General Equilibrium - Problem Set 2 due: classes on the 13th of Dec

Problem 1 (2p) Consider an exchange economy with I consumers, each with rational preferences \succeq_i over \mathbb{R}^L_+ and an initial endowment ω_i . Let (x^*, p^*) be a WE. Prove that x^* belongs to the core of this economy.

Problem 2 (2p) Consider an exchange economy E with two consumers 1, 2 and two goods A, B, where consumers have: $u_1(x_1) = \min\{x_1^A, x_1^B\}$ and $u_2(x_2) = x_2^A + x_2^B$. Initial endowment is given by: $\omega_1 = (3,3); \omega_2 = (5,5)$. Find the core of this economy and allocation in the Walrasian Equilibrium.

Problem 3 (2p) Consider an exchange economy E with two consumers 1, 2 and two goods A, B, where consumers are characterized by: $u_1(x_1) = \min\{x_1^A, x_1^B\}$ and $u_2(x_2) = 2\min\{x_2^A, x_2^B\}$. Let initial endowment be given by: $\omega_1 = (10, 0)$ and $\omega_2 = (0, 10)$.

- Find core of this economy,
- Consider n-th replicas of E and corresponding cores C_n . Express C_n as a function of n.

Problem 4 (2p) Let $S_i = \{0, 2\} \times \{0, 2\} \times \{0, 2\} \subset \mathbb{R}^3$ and $i \in I = \{1, \dots, 100\}$.

- Define $\sum_{i=1}^{I} S_i$ and con $\sum_{i=1}^{I} S_i$,
- Illustrate Shapley-Folkman theorem for $(42.3, 11.6, 22) \in con \sum_{i=1}^{I} S_i$.

Problem 5 (2p) Consider an economy with two goods x, y and infinitely many consumers I = [0, 1], each i-th with preferences given by $u_i(x, y) = x^i y^{1-i}$. Endowment if each consumer is given by (2, 2).

- Assume prices sum up to one. Derive demand of consumer i as a function of i and p_x, p_y .
- Compute equilibrium prices.
- Find equilibrium allocation for each i-th consumer.