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Differentiation and derivative

Definitions

A function f : A ⊂ IR→ IR is differentiable at a point x0 ∈ A if
the limit

f ′(x0) = limh→0
f(xo+h)−f(x0)

h exists. Equivalently,

limh→0
f(x0+h)−f(x0)−f ′(x0)h

h = 0 or

limx→x0

|f(x)−f(x0)−f ′(x0)(x−x0)|
|x−x0| = 0.

A function f : A ⊂ IRn → IRm is differentiable at a point x0 ∈ A
if we can find a linear function Df(x0) : IRn → IRm (that we

refer to as the derivative of f at x0) such that

lim
x→x0

‖f(x)− [f(x0) +Df(x0)(x− x0)]‖
‖x− x0‖

= 0

If f is differentiable ∀x ∈ A, we say that f is differentiable inA.

Derivative is the slope of the linear approximation of f at x0.
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Differentiability- Illustration
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Differentiation and derivative (2)

Some theorems

Theorem 1: Let f : A→ IRm be differentiable at x0 ∈ A.
Assume A ⊂ IRn is an open set. Then, there is a unique linear
approximation Df(x0) to f at x0.

Recall some one-dimensional results

Theorem 2 (Fermat): Let f : (a, b)→ IR be differentiable at

c ∈ (a, b). If c is an extreme point of f then, f ′(c) = 0.

Theorem 3 (Rolle): Let f : [a, b]→ IR be continuous. Assume

f is differentiable in (a, b). Assume also f(a) = f(b) = 0.

Then, ∃c ∈ (a, b) such that f ′(c) = 0.

Theorem 4 (Mean-Value): Let f : [a, b]→ IR be continuous.

Assume f is differentiable in (a, b). Then, ∃c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

Corollary: If, in addition, f ′ = 0 on (a, b), then f is constant.
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Differentiation and derivative (3)

Proof of theorem 2

Let f have a maximum at c. Then, for
h ≥ 0, [f(c+ h)− f(c)]/h ≤ 0. Letting h→ 0, h ≥ 0 we get

f ′(c) ≤ 0. Similarly, for h ≤ 0, it follows that f ′(c) ≥ 0. Hence,

f ′(c) = 0.

A parallel argument holds when f has a minimum at c.

Proof of theorem 3

If f(x) = 0,∀x ∈ [a, b], we can choose any c.

If f 6= 0, applying the boundedness theorem ∃c1 where f
reaches a maximum and ∃c2 where f reaches a minimum.

Since f(a) = f(b) = 0, at least one of c1, c2 lies in (a, b).

Assume c1 ∈ (a, b). Then, applying theorem 1 f ′(c1) = 0.

Mutatis mutandis for c2
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One-dimension theorems - Illustration
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Differentiation and derivative (4)

Proof of theorem 4

Define an auxiliary function

g(x) = f(x)− f(a)− (x− a)f(b)−f(a)
b−a

g(x) is continuous in [a, b] and differentiable in (a, b).

g′(x) = f ′(x)− f(b)−f(a)
b−a . Also, g(a) = g(b) = 0.

Applying Rolle’s theorem, g′(c) = 0, Hence,

f(b)− f(a) = f ′(c)(b− a).

Proof of the Corollary

Apply Theorem 4 to f on [a, x].

Then, f(x)− f(a) = f ′(c)(x− a) = 0.

Thus, f(x) = f(a) ∀x ∈ [a, b]

Therefore, f is constant.
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One-dimension theorems - Illustration
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The general Mean-Value theorem

We say that c is on the line segment joning x and y if it can be
written as a convex combination of x and y. Namely,
c = (1− λ)x+ λy, λ ≥ 0, λ ∈ [0, 1]

The general Mean-Value theorem

(i) Let f : A ⊂ IRn → IR be differentiable on A (an open set).

Consider (x, y) ∈ A s.t. the segment defined by their
convex combination lies in A.

Then ∃c in that segment such that
f(y)− f(x) = Df(c)(y − x)

(ii) Let f : A ⊂ IRn → IRm be differentiable on A (open set).

Let f = (f1, f2, . . . , fm). Consider (x, y) ∈ A s.t. the

segment defined by their convex combination lies in A.

Then ∃(c1, c2, . . . , cm) on that segment such that

fi(y)− fi(x) = Dfi(ci)(y − x), i = 1, 2, . . . , n
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The Jacobian matrix

Let f : A ⊂ IRn → IRm: f(x1, . . . , xn) =
[f1(x1, . . . , xn), f2(x1, . . . , xn), . . . , fm(x1, . . . , xn)]

Compute the partial derivative of fj wrt xi, i.e.
∂fj
∂xi

, j = 1, . . . ,m; i = 1, . . . , n

Partial derivative. Definition
∂fj
∂xi

(x1, . . . , xn) = limh→0
fj(x1,...,xi+h,...,xn)−fj(x1,...,xn)

h

Theorem Let f : A→ IRm be differentiable. Assume A ⊂ IRn is
an open set. Then, the partial derivatives ∂fj/∂xi exist and

the matrix Df(x) is given by












∂f1
∂x1

(x) ∂f1
∂x2

(x) . . . ∂f1
∂xn

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x) . . . ∂f2
∂xn

(x)
...

...
. . .

...
∂fm
∂x1

(x) ∂fm
∂x2

(x) . . . ∂fm
∂xn

(x)













(Jacobian matrix of f )
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The gradient of f

The gradient is the generalization of the concept of derivative
of a function in IR to a function in IRm.

The gradient is the vector of the n partial derivatives of f.

Gradient of f . Definition. Let f : A ⊂ IRn → IR be
differentiable. The gradient of f is the vector whose
components are the elements of Df(x). That is,

∇f =
(

∂f
∂x1

(x), ∂f
∂x2

(x), . . . , ∂f
∂xn

(x)
)

The gradient points towards the direction of greatest rate of
increase of the function f . (See below, p. 19)

Recall: Let f : A→ IR. If f is differentiable at x0 then it is
continuous at that point.
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Gradient - Illustration

Consider f(x, y) = 4x2 + y2. Then, ∇f = (8x, 2y). The figure

represents the gradient at three points for the level set k = 1.
They are orthogonal to the level surfice as they show the
direction of greatest increase of f .
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Continuity and differentiability

Theorem: Let f : A→ IRm be differentiable in A. Assume
A ⊂ IRn is an open set. Then, f is continuous.

Proof:

f differentiable at x0 means f ′(x0) = limx→x0

f(x)−f(x0)
x−x0

We need to prove that limx→x0
f(x) = f(x0)

lim
x→x0

[f(x)− f(x0)] = lim
x→x0

(x− x0)
f(x)− f(x0)

x− x0

= lim
x→x0

(x− x0) lim
x→x0

f(x)− f(x0)

x− x0
= 0 · f ′(x0) = 0

Therefore, limx→x0
f(x) = f(x0) proving that f is

continuous.
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Continuity and differentiability (2)

Theorem (Lipschitz property): Let f : A→ IRm be
differentiable in A. Assume A ⊂ IRn is an open set. Then, f is
continuous. More precisely, ∀x0 ∈ A,∃M > 0 and δ0 > 0 such
that ‖x− x0‖ < δ0 implies ‖f(x)− f(x0‖ ≤M‖x− x0‖.
The Lipschitz property defines a stronger notion of continuity
where, the number M (called the “Lipschitz constant")
represents the bound of the slope of the function at x0. A
particular case of Lipschitz continuity is the property of a
function being a contraction, when M < 1 (useful for
fixed-point theorems, and stability of equilibria).

Theorem: Consider f : A→ IRm. Assume A ⊂ IRn is an open
set. Assume f = (f1, f2, . . . , fm). If each of the partial

derivatives ∂fj/∂xi exists, and is a continuous function in A,

then f is differentiable in A.

OPT – p.14/91



Directional derivatives

Intuition: Consider a function defined in a n-dimensional
space. The directional derivative is the rate of change of the
function f in a particular direction e.

Definition: Let f : IRn → IRm. Assume f is defined in a
neighborhood of x0 ∈ IRn. Let e ∈ IRn be a unit vector. Then,
the directional derivative of f at x0 in the direction e is defined
as

Duf(x0) ≡ d
dhf(x0 + he)|h=0 = limh→0

f(x0+he)−f(x0)
h

This is very similar to the definition of a partial derivative.
However, this limit may be difficult to compute. An equivalent
formula can be derived using the gradient of f .
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Directional derivatives - using the gradient

Introduction

For illustrative purposes, the argument is developed in IR2, but
straightforward generalization

Consider f(x, y) and a unit vector e = (e1, e2).
Define g(z) ≡ f(x, y) with x = x̃+ e1z and y = ỹ + e2z.

Step 1

Compute g′(z) = limh→0
g(z+h)−g(z)

h

Evaluate at z = 0 : g′(0) = limh→0
g(h)−g(0)

h

Substitute in g(·) for f(·) to obtain

g′(0) = limh→0
f(x̃+e1h,ỹ+e2h)−f(x̃,ỹ)

h

Note that this limit is precisely the directional derivative of f at
(x̃, ỹ), i.e. g′(0) = Def(x̃, ỹ)
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Directional derivatives - using the gradient (2)

Step 2

Compute g′(z) using the Chain rule:

g′(z) = dg
dz = ∂f

∂x
∂x
∂z + ∂f

∂y
∂y
∂z = ∂f

∂xe1 +
∂f
∂y e2, i.e.

g′(z) = ∂f
∂xe1 +

∂f
∂y e2

Evaluating at z = 0, g′(0) = ∂f
∂x(x̃)e1 +

∂f
∂y (ỹ)e2

Step 3

Combining the two expressions obtained for g′(0) in the two

previous steps, it follows that

Def(x̃, ỹ) =
∂f

∂x
(x̃)e1 +

∂f

∂y
(ỹ)e2 = ∇f · e
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Directional derivatives - using the gradient (3)

Let e = (1, 0, 0, . . . , 0) This is a unit vector in the direction x1.
Accordingly, the directional derivative coincides with the
partial derivative ∂f/∂x1.

Thus, for a general direction e = (e1, . . . , en), the directional

derivative is a combination of all the partial derivatives with
weights e = (e1, . . . , en) for each of the n directions
respectively.

Operative definition of directional derivative: Consider a
function f : IRn → IR. Let e = (e1, . . . , en) be a unit vector (i.e.

a vector of lenght one). Then, the directional derivative is the
dot product of the gradient and the unit vector:

Duf = ∇f · e =
∑n

i=1
∂f
∂xi

ei
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Directional derivatives - using the gradient (4)

As the directional derivative is the dot product of two vectors,
it can be written as Duf = ∇f · e = ‖∇f‖‖e‖ cos θ where θ is
tha angle between the gradient vector and the unit vector.

Note that Duf is decreasing in cos θ. That is, the greatest
positive value of the directional derivative occurs at θ = 0.
Hence, the direction of greatest increase of f is the same
direction of the gradient vector.

Also, the greatest negative value of the directional derivative
occurs at θ = π. Hence, the direction of greatest decrease of
f is the direction opposite to the gradient vector.

Thus if two vectors a and b are orthogonal (i.e. θ = π/2),
cos θ = 0 and thus a · b = 0.

Similarly, two vectors a and b are parallel (i.e. θ = {0, π}),
cos θ = ±1 if a · b = ‖a‖‖b‖.
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Directional derivatives - using the gradient (5)

Example:

Let f(x, y) = 4x2 + y2. Find the directional derivative in the

direction u = (2, 1) at the point (x, y) = (1, 1).

Compute the gradient: ∇f = (8x, 2y)

Evaluate the gradient at the point (1,1): ∇f(1, 1) = (8, 2)

Compute the unit vector e = (e1, e2):

Given the direction u = (2, 1), the length of this vector is

‖u‖ =
√
22 + 12 =

√
5.

Then e = (e1, e2) =
u

‖u‖ = ( 2√
5
, 1√

5
).

so that ‖e‖ =
√

( 2√
5
)2 + ( 1√

5
)2 = 1

The directional derivative requested is

∇f(1, 1) · (e1, e2)T = (8, 2) · ( 2√
5
, 1√

5
)T = 18√

5

OPT – p.20/91



The Chain rule - Differentiating composite functions

Many economic applications involve composite functions.

Directional derivatives is an application of the chain rule.

Set-up (in IR2)

Let z = f(x1, x2), x1 = g(t), x2 = h(t), be differentiable.

Write z = f(g(t), h(t)) = φ(t) Question: Value of dφ/dt?

Answer (theorem): dφ
dt = ∂f

∂x1

dx1

dt + ∂f
∂x2

dx2

dt

A more general set-up

z = f(x1, x2), xi = gi(t1, t2, t3), (i = 1, 2), z = φ(t1, t2, t3)

Then, ∂φ
∂tj

= ∂f
∂x1

∂x1

∂tj
+ ∂f

∂x2

∂x2

∂tj
, (j = 1, 2, 3)

General set-up

z = f(x1, . . . , xn), xi = gi(t1, . . . , tm), z = φ(t1, . . . , tm)

Then, ∂φ
∂tj

=
∑n

i=1
∂f
∂xi

∂xi

∂tj
, (j = 1, . . . ,m)
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The Chain rule - Proof

Use definition of derivative: dφ
dt = lim∆t→0

φ(t+∆t)−φ(t)
∆t =

lim∆t→0
f(g(t+∆t),h(t+∆t))−f(g(t),h(t))

∆t

Define ∆x1 = g(t+∆t)− g(t), ∆x2 = h(t+∆t)− h(t)

Substitute:
dφ
dt = lim∆t→0

φ(t+∆t)−φ(t)
∆t = lim∆t→0

f(x1+∆x1,x2+∆x2)−f(x1,x2)
∆t

Add and substract f(x1, x2 +∆x2)

= lim∆t→0
f(x1+∆x1,x2+∆x2)−f(x1,x2)+f(x1,x2+∆x2)−f(x1,x2+∆x2)

∆t =

= lim∆t→0

(

f(x1+∆x1,x2+∆x2)−f(x1,x2+∆x2)
∆t

∆x1

∆x1
+

f(x1,x2+∆x2)−f(x1,x2)
∆t

∆x2

∆x2

)

= lim∆t→0

(

f(x1+∆x1,x2+∆x2)−f(x1,x2+∆x2)
∆x1

∆x1

∆t +

f(x1,x2+∆x2)−f(x1,x2)
∆x2

∆x2

∆t

)

=
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The Chain rule - Proof (cont’d)

= f(x1+∆x1,x2+∆x2)−f(x1,x2+∆x2)
∆x1

lim∆t→0
∆x1

∆t +
f(x1,x2+∆x2)−f(x1,x2)

∆x2
lim∆t→0

∆x2

∆t =

= f(x1+∆x1,x2+∆x2)−f(x1,x2+∆x2)
∆x1

dx1

dt + f(x1,x2+∆x2)−f(x1,x2)
∆x2

dx2

dt

Note that when ∆t→ 0 it follows that ∆x1 → 0 and ∆x2 → 0

Note that lim∆x1→0
f(x1+∆x1,x2+∆x2)−f(x1,x2+∆x2)

∆x1
= ∂f

∂x1

and lim∆x2→0
f(x1,x2+∆x2)−f(x1,x2)

∆x2
= ∂f

∂x2

Hence, we conclude dφ
dt = ∂f

∂x1

dx1

dt + ∂f
∂x2

dx2

dt .
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The Chain rule and directional derivatives

Consider f(x, y) and a point (x0, y0) in the domain of f .

Consider any vector (h, k) 6= 0. It gives a direction to move

away from (x0, y0) in a straight line towards points

(x, y) = (x(t), y(t)) = (x0 + th, y0 + tk)

Given (x0, y0) and (h, k), define the directional function

g(t) = f(x0 + th, y0 + tk).

Question dg/dt?

Apply Chain-rule: dg
dt = ∂f

∂x
dx
dt +

∂f
∂y

dy
dt = ∂f

∂xh+ ∂f
∂y k.

Let t = 0. Then, dg
dt |t=0 =

∂f
∂x |(x0,y0)h+ ∂f

∂y |(x0,y0)k = ∇f · (h, k).

When (h, k) is the unit vector (i.e. h2 + k2 = 1), the derivative

of f in the direction (h, k) is the directional derivative of f at

(x0, y0).
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The Implicit function theorem

Motivation

Consider f(x, y) = x2 + y2 − 1.

1.- Can we find a function y = g(x) for (x, y) s.t. f(x, y) = 0?

i.e., can we write f(x, g(x)) = 0 for all x in the domain of g?

2.- how changes in x affect y?

Some examples

Example 1

Let f(x, y) = ay − bx− c

values that satisfy f(x, y) = 0 are ay − bx− c = 0

Suppose a 6= 0

Then, y(x) = (b/a)x+ c/a

y(x) contiunuous ∀x; y(x) differentiable, dy/dx = b/a

Note ∂f
∂y = a. Hence, f(x) exists and differentiable iff

a 6= 0
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The Implicit function theorem - example 2

Consider f(x, y) = x2 + y2 − 1.

Let x ∈ [−1, 1] and y ≥ 0

Consider points (a, b) such that f(x, y) = 0

Jf =
(

∂f
∂x(a, b),

∂f
∂y (a, b)

)

= (2a, 2b)

∂f
∂y (a, b) = 2b 6= 0 if b 6= 0.

Then y = g(x) =
√
1− x2 and

f(x, g(x)) = x2 + (
√
1− x2)2 − 1 = x2 + 1− x2 − 1 = 0

x

y

f(x, y)

−1 0 1

y = g(x)

a

b

U

V
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The Implicit function theorem - example 3

Consider the functions

f1 : IR2 × IR2 → IR : (x, y, z, w)→ x2 + y2 + z2 + w2 − 2

f2 : IR2 × IR2 → IR : (x, y, z, w)→ x2 − y2 + z2 − w2

Suppose ∃(x0, y0, z0, w0) with z0 > 0, w0 > 0 satisfying

f1(x0, y0, z0, w0) = 0, f2(x0, y0, z0, w0) = 0

Note that

∆ =

∣

∣

∣

∣

∣

∂f1
∂z

∂f1
∂w

∂f2
∂z

∂f2
∂w

∣

∣

∣

∣

∣

(z0,w0)

=

∣

∣

∣

∣

∣

2z0 2w0

2z0 −2w0

∣

∣

∣

∣

∣

= −8z0w0 6= 0

Then, it is easy to verify that the functions

z = g1(x, y) =
√
1− x2 and w = g2(x, y) =

√

1− y2 satisfy

f1(x, y, g1(x, y), g2(x, y)) = 0 and f2(x, y, g1(x, y), g2(x, y)) = 0
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The Implicit function theorem (2)

The general question

Consider a function f : IRn × IRm → IRm. Consider f(x, y) = 0:

f1(x1, . . . , xn; y1, . . . , ym) = 0

...
...

fm(x1, . . . , xn; y1, . . . , ym) = 0

We aim at solving for the m unknowns (y1, . . . , ym) from the

m equations in terms of (x1, . . . , xn).
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The Implicit function theorem (3)

Let i = 1, 2, . . . ,m

Suppose fi : IRn× IRm → IR has continuous partial derivatives.

Consider (x0, y0) ∈ IRn × IRm with fi(x0, y0) = 0,∀i.
Assume the determinant ∆ evaluated at (x0, y0) is not zero.

∆ =

∣

∣

∣

∣

∣

∣

∣

∣

∂f1
∂y1

. . . ∂f1
∂ym

...
...

...
∂fm
∂y1

. . . ∂fm
∂ym

∣

∣

∣

∣

∣

∣

∣

∣

(x0,y0)

6= 0

Then, ∃U = B(x0, r) ⊂ IRn and V = B(y0, s) ⊂ IRm and a

unique functions gi : U → V, ∀x ∈ U, ∀y ∈ V such that
fi(x, g1(x), . . . , gm(x)) = 0,∀i.
This is an essential result for the comparative statics analysis
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The Implicit function theorem - A particular case

Suppose f : IRn × IR→ IR has continuous partial derivatives.

Suppose ∃(x0, y0) ∈ IRn × IR s.t. f(x0, y0) = 0, ∂f
∂y |(x0,y0) 6= 0

Then, ∃U = B(x0, r) ⊂ IRn and V = B(y0, s) ⊂ IR such that

there is a unique function
y = g(x) = g(x1, . . . , xn)
defined for x ∈ U and y ∈ V , satisfying
f(x, g(x)) = 0

Proof for n = 2
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The Implicit function theorem - Proof (n = 2,m = 1)

Notation: (x, z) = (x, y, z), (x0, z0) = (x0, y0, z0)

Let f : IR2 × IR→ IR with f(x0, z0) = 0 and ∂f
∂z |(x0,z0) 6= 0

Suppose (wlog) ∂f
∂z |(x0,z0) > 0 (otherwise, consider −f )

Because ∂f
∂z is continuously differentiable, ∃a > 0 and b > 0

such that for ‖x− x0‖ < a and |z − z0| < a, ∂f
∂z > b.

Also, we may assume ∃M > 0 such that |∂f∂x | < M and

|∂f∂y | < M in the same region.

Since f(x0, z0) = 0, we can rewrite it as

f(x, z) = [f(x, z)− f(x0, z)] + [f(x0, z)− f(x0, z0)]
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The IFT - Proof (2)

Consider the term [f(x, z)− f(x0, z)]

The line segment in IR3 linking (x, z) to (x0, z) is:

L : [0, 1]→ IR3 : t→ (tx+ (1− t)x0, z)

= (tx+ (1− t)x0, ty + (1− t)y0, z)

Next, define h = f ◦ L : [0, 1]→ IR. Then, for some θ ∈ (0, 1),
applying the Mean value theorem it follows

f(x, z)− f(x0, z) = h(1)− h(0) = h′(θ)

Applying the chain rule to compute h′(θ):
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The IFT - Proof (3)

h′(θ) =
(

∂f
∂x |L(θ)

∂f
∂y |L(θ)

∂f
∂z |L(θ)

)







x− x0

y − y0

0







=
(∂f

∂x
|(θx+(1−θ)x0,z)

)

(x− x0) +
(∂f

∂y
|(θx+(1−θ)x0,z)

)

(y − y0). (1)
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The IFT - Proof (4)

Consider the term [f(x0, z)− f(x0, z0)]

The line segment in IR3 linking (x0, z) to (x0, z0) is:

L : [0, 1]→ IR3 : t→ (x0, tz + (1− t)z0)

= (x0, y0, tz + (1− t)z0)

Next, define h = f ◦ L : [0, 1]→ IR. Then, for some φ ∈ (0, 1),
applying the Mean value theorem it follows

f(x0, z)− f(x0, z0) = h(1)− h(0) = h′(φ)

Applying the chain rule to compute h′(φ):
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The IFT - Proof (5)

h′(φ) =
(

∂f
∂x |L(φ)

∂f
∂y |L(φ)

∂f
∂z |L(φ)

)







0

0

z − z0







=
(∂f

∂z
|(x0,φz+(1−φ)z0)

)

(z − z0). (2)
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The IFT - Proof (6)

From (1) and (2) we can write

f(x, z) =
(∂f

∂x
|(θx+(1−θ)x0,z)

)

(x− x0)+

(∂f

∂y
|(θx+(1−θ)x0,z)

)

(y − y0)+

(∂f

∂z
|(x0,φz+(1−φ)z0)

)

(z − z0). (3)

for some θ, φ ∈ (0, 1).

Now choose

a0 ∈ (0, a), and δ < min{a0,
ba0
2M
}
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The IFT - Proof (7)

If ‖x− x0‖ < δ, then it is easy to see that

|
(∂f

∂x
|(θx+(1−θ)x0,z)

)

(x−x0)+
(∂f

∂y
|(θx+(1−θ)x0,z)

)

(y−y0)| < ba0

so that

f(x, z0 + a0) > 0 and f(x, z0 − a0) < 0.

Applying the intermediate value theorem,

∃z ∈ (z0 − a0, z0 + a0) s.t. f(x, z) = 0

Also that value is unique, because since ∂f
∂z > 0 it may have at

most one root.
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The IFT - Proof (8)

In other words, take

U = B(x0, δ) and V = (z0 − a0, z0 + a0)

for each x ∈ U there is a unique z ∈ V such that f(x, z) = 0.

Thus, we can write z = g(x, y).
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Differentiation of an implicit function

Let f(x1, x2) = k, k ∈ IR be (continuously) differentiable.

This is a level set of function f(x1, x2).

Assume this function allows to define x2 = g(x1), ∀x1 ∈ I ⊂ IR

Hence, f(x1, x2) = f(x1, g(x1)) = φ(x1) and thus φ(x1) = k

Question: Value of dx2/dx1 at a point p?

Answer: slope of the tangent to f(x1, x2) = k

How to compute that slope?

Applying the chain rule,
dφ(x1)
dx1

= ∂f
∂x1

+ ∂f
∂x2

dx2

dx1

Since φ(x1) = k,∀x1 ∈ I, it follows dφ
dx1

= 0.

Thus,
dφ(x1)
dx1

= ∂f
∂x1

+ ∂f
∂x2

dx2

dx1
= 0 or

dx2

dx1
|p = − ∂f

∂x1
|p/ ∂f

∂x2
|p, with ∂f

∂x2
6= 0.
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Differentiation of an implicit function - Illustration

Consider f(x, y) = y3 + x2 − 3xy − 7 = 0 around (x, y) = (4, 3)

Suppose y(x) exists solving f(x, y) = 0 around (4, 3)

Substitute y(x) into f(x, y):

[y(x)]3 + x2 − 3x[y(x)]− 7 = 0

Differentiate wrt x (use Chain rule):

3[y(x)]2
∂dy

∂dx
+ 2x− 3y(x)− 3x

∂dy

∂dx
= 0

∂dy

∂dx
=

3y(x)− 2x

3[y(x)]2 − 3x

Then, dy
dx |(4,3) = 1

15

Remark: dy
dx exists if 3[y(x)]2 − 3x 6= 0.

Again df
dy 6= 0 requiered.
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The Implicit function theorem - an economic application

A macro model of income determination

Notation

Y : national income = GDP

T : taxes (lump sum)

Yd: disposable income, Yd = Y − T

C: consumption. C(Yd), dC/dYd ∈ (0, 1)

I: investment

G: government expenditure

suppose macro equilibrium: aggr supply = aggr demand
Y = C(Y − T ) + I +G

Questions

Can we express Y as a function of I,G, T?

How variations in I,G, T affect Y ?
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The Implicit function theorem - an economic application (2)

Question (a)

Define F (Y, I,G, T ) = Y − C(Y − T )− I −G

The Implicit function theorem tells us that Y ∗(I,G, T ) exists in

a neighborhood of (I,G, T ) if ∂F
∂Y 6= 0.

Let us verify it:

∂F

∂Y
= 1− ∂C

∂Yd

∂Yd
∂Y

= 1− ∂C

∂Yd
> 0

therefore such a function exists.
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The Implicit function theorem - an economic application (3)

Question (b) - Comparative statics

The Implicit function theorem tells us that

∂Y ∗

∂I
= − ∂F/∂I

∂F/∂Y
= − −1

1− ∂C
∂Yd

=
1

1− ∂C
∂Yd

> 0

∂Y ∗

∂G
= −∂F/∂G

∂F/∂Y
= − −1

1− ∂C
∂Yd

=
1

1− ∂C
∂Yd

> 0

∂Y ∗

∂T
= −∂F/∂T

∂F/∂Y
= −
− ∂C

∂Yd

∂Yd

∂T

1− ∂C
∂Yd

= −
∂C
∂Yd

1− ∂C
∂Yd

< 0
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More on comparative statics

A firm produces y using an input x; f(x) = xα, α ∈ (0, 1)

Competitive markets for output and input

Market prices: p and w

Profit function: π(x) = pxα − wx

Questions: (a) x max π; (b) dx/dw

(a) x max π

dπ/dx = 0→ pαx(α−1) − w = 0

(b) Assess dx/dw

Define F (x,w) = pαx(α−1) − w

Since dF/dx = (α− 1)αpx(α−2) < 0, (i.e. 6= 0), apply IFT

dx

dw
= −∂F/∂w

∂F/∂x
= − −1

(α− 1)αpx(α−2)
< 0
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A more general set-up

Let f(x1, x2, x3) = k be (continuously) differentiable.

Assume this function allows to define
x3 = g(x1, x2), ∀(x1, x2) ∈ I

The IFT guarantees g is also continuously differentiable.

Rewrite f(x1, x2, x3) = f(x1, x2, g(x1, x2)) = φ(x1, x2)

Since φ(x1, x2) = k,∀x1 ∈ I, it follows dφ
dx1

= dφ
dx2

= 0.

Apply chain rule to compute dφ
dx1

and dφ
dx2

:

dφ
dx1

= 0 = ∂f
∂x1

+ ∂f
∂x3

∂x3

∂x1
. Therefore, ∂x3

∂x1
= − ∂f

∂x1
/ ∂f
∂x3

dφ
dx2

= 0 = ∂f
∂x2

+ ∂f
∂x3

∂x3

∂x2
. Therefore, ∂x3

∂x2
= − ∂f

∂x2
/ ∂f
∂x3

with ∂f
∂x3
6= 0.
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The general case

Let f(x1, . . . , xn) = k be differentiable.

Assume this function allows to define
xn = g(x1, . . . , xn−1), ∀(x1, . . . , xn−1) ∈ I
where I is defined as the set of points (x1, . . . , xn−1)
satisfying f(x1, . . . , xn) = k.

The IFT guarantees g is also continuously differentiable.

Rewrite f(x1, . . . , xn) = φ(x1, . . . , xn−1)

Since φ(x1, . . . , xn−1) = k, it follows dφ
dxi

= 0, i = 1, . . . , n− 1.

Apply chain rule to compute dφ
dxi

:

dφ
dxi

= 0 = ∂f
∂xi

+ ∂f
∂xn

∂xn

∂xi
, i = 1, . . . , n− 1.

Thus, ∂z
∂xi

= − ∂f
∂xi

/ ∂f
∂xn

, i = 1, . . . , n− 1, with ∂f
∂xn
6= 0.
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The inverse function

Definition

Let A and B be two sets

Let f : A→ B be one-to-one.

An inverse function for f (often denoted as f−1) is a function
g : B → A satisfying

f(g(b)) = b, ∀b ∈ B, and

f(g(a)) = a, ∀a ∈ A

Remark 1: If g is inverse for f , then f is inverse for g

Remark 2: [Df = Rg; Dg = Rf ]→ f and g defined on the

same dimensional space.
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Inverse function - Illustration

A = Df = Rg

B
=

D
g
=

R
f

f

f g

g

A = Df = Rg
B

=
D

g
=

R
f

a

f

g

g

z

f

g

g

∄g

f
(a
)
=

b

g(b) = a

f(a) = b
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The inverse function (2)

Example

f(x) = x2, x ∈ [0,∞) ↔ g(x) =
√
x,∀x ∈ [0,∞)

Alternative notations

f(x) = x2, x ∈ [0,∞) ↔ f−1(x) =
√
x,∀x ∈ [0,∞)

y = x2, x ∈ [0,∞) ↔ x =
√
y,∀y ∈ [0,∞)

0.5 1.0 1.5 2.0 2.5 3.0

2

4

6

8
x
2

√

x
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Inverse function - Theorem

One variable

If f(x) : IR→ IR is continuously differentiable (C1) at x0 with

f ′(x0) 6= 0, then

a) f is invertible in B(x0, r), and

b) f−1 is also C1 and
(

f−1
)′
(f(x0)) =

1
f ′(x0)

Several variables

If f(x1, . . . , xn) : IRn → IRn is continuously differentiable (C1)

at p = (x̃1, . . . , x̃n) with Jf (p) 6= 0, then

a) f is invertible around p, and

b) f−1 is also C1 and Jf−1(f(p)) = 1
Jf (p)
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Inverse function - Example

Compute inverse function

f(x) = x3 − 4 ←→ f−1(x) =
(

f(x) + 4
)1/3

Compute (f−1)′(212)

Step 1

f(x) =212

x = (216)1/3 =6

}

−→ f(6) = 212

Step 2 f ′(x) = 3x2; f ′(6) = 108

Step 3 (f−1)′(212) = 1
f ′(6) = 1/108.
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The inverse function theorem - example

Let f = (f1, f2) with u(x, y) ≡ f1(x, y) =
x4+y4

x and

v(x, y) ≡ f2(x, y) = sin x+ cos y.

1.- Find the points (x0, y0) around which we can solve for

(x, y) in terms of (u, v)

Compute the Jacobian matrix:

Jf =

(

∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

)

=

(

3x4−y4

x2

4y3

x

cosx − sin y

)

Compute detJf = − (3x4−y4) sin y
x2 − 4y3 cosx

x

We are looking for (x, y) s.t. detJf 6= 0. In general this
cannot be solved explicitly.

In this example one such points is (x0, y0) = (π2 ,
π
2 ).

Around that point we can obtain x = g1(u, v) and

y = g2(u, v).
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The inverse function theorem - example (cont’d)

2.- Compute ∂x
∂u ,

∂x
∂v ,

∂y
∂u ,

∂y
∂v

The theorem tells us to invert the Jacobian matrix:

[Jf ]−1 = 1
detJf

(

∂v
∂y −∂u

∂y

− ∂v
∂x

∂u
∂x

)

=

(

∂x
∂u

∂x
∂v

∂y
∂v

∂y
∂v

)

That is
∂x
∂u =

(

1

− (3x4
−y4) sin y

x2 − 4y3 cosx

x

)

sin y = −x2 sin y
sin y(y4−3x4)−4y3x cosx

etc.
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The inverse function - An economic illustration

Assume the demand of a certain consumption good depends
on its price according to qd = f(p)

From the perspective of the consumer this is often the way to
look at the demand decision. Consumers observe the price
and decide the amount to buy.

From the perspective of an oligopolistic firm the decision of
the choice variable hinges on the type of competition:

Cournot competition: firms choose the (optimal) volume
of production and market forces determine the price.
These firms defines their profit functions using the inverse

demand function p = f−1(qd)

Bertrand competition: firms choose the (optimal) price
and market forces determine the quantity bought. These
firms defines their profit functions using the (direct)
demand function qd = f(p)
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Homogeneous functions

Definition

A function f(x1, . . . , xn) defined on a domain D is

homogeneous of degree k if

∀(x1, . . . , xn) ∈ D, f(tx1, . . . , txn) = tkf(x1, . . . , xn)

Example: Cobb-Douglas function

f(x, y) = xayb is homogeneous of degree a+ b (Ha+b)

f(tx, ty) = (tx)a(ty)b = t(a+b)xayb = t(a+b)f(x, y)

Let f be a production function

If (a+ b) = 1, f(tx, ty) = tf(x, y) Constant returns to scale

If (a+ b) > 1, f(tx, ty) = t(a+b)f(x, y) > tf(x, y) IRS

If (a+ b) < 1, f(tx, ty) = t(a+b)f(x, y) < tf(x, y) DRS
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Homogeneous functions (2)

Theorem (Euler)

Let f(x1, . . . , xn) be continuously differentiable in an open
domain D.

Let t > 0 such that (x1, . . . , xn) ∈ D implies (tx1, . . . , txn) ∈ D.

Then, f is homogeneous of degree k iff
∑n

i=1 xi
∂f(x1,...,xn)

∂xi
= kf(x1, . . . , xn),∀(x1, . . . , xn) ∈ D.

i.e. f(tx1, . . . , txn) = tkf(x1, . . . , xn)⇐⇒
∑n

i=1 xi
∂f(x1,...,xn)

∂xi
= kf(x1, . . . , xn)
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Homogeneous functions (3)

Proof of Euler’s theorem

Step 1 (⇒)

Suppose f is homogeneous if degree k. Then,

f(tx1, . . . , txn) = tkf(x1, . . . , xn)

Differentiating wrt t we obtain
∑n

i=1 xi
∂f(tx1,...,txn)

∂xi
= ktk−1f(x1, . . . , xn)

Set t = 1 so that
∑n

i=1 xi
∂f(x1,...,xn)

∂xi
= kf(x1, . . . , xn)

Step 2 (⇐)

Assume
∑n

i=1 xi
∂f(x1,...,xn)

∂xi
= kf(x1, . . . , xn) [α]

Fix (x1, . . . , xn) and define ∀t > 0,

g(t) = t−kf(tx1, . . . , txn)− f(x1, . . . , xn) [β]
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Homogeneous functions (4)

Proof of Euler’s theorem (cont’d)

Step 2 (⇐)

Differentiate g(t) to obtain

g′(t) =

−kt−k−1f(tx1, . . . , txn) + t−k
∑n

i=1 xi
∂f(tx1,...,txn)

∂xi
[γ]

Given that (tx1, . . . , txn) ∈ D, [α] must also hold when

replacing xi by txi. Therefore,
∑n

i=1 txi
∂f(tx1,...,txn)

∂txi
= kf(tx1, . . . , txn) [δ]

Substitute [δ] in [β] to obtain ∀t > 0

g′(t) = −kt−k−1f(tx1, . . . , txn) + kt−k−1f(tx1, . . . , txn)
i.e. g′(t) = 0

Accordingly g(t) must be a constant function. To identify

that constant, just note that from [β] we obtain g(1) = 0.

Therefore g(t) = 0.
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Homogeneous functions (5)

Homogeneous functions - Proof of Euler’s theorem (cont’d)

Step 2 (⇐)(cont’d)

Applying g(t) = 0 in [β] yields

t−kf(tx1, . . . , txn) = f(x1, . . . , xn) or

f(tx1, . . . , txn) = tkf(x1, . . . , xn)
meaning that f is homogeneous of degree k.
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Homothetic functions

Definition

A function f : IRn → IR is homothetic if it can be obtained as
the composition of a homogeneous function h : IRn → IR and
a monotonic increasing function g : IR→ IR.
That is, f = g(h(x1, . . . , xn)) or equivalently, f is a monotonic

transformation of a homogeneous function.

Two properties

Theorem 1: The level sets of a homothetic function are radial
expansions of one another, that is
f(x1, . . . , xn) = f(y1, . . . , yn) implies

f(tx1, . . . , txn) = f(ty1, . . . , tyn), t > 0.

Theorem 2: the slopes of the level sets of a homothetic
function along a ray from the origin are constant, that is,

−
∂f(tx1,...,txn)

∂xi

∂f(tx1,...,txn)
∂xj

= −
∂f(x1,...,xn)

∂xi

∂f(x1,...,xn)
∂xj

, ∀i, j, t > 0.
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Homothetic functions (2)

Proof of theorem 1

Because f is homothetic, f(tx1, . . . , txn) = g(h(tx1, . . . , txn))

Because h(x1, . . . , xn) is homogeneous,

h(tx1, . . . , txn) = tkh(x1, . . . , xn)

Because we deal with level sets, h(x1, . . . , xn) = h(y1, . . . , yn)

Combining altoghether,

f(tx1, . . . , txn) = g(h(tx1, . . . , txn)) = g(tkh(x1, . . . , xn)) =

g(tkh(y1, . . . , yn)) = g(h(ty1, . . . , yn)) = f(ty1, . . . , tyn)
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Homothetic functions (3)

Proof of theorem 2

In consumer theory, the theorem would say that the MRS for a
homothetic function is homogeneous of degree zero.

Because f(tx1, . . . , txn) is homogeneous,
∂f(tx1,...,txn)

∂xi
= ∂g(h(tx1,...,txn))

∂xi
.

Computing the derivative,
∂g(h(tx1,...,txn))

∂xi
= g′(h(tx1, . . . , txn))

∂h(tx1,...,txn)
∂xi

Combining these expressions,
∂f(tx1,...,txn)

∂xi

∂f(tx1,...,txn)
∂xj

=

∂g(h(tx1,...,txn))
∂xi

∂g(h(tx1,...,txn))
∂xj

=

g′(h(tx1, . . . , txn))
∂h(tx1,...,txn)

∂xi

g′(h(tx1, . . . , txn))
∂h(tx1,...,txn)

∂xj

=

∂h(tx1,...,txn)
∂xi

∂h(tx1,...,txn)
∂xj
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Homothetic functions (4)

Proof of theorem 2 (cont’d)

Because h is homogeneous,
∂h(tx1,...,txn)

∂xi

∂h(tx1,...,txn)
∂xj

=

∂tkh(x1,...,xn)
∂xi

∂tkh(x1,...,xn)
∂xj

=
tk ∂h(x1,...,xn)

∂xi

tk ∂h(x1,...,xn)
∂xj

=

∂h(x1,...,xn)
∂xi

∂h(x1,...,xn)
∂xj

Summarizing we have obtained
∂f(tx1,...,txn)

∂xi

∂f(tx1,...,txn)
∂xj

=

∂h(x1,...,xn)
∂xi

∂h(x1,...,xn)
∂xj

[α]

For t = 1, [α] becomes
∂f(x1,...,xn)

∂xi

∂f(x1,...,xn)
∂xj

=

∂h(x1,...,xn)
∂xi

∂h(x1,...,xn)
∂xj

[β]

Combining [α] and [β] completes the proof.
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Homogeneous vs homothetic functions

A homogeneous function of degree k is homothetic

Let f(x) be a homogeneous function of degree k

Let H be a strictly increasing function

Define F (x) = H(f(x)). Then F is homothetic. To see

why, take (x, y) such that

F (x) = F (y) and show that F (tx) = F (ty).

If F (x) = F (y) then H(f(x)) = H(f(y)).

because H ′ > 0 it follows f(x) = f(y)

because f is homogeneous of degree k, for t > 0 we have

F (tx) = H(f(tx)) = H(tkf(x)) = H(tkF (y)) =
H(f(ty)) = F (ty)

thus proving that F is homothetic.

the converse does not hold.
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Homogeneous vs homothetic functions (2)

Not all homothetic functions are homogeneous.

Let F (x, y) = a log(x) + b log(y) = log(xayb) for all
x > 0, y > 0 with a > 0, b > 0

the log function is strictly increasing

the function xayb is homogeneous of degree a+ b.

Thus, F (x, y) is a stricly increasing function of a

homogeneous function. But it is not homothetic. Let’s see
why:

F (tx, ty) = log((tx)a(ty)b) = log(ta+bxayb) =

(a+ b) log(t) + log(xayb)

which cannot be written as tk log(xayb) for any value of k.
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Homogeneous vs homothetic functions (3)

Economic applications

Consumer theory: Homogeneous preferences and
implications for properties of the demand functions

Producer theory: Production functions (and their dual cost
functions) and their implications for properties os supply
functions

Implications of homogeneous/homothetic functions on the
properties of market equilibrium.
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Approximation of functions

Motivation

f may be extremely complex

often interest of analysis only around some point (e.g.
equilibrium point), or subdomain

obtaining information about f(x) for x ∈ B(x0, r) is often

sufficient

approximating f(x) for x ∈ B(x0, r) by means of an auxiliary

(polynomial) function

trade-off between simplicity of approximation and its accuracy

Approximation

linear, quadratic, cubic, ...

the higher the order of the polynomial the higher the accuracy
of the approximation
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Linear approximations

Definition

Let f(x) be differentiable.

Let x0 be a point in Df

A linear approximation to the value of f(x) around x0, is the

tangent line to f(x) at x0

The tangent line to f(x) at x0 has the equation:

P (x) = A0 + A1(x− x0)

Question: How to determine A0 and A1?

P (x) has to satisfy 2 conditions

P (x0) = f(x0) and P ′(x0) = f ′(x0)

where P (x0) = A0 and P ′(x0) = A1

then P (x) = f(x0) + f ′(x0)(x− x0) and

f(x) ≈ P (x) for x ∈ B(x0, r)
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Linear approximations (2)

Example

Let f(x) =
√
x

Find a linear approximation to f(x) around x0 = 1

Near x0 = 1 we have

P (x) = f(1) + f ′(1)(x− 1)

P (x) = 1 +
1

2
(x− 1)

A linear approximation to f(x) =
√
x around x = 1 is given by

P (x) = 1 + 1
2(x− 1) = x+1

2
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Linear approximations (3)
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Linear approximation and differential of f

Differential of f

Let y = f(x) be differentiable.

The differential dy is defined as
dy = f ′(x)dx

where differential dx is an arbitrary variation of in the value of
x.

Remark: dy is proportional to dx with f ′(x) being the factor of
proportionality→
dy represents NOT the change value of f(x) when x changes
to x+∆x (i.e. along f(x)) BUT the change in the value of y
along the straight line with slope f ′(x) (i.e. along P (x))

Consider a movement from t to R (see figure).

moving along f(x) yields ∆y = f(x+∆x)− f(x)

moving along P (x) yields dy = P (x+∆x)− P (x)
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Linear approximation and differential of f (2)

f(x)

P (x)

T

R

xx x+∆x

∆y

y

dy

dx = ∆x
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Linear approximation and differential of f (2)

for small ∆x, P (x) represents a linear approximation to f(x)

Therefore |dy −∆y| gives a measure of the error incurred

when following the linear approximation instead of the function

similar arguments in IR3 and higher dimensions
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Linear approximations in IR3

Definition

Let z = f(x, y) be differentiable.

Let P = (a, b, c) be a point with c = f(a, b).

The tangent plane to f(x, y) at P has the equation:

z − c = ∂f(a,b)
∂x (x− a) + ∂f(a,b)

∂y (y − b)

The tangent plane to f(x, y) at P is a linear approximation to

the value of f(x, y) around P , i.e.

f(x, y) ≈ f(a, b) + ∂f(a,b)
∂x (x− a) + ∂f(a,b)

∂y (y − b)
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Differential of a function in IR3

Definition

Let z = f(x, y) be differentiable.

Let dx and dy be arbitrary real numbers (small or not)

The differential of z = f(x, y) at (a, b), denoted by dz (or df ) is

defined as dz = ∂f(a,b)
∂x dx+ ∂f(a,b)

∂y dy

In general, for z = f(x1, . . . , xn), dz =
∑n

i=1
∂f
∂xi

dxi.

Measurement error

Assume (a, b) varies to (a+ dx, b+ dy).

The variation in the value of f is
∆z = f(a+ dx, b+ dy)− f(a, b)

If dx and dy are small, then, ∆z ≈ dz.

The difference dz −∆z results from following the tangent
plane instead of the surface.
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Differential and tangent plane - Illustration

x

y

P

Q

RR

∆z

z = f(x, y)

dz

f(a, b)

(a, b)

(a+ dx, b+ dy)

f(a+ dx, b+ dy)

z = f(a, b) +
∂f(a, b)

∂x
(x− a) +

∂f(a, b)

∂y
(y − b)
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Higher order approximations and Taylor’s theorem

Introduction

Linear approximation→ measurement error.

Two questions:

a) how to improve the accuracy of the approximation.

b) how to evaluate the measurement error.

Answers:

a) Taylor’s polynomial of degree n.

b) Taylor’s theorem and (extended) mean-value theorem.
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Improving accuracy

Let f : [a, b]→ IR be continuously differentiable at c ∈ (a, b).

Linear approximation: fits slope around c:
f(x) ≈ f(c) + f ′(c)(x− c)

Quadratic approximation: fits slope and approximates
curvature around c:
f(x) ≈ f(c) + f ′(c)(x− c) + 1

2!f
′′

(c)(x− c)2

Approximations with polynomials of degrees 3, 4, . . . allow to
capture better and better the properties of f(x) around c.

Taylor’s polynomial of degree n, Pn(x):
Pn(x) =

f(c) + f ′(c)(x− c) + 1
2!f

′′

(c)(x− c)2 + · · ·+ 1
n!f

(n)(c)(x− c)n

Still measurement error: En(x) = f(x)− Pn(x)
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Improving accuracy - Quadratic approximation

A quadratic approximation to f(x) around x = x0 is a

quadratic function tangent to f(x) at x0.

The tangent quadratic function has the equation

P (x) = A0 + A1(x− x0) + A2(x− x0)
2

Question: Determine A0, A1, A2?

P (x) has to satisfy three conditions

P (x0) = f(x0), P
′(x0) = f ′(x0) and P ′′(x) = f ′′(x)

As before, A0 = f(x0), A1 = f ′(x0)

P ′′(x0) = 2A2 so that A2 =
1
2f

′′(x0) = 1
2!f

′′(x0)

then P (x) = f(x0) + f ′(x0)(x− x0) +
1
2!f

′′(x0)(x− x0)
2

and f(x) ≈ f(x0) + f ′(x0)(x− x0) +
1
2!f

′′(x0)(x− x0)
2
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Improving accuracy - Quadratic approximation (2)

Example

Let f(x) =
√
x

Find a quadratic approximation to f(x) around x0 = 1

Near x0 = 1 we have

P (x) = f(1) + f ′(1)(x− 1) +
1

2!
f ′′(1)(x− 1)2

P (x) = 1 +
1

2
(x− 1) +

1

2!

−1
4

(x− 1)2

A quadratic approximation to f(x) =
√
x around x = 1 is given

by

P (x) =
x+ 1

2
− (x− 1)2

8
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Improving accuracy - Quadratic approximation (3)
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Improving accuracy (3)

Generalization to function of multiple variables

Let f : IRn → IR be continuously differentiable at
c = (c1, . . . , cn).

Linear approximation: fits slope around c:
f(x) ≈ f(c) +Df(c)(x− c) where Df(c) is Jacobian matrix.

Quadratic approximation: fits slope and approximates
curvature around c:
f(x) ≈ f(c) + f ′(c)(x− c) + 1

2!(x− c)THf(c)(x− c) where

Hf(c) is Hessian matrix
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Measuring the error

Recall

Mean-value theorem

Let f : [a, b]→ IR be continuous in [a, b] and differentiable

in (a, b). Then, ∃c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a ,

or equivalently, f(b) = f(a) + f ′(c)(b− a).

Extended mean-value theorem

Let f : [a, b]→ IR. If f and f ′ are continuous in [a, b] and

differentiable in (a, b). Then, ∃c ∈ (a, b) such that

f(b) = f(a) + f ′(c)(b− a) + 1
2f

′′

(c)(b− a)2.

Rolle’s theorem

Let f : [a, b]→ IR be continuous in [a, b] and differentiable

in (a, b). Suppose f(a) = f(b). Then, ∃c ∈ (a, b) such that

f ′(c) = 0.
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Measuring the error (2)

Taylor’s theorem

The measurement error associated to the Taylor’s polynomial
of degree n is: En(x) = f(x)− Pn(x)

Taylor’s theorem provides an estimation for this error function
En(x).

The basic content of the theorem is that the error is
determined by the distance between x and c and by the

(n+ 1)st derivative of f . Formally,

Let f be (n+ 1)-times differentiable.

Let Pn(x) be the Taylor polynomial of degree n of f around c.

Then for any value x 6= c, ∃b ∈ (c, x) such that

f(x) = Pn(x) +
1

(n+1)!f
(n+1)(b)(x− c)n+1

where the last term is called the error term of the
approximation, Rn+1(x).
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Linear approximation and differential of f (2)

f(x)

P (x)

xx x+ δ

f(x+ δ)

f(x)

f(x) + f ′(x)δ

δ

R(x)
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Measuring the error (3)

Taylor’s theorem (cont’d)

Remark 1: For n = 0 the theorem reduces to the Mean-value
theorem.

Remark 2: an equivalent way of stating the theorem is:

Let M ≤ |f (n+1)(x)| on a neighborhood of c.

Then, for any x, the error of the Taylor approximation is

bounded as |f(x)− Pn(x)| ≤ 1
(n+1)!M |x− c|n+1

Remark 3: If f (n+1)(x) = 0, then Rn+1(x) = 0. It means that f
is a polynomial of degree n. Therefore, the Taylor
approximation of degree n is exact.
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Taylor’s theorem - Proof

Step 1. A Lemma

Let f be (n+ 1)-times differentiable.

Suppose that f(c) = f ′(c) = f ′′(c) = · · · = f (n)(c) = 0

Suppose that ∃x 6= c such that f(x) = 0.

Then, ∃b ∈ (c, x) such that f (n+1)(b) = 0.

Proof

As f(c) = 0, f(x) = 0 Rolle’s thm ∃b1 ∈ (c, x) s.t. f ′(b1) = 0

As f ′(c) = 0, f ′(b1) = 0 Rolle’s thm ∃b2 ∈ (c, b1) s.t. f ′′(b2) = 0

Iterate argument to generate sequence b1, b2, . . . , bn

Eventually, we will find bn ∈ (c, x) s.t. f (n+1) = 0

Select bn = b as the desired value of b.
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Taylor’s theorem - Proof (2)

Step 2

Let Pn(x) be the degree n Taylor approx at c.

Define g(x) = f(x)− Pn(x) (error at x 6= c).

Then, g(c) = g′(c) = g′′(c) = . . . , g(n)(c) = 0

Define k = − g(x)
(x−c)(n+1) or g(x) = −k(x− c)(n+1) [α]

Define h(x) = g(x) + k(x− c)(n+1).

Then, h(c) = h′(c) = h′′(c) = . . . , h(n)(c) = 0 and h(x) = 0.

Lemma→ ∃b ∈ (c, y) s.t. h(n+1)(b) = 0

Observe that h(n+1)(x) = g(n+1)(x) + k(n+ 1)!

Also, g(n+1)(x) = f (n+1)(x) (as Pn(x) has degree n)

Thus, h(n+1)(x) = f (n+1)(x) + k(n+ 1)!

OPT – p.88/91



Taylor’s theorem - Proof (3)

Step 2 (cont’d)

At x = b, using lemma h(n+1)(b) = f (n+1)(b) + k(n+ 1)! = 0

Thus, k = − f (n+1)(b)
(n+1)! [β]

Combining [α] and [β] it follows
g(x)

(x−c)(n+1) =
f (n+1)(b)
(n+1)!

g(x) = f (n+1)(b)
(n+1)! (x− c)(n+1)

f(x)− Pn(x) =
f (n+1)(b)
(n+1)! (x− c)(n+1)

f(x) = Pn(x) +
f (n+1)(b)
(n+1)! (x− c)(n+1)

and this is Taylor’s theorem.
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Linear approximation and inverse function

Intuition

Let A ⊂ IRn be an open set.

Consider x0 ∈ A and f : A→ IRn be of class C1.

A linear approximation to f around x0 is defined as the sum of
f(x0) and a linear function Jf(x0).

If Jf(x0) is invertible (i.e. detJf(x0) 6= 0), then we may hope
that f will be invertible as well around x0.

Note that f being invertible is a local property defined around
a point x0 ∈ A.

The inverse function theorem is useful because it asserts
whether there are solutions to equations and explains how to
differentiate the solutions, although it may be impossible to
solve the equations explicitly.
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Linear approximation and inverse function (2)

Theorem

Let A ⊂ IRn be an open set.

Consider x0 ∈ A and f : A→ IRn be of class C1.

Suppose detJf(x0) 6= 0.

Then, ∃U = B(x0, r) ⊂ A and ∃V = B(f(x0), s) open, such

that f(U) = V and f has a C1 inverse f−1 : V → U .

Moreover, for y ∈ V, x = f−1(y), we have

Jf−1(y) = [Jf(x)]−1.

If f is of class Cp, so is f−1.
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