ie I}in
a metric space (X, d) is a cover of the set A if A is contained in its union,
that is, if A <, ;U;. If all the sets U, are open, the collection U is said to be
an open cover of A.

Definition 8.2. Compact set. A set A in a metric space is compact if every
open cover of A has a finite subcover. That is, A is compact if given any open
cover U={U;ie I} of it, we can find a finite subset of U, (U}, ..., Uy}, that
still covers A.

Notice that the definition does nof say that a set is compact if it has a finite
open cover. In fact, every set in a metric space (X, 4} has a finite open cover,
for the universal set X is open and covers any set in the space.

Example 83. (0,1) is not compact. The collection of open intervals
(1/n,1) for n=2 is an open cover of (0, 1) because given any x in (0, 1),
there exists an integer n such that #> 1/x, and hence x e (1/n, 1). Thus,
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where N = max;g«#, and given any N there is some strictly positive real
number x with x < 1/N. 0

A necessary prerequisite for the existence of a maximum of a function
over a set is that the function be bounded on the set. To motivate the
foregoing definition (i.e., to try to understand why scts with such strange
properties may be useful), consider how we might go about extending the
result given in Theorem 6.20 on the boundedness of a continuous function
defined over an interval [a, b] to a larger class of sets in an arbitrary metric
space.

We begin by observing that a continuous function is locally bounded. Let
f:A ¢ X —> R be continuous, and consider an arbitrary point  in A. Then,
by the definition of continuity (with £=1), there exists a positive real
number &(a) (which depends both on the point chosen and on the particular
function f we are working with) such that [f{x) - f{a)l <1 for all x € Bg,(a).
Hence, f'is bounded in By, (a) by K, = If{a)| + 1.

Now consider what happens when we try to extend this local bounded-
ness property to the whole set A. The question is whether or not the
continuity of f is sufficient to guarantee the existence of a bound X that
will work for all x in A (for the given function). It is tempting to try to
define K as the maximum of the K,’s over all points @ in A, but that will
not work in general, for there may be infinitely many such K,’s, and the
set of such numbers may not have an upper bound. Notice, however,
that the collection of open balls {By,(a)} for all ae A is an open cover
of A, If A is a compact set, there is a finite collection of such balls,
{Baay(a1), . .., Bsgy(a,)), that contains all points of A. In this case, the
maximum of the (finite) set formed by the corresponding local bounds
{Kes ..., K,} is well defined and provides a global bound for the function
on the set.

In conclusion, compactness allows us to replace an arbitrary open cover

with a finite one. In some cases this is enough of a substitute for finiteness
as to allow us to extend to infinite sets some properties that hold trivially in
finite ones.

It is not always easy to work directly with the definition of compactness.
In the remainder of this section we will develop some characterizations of
Compactness that frequently are more useful than our original definition.
The first of these, known as sequential compactness, is valid in metric spaces,
but not necessarily in more general topological spaces.

-1

Definition 8.4. Sequential compactness. A set A in a metric space i< el
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We will now show that compactness and sequential compactness (which
is essentially the Bolzano-Weierstrass property) are equivalent in metric
spaces, The first half of the equivalence is easily established.

Theorem 8.5. A compact set in a metric space is sequentially compact.

Proof. We will prove the contrapositive statement (a set A in a metric space
that is not sequentially compact cannot be compact) by constructing an open
cover of A with no finite subcover, If A is not sequentially compact, there is
a sequence {x,} of points of A with the property that none of its subse-
quences converges to a point in A, Hence, no point of A is the limit of a sub-
sequence of {x,), and it follows that for every x in A there exists an open
ball B(x) that contains only a finite number of elements of {x,}. The family
B ={B.,(x); x € A} is an open cover of A, However, no finite subfamily of
B can cover {x,} (and therefore A), for any such family will contain only a
finite number of terms of {x,}. Hence, A is not compact. O

The converse result takes a bit more work, We begin with some definitions.

Definition 8.6. ¢-net and totally bounded set. Given some £>0 and a
set A in a metric space (X, ), an e-net for A is a set of points £ in X such

that
AQUper Be(x)

A set A in (X, d) is totally bounded if it has a finite £-net for any £> 0.

That is, a set is totally bounded if it can be covered by a finite number of
balls of arbitrarily small radius. Clearly, a totally bounded set is necessarily
bounded, but the converse need not be true.

Definition 8.7. Lebesgue number for an open cover. Let A be a set in a
metric space, and let U be an open cover of A. We say that a fixed real
number £3> 0 is a Lebesgue number for U if for every x in A there exists a
set U(x) in U such that B.(x) c U(x).

Hence, if U has a Lebesgue number, we can “replace” it with an
open cover formed by balls of constant radius, which is often more con-
venient. Notice that if this “ball cover” has a finite subcover, so does the

original one.

Example 8.8. Notice that an open cover may not have a Lebesgue number.
Ac in the nreviatie avamnle nuf 4 = 1Y and concider the oben cover
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U ={(1/n, 1); n 22). For any given &> 0, choose x < £; then B(x)=(0,x+¢&)
is not contained in (1/n, 1) for any n.

Theorem 8.9. A sequentially compact set in a metric space is totally
bounded.

Proof. We will show that if a set A is not totally bounded, then it cannot be
sequentially compact — that is, if for some £> 0 there is no finite e-net for A,
we can construct a sequence {x,] in A with no convergent subsequence,
Take any x, in A, and let U, = B,(x,). By assumption, B, does not cover A4,
so there is some x, € A, withx, ¢ Uy, Let U, = B.(x,); then {U;, U} is still not
a cover of A, and therefore there is some x; € A, with x; ¢ U, U U, Put
Us=Bdxs), . .. ,and so forth. By continuing in this fashion, we can construct
a sequence {x,} with the property that d(x,, x,,) > ¢ for all  and m, as each
new term of the sequence is chosen outside all the e-balls centered at the
previous terms. Clearly, this sequence has no Cauchy subsequences and
therefore no convergent subsequences either. (d

Theorem 8.10. Any open cover of a sequentially compact set in a metric space
has a Lebesgue number.

Proof. et A be a set in a metric space (X, d) with an open cover U. If U
has no Lebesgue number, then for every £> 0 there exists some point x in
A such that no set U in U contains B(x). In particular, for each integer »
we can find some point x, in A such that By,(x,) is not contained ir;
any U e U. We will show that if A is sequentially compact, no sequence in
A can have this property. Hence, given sequential compactﬁ‘:ess of A, a
Lebesgue number must exist for any open cover of it (or else we have, a
contradiction).

.By the sequential compactness of A, any sequence {x,) of points in A con-
tains a convergent subsequence {x,,} with limit x ¢ A, Because U covers A
te U for some Upe U, and because U, is open, there exists some intege;
m such that B,,,(x) c U, We will show that By.(x,) < U, for some terms in
the sequence by exploiting the fact that we can bring {x,} arbitrarily close
to x and make B 1im(X,,) arbitrarily small.

By the convergence of (x.,} to x, there is some N such that

Xy, € By (x) forallme >N

Choose #, > R
have « >max(N, m}, and observe that for any point y in By, (x,,) we
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1 1 1 1 2
d(y,x)sd(y,xﬂk)+d(x,,k,x)<;~;-l—7n—<;+;=;1—

Hence, for n, sufficiently high, we have y € By,(x), but then

Bl/"k(x”k) - BZ,fm (x) ja. UO
contradicting the nonexistence of a Lebesgue number. O

We can now prove that sequential compactness implies compactness in a
metric space.

Theorem 8.11. Any sequentially compact set in a metric space is compact.

Proof. Let U be an arbitrary open cover of a sequentially compact set A in
a metric space. By Theorem 8.10, U has a Lebesgue number ¢, and by
Theorem 8.9 there exists a finite e-net (for the same &€) {x,, ..., x,) for A.
For each i=1,..., n there is some U;e U such that B.(x;) c U, by the
definition of Lebesgue number. Because A ¢ Ui B (x;) c ULl U has a
finite subcover {U/;,..., U,}. O

We will now provide an alternative characterization of compactness in
terms of a property of families of closed sets.

Definition 8.12. The finite-intersection property. A nonempty family of sets
A ={A;ie I} has the finite-intersection property if every (nonempty) finite
subfamily of A has a nonempty intersection.

Theorem 8.13. A set C in a metric (or topological) space (X, d) is com-
pact if and only if every family of closed subsets of X that has the finite-
intersection property has a nonempty intersection.

Proof

* Suppose C is compact. To show that any family of closed subsets that has the
finite-intersection property has a nonempty intersection, we will prove the
following equivalent (contrapositive) statement: Let A = {A;i & /] be a family of
closed subsets of C with the property that NA = . ,4; = @; then there exists some
finite subfamily of A with an empty intersection — that is, there exists some finite
set J < I such that mA; =&,

For each i, let U, = ~A; be the complement of the closed set A;. Then each U;

is an open set, and we can write, using De Morgan’s laws (Theorem 1.2 in
Chantar 1Y%
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Hence, {Uj; i € 1} is an open cover of C. Because C is compact, {Uj; i € I} contains
a finite subcover of C. That is, there exists a finite set J < I such that

C o U

which implies that
N A =~V U)o ~C (1)

On the other hand, because each A;is a subset of €, so is their intersection: hence,
we have

M C (2)

Combining (1) and {2), we conclude that my;A; = @, which establishes the desired
result.

» For the converse, assume that C has the property that if the intersection of
any family of closed subsets of C is empty, then the intersection of some
finite subfamily of them is empty (we are using the contrapositive again). Let
U={U;ie I} be an arbitrary open cover of C, so that

Covely
and observe that this implies that
~LiU)e~C (1)
Next, let
A =Cn(~-U)

for each i. Using (1) and De Morgan’s laws, we have
Nt Ai = N (C O (FUN=Cn{nig (FU N =Cn (iU g Cn (-C) =3

Hence, A={A; ie I} is a family of closed subsets of C whose intersection is
empty. By assumption, there exists some finite subfamily of A with an empty inter-
section; that is, there exists some finite set J < I such that .4, = @, and it follows
that

Nies A = e, (C(~U ) =C (ﬁieJ(“‘Uf)) =Cn (“(Uie;Uf)) ={J

This implies that C is contained in i, Uy Hence, (U5 i € J) is a finite subcover of
{Uie I}, and we conclude that C is compact.

(b) Relationships with Other Topological Properties

In metric spaces, compactness is closely related to other topological prop-
erties, namely, closedness, completeness, and boundedness. In this section we

spell out some of the interconnections among these properties.

Theorem 8.14. Any closed subset of a compact space is compact.
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is closed, its complement C* is open, and (Uyie I} w Cis an open cover of
X. As X is compact, this cover has a finite subcover {Uy, ..., U,}© C°.Then
{Uy, ..., U} is a finite subcover of C, which is therefore compact. O

Theorem 8.15. A compact set in a metric space is closed.

(This result may not hold in more general topological spaces.)

Proof. Let A be a compact set in a metric space (X, d). We will prove
that A is closed by showing that it contains all its limit points. Let x, be
an arbitrary limit point of A; by Theorem 4.11 there exists a sequence {x,}
of points of A with limit x,. By the (sequential) compactness of 4, {x.} has
a convergent subsequence with limit in A. By the uniqueness of the limit
(see Problem 2.5), x, is the limit of the subsequence and must therefore
lie in A. O

Theorem 8.16. A set in a metric space is compact if and only if it is complete
and totally bounded.

Proof We have already seen that a compact set is totally bounded. The
proof that compactness implies completencss is left as an exercise. We now
prove the converse implication (i.e., that a complete and totally bounded set
in a metric space is compact).

Let C be complete and totally bounded. To establish (sequential) com-
pactness, we need to show that any sequence {x,) in C has a subsequence
converging to a point in C. And because we are assuming completeness, it
is enough to show that given any sequence in C, we can produce a Cauchy
subsequence, for completeness will then guarantee convergence.

Let {x,] be an arbitrary sequence in C. Because C is totally bounded, it
can be covered by a finite number of balls of radius 1 (a 1-net). Among these
balls, there must be one, say B, that contains infinitely many terms of the
sequence. These infinitely many points of the original sequence form a new
sequence that we call {x}). Next, we can cover B with a finite number of
balls of radius 1/2, and among these balls there must be one, say B,, such
that B; n B, contains an infinite number of points of {xi}, forming a new
sequence {x2). Continuing in this fashion, we obtain a sequence {B;} of balls
with radius 1/i such that By n By M. ..M B; contains infinitely many terms
of the original sequence, yielding a new sequence {x).

Consider now a “cross-sequence” {x§} formed by taking one element of
each of these sequences (i.e., the kth term of [x}] is taken from {x}}). We
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xfe BinB; ...n B, foreachk

Hence, given any positive integers p and g, with p <g, the terms x5 and x§
of (x4} are contained in the ball B, (of radius 1/p), and therefore

d(x8, x3)<2/p

Hence, the subsequence {xf} is Cauchy: By taking p high enough, we can
force all remaining terms of the sequence to fit inside a ball of arbitrarily
small radius. By completeness, {x¢] converges to a point in C. Hence, we
have shown that an arbitrary sequence in C must contain a convergent
subsequence with limit in C, thus establishing the sequential compactness of
the set. O

Problem 817. Show that a compact set in a metric space is complete.

Problem 8.18. Let A be a compact set, and let {A,} be a “decreasing
sequence” of nonempty closed subsets of A such that A,; g 4,. Show that
Un A i not empty.

From Theorems 8.9 and 8.15, we know that a compact set in a metric space
is closed and bounded. The following result tells us that the converse is true
for sets of real numbers, thereby establishing an important characterization
of compact sets in R as those that are closed and bounded.

Theorem 8.19. Heine-Borel. Any closed and bounded set of real numbers is
compact. ‘

Proof. Note that any bounded set of real numbers must be contained in
a closed interval [a, b] with finite end points. Because we knpw that any
closed subset of a compact set is compact, we need only show that (a, b] is
compact. By the Bolzano-Weierstrass theorem, any sequence contained in
this (bounded) set contains a convergent subsequence, and because [a, b] is
closed, the subsequence converges to a point in the intervat (Theorem 4.13),
establishing sequential compactness (see Problem 3.4). O

This result can be casily extended to any finite-dimensional Euclidean
space,

Theorem 8.20. Any closed and bounded subset of R™ is compact.

Proof. Let A be a closed and bounded set in R™. Then there exists some
number M such that jjx||z < M for all x in A. Hence, A is contained in the
cube of side M coiven bv
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Cn=IxIx..xI, ‘where I =[-M, M]

As in the previous theorem, it is enough to show that C,, is compact, for the
closedness of A then guarantees its compactness.

To simplify notation, let m =2 (i.e., we will be working in the plane R?),
and consider C, =Ix [ =[-M, M] x[-M, M] and an arbitrary scquence {x.)
in this set, with x, = (x),x5). Observe that {x!) and {x}} are bounded
sequences of real numbers contained in the compact set [ = [-M, M]. By the
Heine-Borel theorem, {x}} has a subsequence [xL) convergent to a limit
x'in I, and the corresponding subsequence of {x7}, {xZ.], has a convergent
subsequence (¥} with limit x* in . Putting Xn, = (X X5,), it is clear that
(by the equivalence between convergence in E? and coordinate-wise
convergence in R)

{xnk}} —(x',x*)elx]

that is, {x,} has a convergent subsequence with limit in C,, which establishes
the sequential compactness of C; and therefore of any closed and bounded
set in the plane. The argument can be easily extended to any finite-
dimensional Euclidean space. More generally, it can be shown that a finite
product of compact sets is compact (in the sup metric)

(c) Continuous Functions on Compact Seis

Theorem 8.21. Let (X,d) and (Y, p) be metric spaces, and £: X —> Y a
continuous function. If C is a compact set in (X, d), its image £(C) is compact

in (Y, p).

Proof. Let [y,] be an arbitrary sequence in #(C), and consider a companion
sequence formed by points x, in C such that f(x,) =y, By the sequential
compactness of C, {x,} has a convergent subsequence, say {X,}, with limit x
in C.Then, by the continuity of f,

lim y,,, = lim f(x,) = f{lim 2, ) = f(x) € FC)

Hence, {y,} has a subsequence {y,} that converges to a limit in f{C). This
establishes the sequential compactness of f(C). 0

In the case of a real-valued function, the theorem says that the continu-
ous image of a compact set is a compact interval or a collection of them.
Because any such set of real numbers contains both its supremum and its
infimum, we have the following important corollary:
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Theorem 8.22. Extreme value (Weierstrass). Let C be a compact set in a
metric space, and 1:C —> R a continuous function. Then f is bounded in C
and attains both its maximum and its minimum in the set. That is, there exist
poinis Xm and x,, in C such that

flxy)=sup f(C) and f(x,)=1inf f(C)

Proof. We will prove the existence of a maximum, By the previous theorem,
f(C) is a compact set of real numbers and therefore is closed and bounded.
Let f be its supremum, Then f§is a limit point of f{C). (Why? §—1/n is not
an upper bound for f(C)). Because f(C) is closed, it follows that 3 is con-
tained in it, that is, there exists some point xy in C such that 8= f(xy). O

Problem 8.23. Give an alternative proof for Theorem 8.21 using directly the
definition of compactness. (Let {U; i ¢ I} be an open cover of f{C).)

Theorem 8.24. Let (X, d} and (Y, p) be metric spaces, with 1: X —>Y a
continuous function, and C a compact set in (X, d). Then { is uniformly con-
tinuous on C. *

Proof Let £>0 be given. Because fis continuous, for each point x in € we
can find a positive number &(x) such that

d(x, y) < 8(x)= plf(x), F(n)]<e/2 ‘ (1)

For each x € C, let B(x) be the set of all points y in C for which d(x, y) <
&x)/2. The collection of all such B(x)’s (one for each point in C) is an open
cover of C, and because C is compact, there is a finite collection of points in
C,say {x,, ..., x,}, such that N

C c B(x))u...u B(x,) (2)

Put

_ min{6(x;),...,8(x.)}
- 2

)

and observe that 8> 0 because this is a finite collection of positive numbers
(this is why we need compactness, it guarantees that we can find a finite sub-
cover; note that the infimum of an infinite collection of positive numbers
may be zero).

Let x and y be points in C such that d(x, y) < 6. By (2), there is some point
X, such that x € B(x,,), and hence
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d{x, X, )< 6(;'") (3)
Moreover,
8x,,)
d(y,xm)sd(y,x)+d(x,xm)<6+wé~—s5(xm) (4)

Hence, both x and y are sufficiently close to x,, that we can use (1) to con-
clude that

Py, RIS pLFV) )]+ plf (), f(x)]< & O

A similar argument will yield the following result.

Theorem 8.25. Show that if a function is locally Lipschitz on a compact set,
then it is Lipschitz on the set (see Definition 6.18).

Problem 8.26. Compactness of the product space. Let (X, d,) and (Y, d;) be
metric spaces, and consider the product space (Z=XxY,d,), with the
product metric d; defined by

de(z, 2) = dal(x, ), (%', )] = e (x5, 2)F +[day, ) (1)

Show that the product space (Z=XxY, d;) is compact if and only if both
(X, d)) and (Y, d,) are compact.

9. Connected Sets

A set is said to be connected if it consists of a single piece (i.e., if it is not
made up of two or more “separate components”), The following definition
makes this idea more precise.

Definition 9.1. Separated and connected sets. Two sets A and B in a metric
space are said to be separated if both A N B and A~ B are empty (i.c., if
neither set has a point lying in the closure of the other). A set C in a metric
space is said to be connected if it is not the union of two nonempty sepa-
rated sets.

Notice that the condition for two sets to be separated is stronger than dis-
jointedness but weaker than the requirement that the distance between
them be strictly positive. Thus, the intervals (-1, 0] and (0, 1) are disjoint but
not separated. because (0 lies in one interval and in the closure of the other.
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The intervals (~1,0) and (0, 1), however, are separated, but the distance
beiween them is zero.

Connected sets on the real line have a particularly simple structure.
As shown in our next result, the connected sets in R are precisely the
intervals.

Theorem 9.2. A set S of real numbers is connected if and only if it is an
interval.

Proof. Recall that a set I of real numbers is an interval if whenever x and
y are in I, any real number z, with x < z <y, also lies in 7 (Problem 6.14 in
Chapter 1),

¢ We first show that a set of real numbers that is not an interval is not connected.
Let § be such a set. Then there exist real numbers x and y in S and z ¢ § such
that x <z <y, and we can write § as the union of two components, as follows:

§=851U S8 =[S N, ] U[S N (z, )]

Notice that neither of these sets is empty, because S, contains at least x, and Sz
contains at least y. Moreover, S; and S, are separated, because §; < (—e, z) and
52 € (2, ¢0), and these intervals are separated (neither of them contains the only
common boundary point, z). Hence S is not connected.

To show that every interval is connected, we show that a nonconnected set cannot
be an interval, Let ¥ be a nonconnected set of real numbers. Then there exist
nonempty separated sets A and B such that AUB=FE. Pick ac A and be B,
and assume (relabeling the sets if necessary) that a < b, as in 'Figure 2.12.To estab-
lish that E is not an interval, we will show that there is some real number x ¢ F
witha<x < b,

We define

N

x=sup{An{a, b]}

Then (see Problem 4.15) we have x € A and (because A and B are separated)
X & B.Morcover, we have a < x < b. There are now two possibilities. If x ¢ A, then
we have found the desired number, for then a<x<b and x¢ E. If x A, on
the other hand, we have x ¢ B  (because A and B are separated), and it follows
that x lies in the open set R ~ B. Hence, we can find some other point x” in this
set (and therefore not in B) such that @ < x < x’ < b. This establishes the desired
result.
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