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Introduction

Economics

Optimal allocation of scarce resources: efficiency, rational
behavior.

The economic problem

Instruments: variables

Objective function: aim to be achieved

Restrictions: scarce resources

Opportunity set: set of instruments satisfying all restrictions

Economic problem: Choice of instruments in the feasible set
allowing for optimizing objective function
Economic problem: particular case of general mathematical
programming problem
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Introduction (cont’d)

Formal definition of the problem

Instruments: x =







x1
...

xn






=
(

x1 · · · xn

)

′

, x ∈ IRn

Opportunity set: X ⊂ IRn

Objective function: f : X → IRn

Problem: maxxf(x) s.t. x ∈ X

Particular cases

Classical programming

Non-linear programming

Linear programming
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Classical programming - Definition

Equality restrictions

gi(x) = bi, i = 1, . . . ,m

gi(x) continuous, continuously differentiable

bi ∈ IR

g(x) =







g1(x)
...

gm(x)







b =







b1
...

bm







Problem:

maxx f(x) s.t. g(x) = b
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Nonlinear programming - Definition

Inequality restrictions

gi(x) ≤ bi, i = 1, . . . ,m

gi(x) continuous, continuously differentiable

bi ∈ IR

Non-negativity restrictions

xj ≥ 0, j = 1, . . . , n

Problem:

maxx f(x) s.t.

{

g(x) ≤ b

x ≥ 0
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Linear programming - Definition

Linear inequality restrictions

gi(x) =
∑m

i=1
aijxj ≤ bi, i = 1, . . . ,m; j = 1, . . . , n

gi(x) continuous, continuously differentiable, bi ∈ IR

A =







a11 . . . a1n

. . . . . . . . . . . . . . .

am1 . . . amn







Non-negativity restrictions

xj ≥ 0, j = 1, . . . , n

Linear objective function

f(x) =
∑n

j=1
cjxj = cx, j = 1, . . . , n

c =
(

c1 . . . cn

)

, cj ∈ IR

Problem:

maxx cx s.t. Ax ≤ b, x ≥ 0 OPT – p.6/46



Programming - Examples

Example 1

Find among all rectangles with perimeter 2p > 0, the one with
maximum area.

Solution:
Let x and y denote the base and heigth of the rectangle.
Then, x = y = p/2 defines the rectangle with maximum area.

Example 2

Find among all isosceles triangles with perimeter p = 1, the
one with maximum area.

Solution:
Let x and y denote the (equal) sides and base of the triangle.
Then, x = 1/3 and y = 1/3 defines the triangle with maximum
area.
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On stationary points

Global extreme points

Let x∗ ∈ X. Let f : X → IRn.

We say that x∗ is a global maximum of f if
∀x ∈ X, f(x∗) ≥ f(x).

We say that x∗ is a strict global maximum of f if
∀x ∈ X, f(x∗) > f(x), x∗ 6= x.

Local extreme points

Let x∗ ∈ X. Let f : X → IRn Define an open ball B(x∗, r), with
r arbitrarily small.

We say that x∗ is a local maximum of f if
∀x ∈ X ∩B(x∗, r), f(x∗) ≥ f(x).

We say that x∗ is a strict local maximum of f if
∀x ∈ X ∩B(x∗, r), f(x∗) > f(x), x∗ 6= x.
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A theorem

Weierstrass’ extreme value theorem

Let X ⊂ IR be compact and non-empty.

Let f : X → IR be continuous on X.

Then, then f must attain a global maximum and a global
minimum, each at least once. That is, ∃(c, d) ∈ X such that

f(d) ≤ f(x) ≤ f(c), ∀x ∈ X.

Remarks

Theorem only allows to identify global extreme points.

Theorem sufficient conditions, not necessary. [e.g.

f(x) = x3, x ∈ (0, 1] has a maximum at x = 1 although

X = (0, 1] is not compact

Local extreme points?
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Weiertrass’ theorem - Illustration

x
∗

x
∗∗

x
∗∗∗

a
b

X = [a, b]

a
b

X = [a, b]

f(x) f(x)

(a) Interior solutions (b) Corner solution
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On stationary points (2)

Introducing differentiability

So far, only assumption on f is continuity.

Some existence results, but no full characterization

More structure on f is needed → differentiability.
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On stationary points (3)

Let (α, β) ⊂ X. Let f : X → IR be differentiable on (α, β).

Then

If f ′(x) ≥ 0 ∀x ∈ (α, c) and f ′(x) ≤ 0 ∀x ∈ (c, β), we say that

x = c is a local interior maximum point of f .

If f ′(x) ≤ 0 ∀x ∈ (α, c) and f ′(x) ≥ 0 ∀x(c, β), we say that

x = c is a local interior minimum point of f .

If f ′(x) < 0 ∀x ∈ (α, β), we say that x = c is not an extreme

point of f ,

If f ′(x) > 0 ∀x ∈ (α, β), we say that x = c is not an extreme

point of f .
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On stationary points (4)

Fermat’s stationary points theorem

Let [a, b] ⊂ IR, and let x ∈ (a, b) be a local extremum of f

Let f : [a, b] → IR be differentiable at x.

Then, f ′(x) = 0.

Remark

Theorem only characterizes interior extreme points.

Theorem does not allow to distinguish between maximum and
minimum points.

Also, a global extreme of f may also occur at

a non-differentiable point

a boundary point

can we go beyond the “test of first derivative” ?
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On stationary points (5)

Proposition

Let f : [a, b] → IR be twice differentiable on (a, b).

Let c ∈ (a, b) be a stationary point of f , i.e. f ′(c) = 0.

Then

If f ′′(c) < 0, we say that c is a local maximum point of f .

If f ′′(c) > 0, we say that c is a local minimum point of f .

What if f ′′(c) = 0?
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Inflection points

Remark

f ′′(x) = 0 does not give information

f(x) = x4 → f ′(0) = 0, f ′′(0) = 0 and x = 0 is a minimum

f(x) = −x4 → f ′(0) = 0, f ′′(0) = 0 and x = 0 is a maximum

f(x) = x3 → f ′(0) = 0, f ′′(0) = 0 and x = 0 is a inflection point

Definition

An inflection point: function concave ↔ convex.

Let f : X → IR be twice differentiable. Let
(a, b, c) ∈ X, a < c < b.

We say that c is an inflection point of f if one of the following
conditions holds:

If f ′′(x) ≥ 0 ∀x ∈ (a, c) and f ′′(x) ≤ 0 ∀x ∈ (c, b), or

If f ′′(x) ≤ 0 ∀x ∈ (a, c) and f ′′(x) ≥ 0 ∀x(c, b)

Remark: Definition does not require f ′(c) = 0.
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Inflection points (2)

Theorem

Let f : [a, b] → IR be twice differentiable on (a, b).

Let c ∈ (a, b).

Then:

If c is an inflection point, f ′′(c) = 0

If f ′(c) = 0 and f ′′ changes sign at c, c is a stationary

inflection point

If f ′(c) 6= 0 and f ′′ changes sign at c, c is a non-stationary

inflection point
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Concave and convex functions

Definitions

Let f : [a, b] → IR be twice differentiable on (a, b).

We say that f is convex on (a, b) iff f ′′(x) ≥ 0, ∀x ∈ (a, b)

We say that f is concave on (a, b) iff f ′′(x) ≤ 0, ∀x ∈ (a, b)

We say that f is strictly convex on (a, b) iff

f ′′(x) > 0, ∀x ∈ (a, b)

We say that f is strictly concave on (a, b) iff

f ′′(x) < 0, ∀x ∈ (a, b)
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Concavity, convexity and extreme points

Theorem

Let f : [a, b] → IR be twice differentiable on (a, b).

Let c ∈ (a, b) be such that f ′(c) = 0.

Then:

If f ′′(c) ≤ 0, ∀x ∈ (a, b) then f(c) ≥ f(x) ∀x ∈ [a, b]

i.e. if f concave at c, then c is a (local) maximum point.

If f ′′(c) ≥ 0, ∀x ∈ (a, b) then f(c) ≤ f(x) ∀x ∈ [a, b]

i.e. if f convex at c, then c is a (local) minimum point.
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Concave and convex functions (2)

Preliminaries

Let f : [a, b] → IR Remark: f need not be differentiable

A point x̃ ∈ (a, b) can be written as (1− λ)a+ λb, λ ∈ [0, 1]

The equation of the segment joining a and b is given by

R(x) =
f(b)− f(a)

b− a
(x− a) + f(a)

Evaluating R(x) at x̃,

R(x̃) =
f(b)− f(a)

b− a
((1− λ)a+ λb− a) + f(a)

=
f(b)− f(a)

b− a
(λb− λa) + f(a)

= (1− λ)f(a) + λf(b)
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Concave and convex functions (3)

Definitions

Let f : A ⊂ IRn → IR, A convex (No differentiability required)

We say that f is concave on A iff ∀(a, b) ∈ A
(1− λ)f(a) + λf(b) ≤ f((1− λ)a+ λb) or R(x̃) ≤ f(x̃)

We say that f is convex on A iff ∀(a, b) ∈ A
(1− λ)f(a) + λf(b) ≥ f((1− λ)a+ λb) or R(x̃) ≥ f(x̃)

We say that f is strictly concave on A iff ∀(a, b) ∈ A
(1− λ)f(a) + λf(b) < f((1− λ)a+ λb) or R(x̃) < f(x̃)

We say that f is strictly convex on A iff ∀(a, b) ∈ A
(1− λ)f(a) + λf(b) > f((1− λ)a+ λb) or R(x̃) > f(x̃)

We say that f is quasi-concave on A iff ∀(a, b) ∈ A
min{f(a), f(b)} ≤ f((1− λ)a+ λb)

We say that f is strictly quasi-concave on A iff ∀(a, b) ∈ A
min{f(a), f(b)} < f((1− λ)a+ λb)
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Convex and concave functions - Illustration

f strictly concave

f(x)

f strictly convex

f(x)

f convex

f(x) f(x)

f concave

a

a

b

bc

c = (1− λ)a+ λb

c

f(a)

f(a)

f(b)

f(b)

f(c)

f(c)

d = (1− λ)f(a) + λf(b)

d

d

a bc

f(a)

f(b)

d = f(c)

ba c

d = f(c)

f(b)

f(a)
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Concave and convex functions (4)

Definitions

Let f : A ⊂ IRn → IR

The hypograph of f is the set

hypo{f,A} = {(x, y) ∈ IRn+1|x ∈ A, y ≤ f(x)}

The epigraph of f is the set

epi{f,A} = {(x, y) ∈ IRn+1|x ∈ A, y ≥ f(x)}

Theorem

(a) The function f is concave iff its hypograph is a convex set.

(b) The function f is convex iff its epigraph is a convex set.
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Hypograph and epigraph of f - Illustration

f(x)

fhypo{f,A}

epi{f,A}

f(x)

f

hypo{f,A}

epi{f,A}
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Concave and convex functions - Properties

Theorem

Let f : A ⊂ IRn → IR be concave

Let g : IR → IR be increasing and concave defined on an
interval I containing f(A).

Then, g[f(x)] is concave

Theorem

Let f, g : A ⊂ IRn → IR be concave functions

Let α, β ∈ IR

Then, h(x) = αf(x) + βg(x) is concave

Theorem

Let f be concave defined on an open set A ∈ IRn.

Then, f is continuous on A.
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Concave and convex functions - Properties (2)

Theorem

Let f : A ⊂ IRn → IR be of class C1 with A open and convex.

(i) f is concave iff ∀(a, b) ∈ A, we have

f(b) ≤ f(a) +Df(a)(b − a)

(ii) f is strictly concave iff ∀(a, b) ∈ A, we have

f(b) < f(a) +Df(a)(b − a)

The theorem says that f is (strictly) concave when the value
of the function at b, f(b) is smaller than or equal to the value of

the linear approximation of f at a, evaluated at b.
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Concave and convex functions - Properties (3)

α

a b

(b− a)
f(a)

f(b)

d

tg(α) = f ′(a) =
d− f(a)

b− a

d = f(a) + f ′(a)(b− a)

d ≥ f(b)
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Concave and convex functions - Properties (4)

Theorem

Let f : A ⊂ IRn → IR be of class C2 with A open and convex.

(i) f is concave iff ∀x ∈ A, the Hessian matrix D2f(x) is

negative semidefinite.

(ii) f is convex iff ∀x ∈ A, the Hessian matrix D2f(x) is

positive semidefinite.

(iii) f is strictly concave iff ∀x ∈ A, the Hessian matrix D2f(x)
is negative definite.

(iv) f is strictily convex iff ∀x ∈ A, the Hessian matrix D2f(x)
is posite definite.
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Definiteness and (leading) principal minors

M symmetric matrix n× n;

Dk leading principal minor order k.

∆k principal minor order k

A kth order principal submatrix of M is a matrix that results
from deleting the same n− k rows and n− k columns from M

The leading principal submatrices of M are only those
principal submatrices formed by deleting the last n− k rows
and n− k columns.

Theorem:

M is positive definite ⇔ Dk > 0,∀k

M is negative definite ⇔ signDk = sign(−1)k,∀k

M is positive semidefinite ⇔ ∆k ≥ 0,∀k

M is negative semidefinite ⇔ sign∆k = 0 or (−1)k,∀k
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Definiteness and (leading) principal minors (2)

Let M =







a11 a12 a13

a21 a22 a23

a31 a32 a33







Leading principal minors:
∣

∣

∣a11

∣

∣

∣
,

∣

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

Second order principal minors:
∣

∣

∣

∣

∣

a22 a23

a32 a33

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

a11 a13

a31 a33

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

∣

First order principal minors:
∣

∣

∣a11

∣

∣

∣
,
∣

∣

∣a22

∣

∣

∣
,
∣

∣

∣a33

∣

∣

∣
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Definiteness and (leading) principal minors (3)

Consider f(x, y, z) generating a Hessian matrix M, 3× 3

f is strictly concave iff

∣

∣

∣a11

∣

∣

∣
< 0,

∣

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

∣

> 0,

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

< 0; [M neg def]

f is concave iff
∣

∣

∣a11

∣

∣

∣
≤ 0,

∣

∣

∣a22

∣

∣

∣
≤ 0,

∣

∣

∣a33

∣

∣

∣
≤ 0

∣

∣

∣

∣

∣

a22 a23

a32 a33

∣

∣

∣

∣

∣

≥ 0,

∣

∣

∣

∣

∣

a11 a13

a31 a33

∣

∣

∣

∣

∣

≥ 0,

∣

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

∣

≥ 0

∣

∣

∣M
∣

∣

∣
≤ 0

[M neg semidef]
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On Hessian definiteness

Example 1

M =







1 4 6

4 2 1

6 1 6







D1 = 1 > 0

D2 =

∣

∣

∣

∣

∣

1 4

4 2

∣

∣

∣

∣

∣

= −14 < 0

M =

∣

∣

∣

∣

∣

∣

∣

1 4 6

4 2 1

6 1 6

∣

∣

∣

∣

∣

∣

∣

= −109 < 0

Conclusion: M is indefinite
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On Hessian definiteness (2)

Example 2

M =







3 0 3

0 1 −2

3 −2 8







D1 = 3 > 0

D2 =

∣

∣

∣

∣

∣

3 0

0 1

∣

∣

∣

∣

∣

= 3 > 0

M =

∣

∣

∣

∣

∣

∣

∣

3 0 3

0 1 −2

3 −2 8

∣

∣

∣

∣

∣

∣

∣

= 3 > 0

Conclusion: M is positive definite
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On Hessian definiteness (3)

Example 3

M =







−3 −3 3

2 1 2

3 −2 8







D1 = −3 < 0

D2 =

∣

∣

∣

∣

∣

−3 −3

2 1

∣

∣

∣

∣

∣

= 3 > 0

D3 =

∣

∣

∣

∣

∣

∣

∣

−3 −3 3

2 1 2

3 −2 8

∣

∣

∣

∣

∣

∣

∣

= −27 < 0

Conclusion: M is negative definite
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On Hessian definiteness (4)

Example 4

Assess whether f(x, y) = x2 − y2 − xy is concave or convex

J(x, y) =
(

2x− y −2y − x
)

H =

(

2 −1

−1 −2

)

D1 = 2 > 0

D2 =

∣

∣

∣

∣

∣

2 −1

−1 −2

∣

∣

∣

∣

∣

= −5 < 0

H is indefinite → f(x, y) is neither concave nor convex.
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On Hessian definiteness (5)

Example 5

Assess whether f(x, y) = 2x− y − x2 + xy − y2 is concave or
convex

J(x, y) =
(

2− 2x+ y −1 + x− 2y
)

H =

(

−2 1

1 −2

)

D1 = −2 < 0

D2 =

∣

∣

∣

∣

∣

−2 1

1 −2

∣

∣

∣

∣

∣

= 3 > 0

H is negative definite → f(x, y) is strictly concave.
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On Hessian definiteness (6)

Example 6

Assess whether f(x, y) = 2x− y− x2 + 2xy− y2 is concave or
convex

J(x, y) =
(

2− 2x+ 2y −1 + x− 2y
)

H =

(

−2 2

2 −2

)

D1 = −2 < 0

D2 =

∣

∣

∣

∣

∣

−2 2

2 −2

∣

∣

∣

∣

∣

= 0

H is negative semidefinite → f(x, y) is concave.
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On Hessian definiteness (7)

Example 7

M =

(

1 0

0 0

)

D1 = 1 > 0

D2 = 0

Conclusion: M is positive semi-definite
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On Hessian definiteness (8)

Example 7

Find the stationary ponits of f(x, y) = x3 − 3x2 + y3 − 3y2

J(x, y) =
(

3x2 − 6x 3y2 − 6y
)

Stationary points satisfy ∂f
∂x

= 0 and ∂f
∂y

= 0. These points are:

(0, 0), (2, 0), (0, 2), (2, 2)

Hessian matrix is H =

(

−6x− 6 0

0 −6y − 6

)

Evaluate H at the stationary points
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On Hessian definiteness (9)

Consider (0, 0) : H =

(

−6 0

0 −6

)

,D1 = −6, D2 = 36

negative definite: f strictly concave → (0, 0) maximum.

Consider (2, 0) : H =

(

6 0

0 −6

)

,D1 = 6, D2 = −36

indefinite, thus a saddle point.

Consider (0, 2) : H =

(

−6 0

0 6

)

,D1 = −6, D2 = −36

indefinite, thus a saddle point.

Consider (2, 2) : H =

(

6 0

0 6

)

,D1 = 6, D2 = 36

positive definite, f strictly convex → (2, 2) minimum.
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On quasi-concavity

Intuition: Take any two points (a, b) ∈ A and assume

f(a) ≥ f(b).

quasi-concavity requires that, as we move along the segment
from the “low” point b to the “high” point a, the value of f never
falls below f(b).

f(x)

f

a

f(a)

f(b)

b x

f(x)

f

a

f(a)

f(b)

b x

f quasi-concave
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On quasi-concavity (2)

Recall: f is quasi-concave on A iff ∀(a, b) ∈ A
min{f(a), f(b)} ≤ f((1− λ)a+ λb)

If f concave then f is quasi-concave

f concave: f((1− λ)a+ λb) ≥ (1− λ)f(a) + λf(b)

Also, (1− λ)f(a) + λf(b) ≥
(1− λ)min{f(a), f(b)} + λmin{f(a), f(b)} =
min{f(a), f(b)}

Thus, min{f(a), f(b)} ≤ f((1− λ)a+ λb) and f is
quasi-concave.
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Local and global extreme points

Theorem - Local-global

Let X ⊂ IR be convex and non-empty.

Let f : X → IR be continuous and concave on X.

Then, a local maximum is also global, and

If f is strictly concave, then there is a unique maximum.

OPT – p.42/46



Local-global theorem - proof

Let x̂ be a local maximum but not a global one.

Then, ∃r > 0 such that f(x̂) ≥ f(x),∀x ∈ B(x̂, r)

Since, x̂ is not global max, ∃y ∈ X s.t. f(y) > f(x̂)

Since X is convex, ∀λ ∈ (0, 1), (1− λ)y + λx̂ ∈ X

pick λ ≈ 1 so that (1− λ)y + λx ∈ B(x̂, r)

By concavity of f , f [(1− λ)y + λx̂] ≥ (1− λ)f(y) + λf(x̂)

Since f(y) > f(x̂) it follows (1− λ)f(y) + λf(x̂) > f(x̂)

By construction, (1− λ)y + λx ∈ B(x̂, r), implying

f(x̂) ≥ f [(1− λ)y + λx̂] > f(x̂). Thus, f(x̂) > f(x̂) !!

Accordingly, whenever x̂ is a local max, it must also be a
global one.
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Geometry of Classical programming
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(a) Classic programming: tangency solution
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Geometry of Non-linear programming
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(a) Non-linear programming: corner solution
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(a) Non-linear programming: interior solution
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Geometry of Linear programming
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(a) Linear programming: solution at a vertex
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(b) Linear programming: continuum of solutions
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