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Abstract

We present a new approach for studying equilibrium dynamics in a class of

stochastic games with a continuum of players with private types and strategic com-

plementarities. We introduce a suitable equilibrium concept, called Markov Sta-

tionary Distributional Equilibrium (MSDE), prove its existence as well as provide

constructive methods for characterizing and comparing equilibrium distributional

transitional dynamics. In order to analyze equilibrium transitions for the distri-

butions of private types, we provide an appropriate dynamic (exact) law of large

numbers. We also show our models can be approximated as idealized limits of games
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1 Introduction

The paper presents a new constructive method for studying the equilibrium dynamics in

a class of games with complementarities and a continuum of players, where each player’s

type is private and evolves stochastically over time. The types may have many possible

economic interpretations, including agents’s endowment, their social rank, payoff relevant

private information, parameterization of behavioral traits, or other depending on the eco-

nomic problem at hand. We study the evolution of the equilibrium joint distributions

of types and actions in the population. Importantly, our approach allows for a robust

characterization of both equilibrium distributional transitional dynamics as well as equi-

librium comparative statics. We are also able to show how such large games can be used

to approximate equilibria in dynamic games with a large (but finite) number of players.

Large dynamic games with private information find numerous applications in diverse

fields in economics, including growth with heterogeneous agents and endogenous social

structure (as in Cole et al., 1992), inequality with endogenous preferences formation (as

in Genicot and Ray, 2017), industry dynamics with heterogeneous firms (as in Wein-

traub et al., 2008), dynamic network formation (as in Mele, 2017; Xu, 2018), economics

of identity and social dissonance (as in Akerlof and Kranton, 2000; Bisin et al., 2011),

models of endogenous formation of social norms (as in Acemoglu and Jackson, 2017),

macroeconomic models with public or private sunspots (as in Angeletos and Lian, 2016),

or Bewley-Huggett-Aiyagari models of wealth distribution in the presence of incomplete

markets (see Cao, 2020).1 A principal collection of questions regarding each of these mod-

els include how to compute, calibrate, and estimate dynamic equilibria, and that concern

is related to both: stochastic steady-states and equilibrium distributional dynamics.

The theoretical literature concerning equilibrium dynamics in games is very limited,

even in games with finitely many players.2 One obvious reasons for this is that characteriz-

1 Acemoglu and Jensen (2015, 2018) discuss the relation between large dynamic economies and large

anonymous games. Notably, the former may be view as the latter (e.g., Bewley-Huggett-Aiyagari models).
2 From a theoretical perspective, little is known about the nature of convergence of equilibrium transi-

tional dynamics to stochastic steady-states. This question is complicated by the presence of equilibrium

multiplicities and stability issues related to equilibrium transitional paths. The lack of theoretical foun-

dation makes counterfactuals from these models difficult to implement and interpret.
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ing sequential and Markovian equilibria dynamics in such models can become analytically

intractable very quickly as the number of players grows and the state space becomes large

and complex. Additionally, due to heterogeneity of private types, characterizing the up-

dating of players’ beliefs both on and off equilibrium paths is non-trivial. Even providing

sufficient conditions for existence of sequential equilibria is very challenging, let alone

describing (and computing) how types and actions evolve over time.

Due to such complications, the literature has focused on alternative notions of equi-

libria that simplify dynamic interactions. In particular, there have been two dominant

methodological approaches to this question. The first approach exploits inherit aggrega-

tive structure in the game, where the players’ interactions are limited to some statistic

or aggregate that summarizes population distribution, as well as imposes some notion of

equilibrium (stochastic) steady state. A second approach (often used in conjunction with

aggregation and stationarity) is to simplify interaction in the equilibrium by imposing

some behavioral features in its definition. Such approaches include notions of oblivious

equilibria (as in Lasry and Lions, 2007, Achdou et al., 2014, Bertucci et al., 2018, Light

and Weintraub, 2019, Achdou et al., 2020), mean-field equilibria (as in Weintraub et al.,

2008, Adlakha et al., 2015, and Ifrach and Weintraub, 2016), or imagined-continuum

equilibria (as in Kalai and Shmaya, 2018), among others.3 In this paper, we argue that

such simplifications need not play a crucial role if one wants to analyze the equilibrium

dynamics in a class of games with strategic complementarities we consider.

Our results This paper tackles these theoretical and numerical problems within a uni-

fied methodological framework of large stochastic anonymous games with strategic com-

plementarities4 and no aggregate risk.5 To obtain our results, we exploit the nature of

games with infinitely many agents, where individuals have negligible impact on actions

of others, thus, sufficiently limiting their interactions. This approach enables us to define

3 See also the solution concept proposed in Krusell and Smith (1998) for Bewley models with aggre-

gate risk, where agents know only the moments of the random measure determining the distribution of

idiosyncratic shocks and assets. See also Doncel et al. (2016); Kwok (2019); Lacker (2018); Nutz (2018).
4 See Topkis (1978), Vives (1990), Veinott (1992) and Milgrom and Shannon (1994) for some early

contributions and motivations for studying games of strategic complemenentarities.
5 Following Jovanovic and Rosenthal (1988), Bergin and Bernhardt (1992); Karatzas et al. (1994).
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and provide sufficient conditions for the existence of a Markov stationary distributional

equilibrium (henceforth MSDE). Our solution concept consists of a probability measure

over types and actions in the population of players, and a law of motion that specifies

the evolution of such distributions. Critically, a MSDE is defined over a minimal set

of state variables6 and therefore resembles the extensively used notion of recursive com-

petitive equilibria in macroeconomics.7 We discuss this notion further in relation to the

motivating example in a moment below.

Our equilibrium concept is inherently dynamic and enables us to characterize and

compare equilibrium transition paths. Notably, the results hold without the need of

restricting our attention to any aggregative structure. In fact, in our economic applications

it is essential to study the entire distribution of types and actions of players.8

The particular structure of games with strategic complementarities is indispensable

for our results. First of all, it allows us to prove existence of extremal MSDE (with

respect to an appropriate order). To do this, a key tool is to provide a tractable for-

mulation of the evolution of (distributional) equilibrium beliefs. Using these tools, we

develop a new order-theoretic approach for characterizing the order structure of (Marko-

vian) distributional equilibrium. Moreover, by analyzing a measure space of agents, we

avoid well-known technical issues that can emerge in extensive-form supermodular games

with a finite number of players and private information.9 Our approach delivers a new

collection of computable equilibrium comparative statics/dynamics results. Therefore, we

are able to complement and extend the recent stationary equilibrium comparative statics

results from a class of mean field games and oblivious equilibria to distributional games

and dynamic equilibrium (see Acemoglu and Jensen, 2015; Light and Weintraub, 2019).

To analyze the transition of private types/signals between periods, as well as issues

6 By the minimal state space, we mean a domain that includes only current individual type and

probability measures summarizing current population distribution of types.
7 It bears mentioning, there are also no general results on the existence of minimal state space

Markovian (or recursive equilibrium) in large dynamic economies. Cao (2020) provides the general-

ized Markov equilibrium existence result for a class of Krusell-Smith economics (which include Bewley-

Huggett-Aiyagari models as a special case) that is not minimal state space.
8 Equilibrium distributions are also important in econometric evaluation of heterogeneous models with

macroeconomic data. See, e.g., Parra-Alvarez et al. (2017) and Auclert et al. (2019).
9 See Echenique (2004), Vives (2009), and Mensch (2020) for discussions of these complications.
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related to characterizing the dynamics of players’ beliefs, we develop a new version of

the dynamic exact law of large numbers (henceforth D-ELLN). Our D-ELLN builds on

the important work of Sun (2006), Podczeck (2010) and He et al. (2017), among others,

and allows us to (i) simplify our analysis by allowing for independent draws of types

for a continuum of players; (ii) simplify the dynamics of the aggregate law of motion

of distributions over types-actions in the population; and (iii) simplify the problem of

an individual agent, who forms their beliefs using the law of large numbers, rather than

updating their beliefs on (the product of) other players’ types. We consider these results

to be of independent interest themselves, as they can be applied in other dynamic settings

that have micro-level idiosyncratic risk but no aggregate risk.

Eventually, we address the question of approximation and well as some theoreti-

cal/behavioral justification of MSDE. Specifically, we define the precise notion in which

our large game can be interpreted as an idealized limit of a related stochastic game with

a finite number of players. This is particularly useful in applications, as in some settings,

large dynamic economies are used as a tool to characterize properties of finite models.

We organize the rest of the paper as follows. In the remainder of this section, we present

a motivating example that allows us to discuss precisely the new issues that emerge relative

to class of games that has been studied in the literature. In Section 2, we introduce the

notation and some auxiliary results that we need later in the paper. Section 3 is devoted

to the presentation of the main model and our analysis of equilibrium. Our monotone

comparative dynamics results are then presented in Section 4, and our approximation

result in Section 5. Numerous potential applications of our results are provided in Section

6. In Section 7, we then explore the broad literature related to our work, and provide

a deeper connection of this paper to this existing literature. The proofs and auxiliary

results omitted in the main body of the paper can be found in the Appendix.

A motivating example Consider a growth model in which individuals are concerned with

their relative social status. The society consists of a continuum of players. Each time pe-

riod n ∈ {1, 2, . . . ,∞}, a typical player is endowed with some (private) wealth/capital

t ∈ T = [0, 1] that constitutes their type. This wealth can be transformed into con-
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sumption c ∈ [0, 1] or investment a ∈ A = [0, 1] using a simple one-to-one technology,

thus, introducing the constraint t = c + a. By investing a ∈ [0, t], the agent influences

their wealth t′ in the following period via a stochastic technology q. Whenever a units of

wealth is being invested, the cumulative probability of attaining the capital t′ is q(t′|a).

We assume that higher investments make higher wealth more likely, i.e., distribution

q(·|a) increases stochastically in a. Moreover, the realization of the future capital t′ is

independent across players.

Status of each agent is determined by both her current consumption c, as well as

wealth t. In each period, every individual interacts randomly with one other member of

the society. If an agent with capital t consuming c encounters an individual of wealth t̃

consuming c̃, the former receives utility U(c, c̃, t, t̃) = m(t − t̃) + w(c − c̃), where m and

w are continuous, strictly increasing, and concave functions. Thus, meeting individuals

with lower wealth and consumption is preferable due to, e.g., the feeling of superiority.

We assume that (given their current wealth t), the individual has to determine their

consumption c and investment a at the beginning of each period, i.e., before the interaction

with other members takes place. In order to do so, they need to evaluate their belief about

the distribution µ over capital-investments pairs (t̃, ã) across the society, where ã = t̃− c̃

determines their expected payoff in that particular period given by:

r(t, a, µ) =

∫
A×T

[
m(t− t̃) + w(t− a− t̃+ ã)

]
µ(dã× dt̃).

In order to specify sequential payoffs of the agent, suppose all other players play a sym-

metric stationary strategy σ : T → A that maps the current capital/wealth t to the level

of investment a = σ(t). Given the distribution τn of types at time n, the joint distribution

of types and actions is denoted by µn(S) = τn
(
{t ∈ T : (t, σ(t)) ∈ S

})
.

Then, given the sequences of wealth and wealth-investment distributions {τn}, {µn},

the sequential payoff of a player endowed with an initial capital t0 is given by:

max
{an}

{
(1− β)Et1,{τn}

[
∞∑
n=1

βn−1

∫
A×T

[
m(tn − t̃) + w(tn − an − t̃+ ã)

]
µn(dã× dt̃)

]}
,

where β ∈ (0, 1) is a discount factor and the expectation Et1,{τn} is taken with respect to

realization of the sequences of private types {tn} of that individual, induced by q.
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We are interested in studying the socioeconomic dynamic distributional equilibrium

in this game. More generally, we want to investigate how the distributions of types and

actions in the population evolve and interact where: (a) distributions of types and actions

are determined by strategies of individuals and the stochastic transition q defining the

evolution of private types, and (b) individuals form beliefs over future distributions of

types and actions that are consistent with the law of motion governing the distribution of

private types (e.g., capital levels), given the joint strategy of all players.

As we shall show in the sequel, our approach to studying equilibrium in this environ-

ment benefits from the following observation: although the players’ problem is sequential

with each private capital type drawn randomly each period, it can be reformulated as a

standard Markov decision problem (henceforth MDP) once the sequence of distributions

of types {τn} and types-actions {µn} in the population are taken as fixed. This can be

done exactly because infinitesimal individuals do not affect those distributions directly.

In such a case, the measure µn (or τn) serves as an additional state variable at time n.

A recursive formulation of the player’s problem could be obtained by allowing the play-

ers to share a macro belief Φ, i.e., a transition function of capital-investment distributions

between periods, where µn+1 = Φ(µn). This, together with some initial distribution µ1,

allows each player to conjecture a candidate equilibrium path of the game, enabling us to

reformulate the sequential problem for each player as a recursive problem with the value

function v∗ satisfying

v∗(t, µ; Φ) = max
a∈[0,t]

{
(1− β)r(t, a, µ) + β

∫
T

v∗
(
t′,Φ(µ); Φ

)
q(dt′|a)

}
.

Our notion of MSDE consists of a measure µ∗ over types-actions in the population and

a macro belief transition Φ∗ such that, conditional on the above, (almost) every player

solves their MDP and the resulting distribution of types-actions coincides with µ∗. Hence,

the perceived dynamics of distributions (which are deterministic under the D-ELLN) is re-

quired to be consistent with the actual transition q and it’s initial distribution. Moreover,

under a D-ELLN, one can associate probabilities q with empirical population distributions

on T . Since any equilibrium pair (µ∗,Φ∗) generates a sequence of “equilibrium” measures

{µ∗n}, where µ∗1 = µ∗ and µ∗n+1 = Φ∗(µ∗n), our concept is inherently dynamic, and allows
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naturally to evaluate and compare distributional equilibrium transition paths.

Importantly, our equilibrium concept allows to study interactions between individual

players and the entire distribution of types-actions in the population. This is resembled

in the motivating example, which is inherently non-aggregative. Indeed, evaluating payoff

at time n requires the entire distribution of capital (types) and investments (actions) in

the population at time n, and beliefs about the future distributions. It is not sufficient to

substitute the measure µn with its summary statistics or an aggregate. This is a common

feature of large dynamic economies with social interactions.

The motivating example is also a game with dynamic strategic complementarities.

That is, in this game, it is optimal for every individual to increase their own wealth and

consumption as the distribution of wealth and consumption in the population “increases”

stochastically. More importantly, such complementarities are present within and across

periods. Concentrating on the latter, we study situations where higher anticipated distri-

butions of types tomorrow create dynamic complementarities for each player to increase

their own type in the next period.10 Whether a game exhibits such complementarities

depends critically on two reinforcing conditions: (i) increasing differences between private

type (status) and anticipated population distribution the next period; and (ii) agents

forming monotone beliefs, i.e., expecting higher population distribution tomorrow when

faced with higher distribution today.11 The motivating example possess both features.

This situation is in stark contrast to that of analyzing complementarities on stochastic

steady-state equilibria only.

Finally, it is important to determine the comparative structure of equilibrium tran-

sitional paths in such models (in addition to comparisons of stationary equilibria). In

particular, how changes in parameters of the game (e.g., discount factor, preference or

technology parameters, the initial distribution τ1) affect the paths of equilibrium distri-

butions {µ∗n} (as implied by equilibrium µ∗ and Φ∗). Importantly, since µ∗n is defined over

the space of types and actions, one needs to provide an equilibrium comparative statics

10 More formally, there is a dynamic single-crossing condition satisfied between the current investment

and the future anticipated type-action distribution in the population.
11 Our work is hence related to recent work on characterizing single crossing in distribution (e.g., Quah

and Strulovici, 2012 and Kartik et al., 2019).
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result for appropriate spaces of multidimensional distributions.

2 Preliminaries

In this section we introduce some mathematical notions in measure and lattice theory

that will be employed in our main analysis.

2.1 Fubini extensions and the law of large numbers

We begin by defining the notion of super-atomless probability space.12 Let (Λ,L, λ) be

a probability space. For any E ∈ L such that λ(E) > 0, let LE :=
{
E ∩ E ′ : E ′ ∈ L

}
and λE be the re-scaled measure from the restriction of λ to LE. Let LEλ be the set of

equivalence classes of sets in LE such that λE(E14E2) = 0, for E1, E2 ∈ LE.13 We endow

the space with metric dE : LEλ × LEλ → R given by dE(E1, E2) := λE(E14E2).

Definition 1 (Super-atomless space). A probability space (Λ,L, λ) is super-atomless if for

any E ∈ L with λ(E) > 0, the space (LEλ , dE) is non-separable.

Classical examples of super-atomless probability spaces include: {0, 1}I with its usual

measure when I is an uncountable set; the product measure [0, 1]I , where each factor is

endowed with Lebesgue measure and I is uncountable;14 subsets of these spaces with full

outer measure when endowed with the subspace measure, or an atomless Loeb probability

space. Furthermore, any atomless Borel probability measure on a Polish space can be

extended to a super-atomless probability measure (see Podczeck, 2009).

Given a probability space (Λ,L, λ), a collection of random variables (Xα)α∈Λ is essen-

tially pairwise independent, if for (λ⊗ λ)-almost every (α, α′) ∈ Λ× Λ, random variables

Xα and Xα′ are independent. For any set Ω and E ⊆ (Λ× Ω), we denote its sections by

Eα :=
{
ω ∈ Ω : (α, ω) ∈ E

}
and Eω :=

{
α ∈ Λ : (α, ω) ∈ E

}
, for any α ∈ Λ and ω ∈ Ω.

12 The following definition is by Podczeck (2009, 2010), which we find to be the most convenient for

our purposes. However, equivalent definitions are provided in Hoover and Keisler (1984), who call such

spaces ℵ1-atomless, and Keisler and Sun (2009), who dubbed such spaces rich.
13 We denote E14E2 := (E1 \ E2) ∪ (E2 \ E1).
14 Indeed, Maharam’s theorem shows that the measure algebra of every super-atomless probability

spaces must correspond to the countable convex combination of such spaces. See Maharam (1942).
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Similarly, for any function f defined over λ×Ω, let fα and fω denote the section of f for

a fixed α, ω, respectively. Consider the following definition.

Definition 2 (Fubini extension). The probability space (Λ× Ω,L� F , λ� P ) is a Fubini

extension of the natural product of probability spaces (Λ,L, λ) and (Ω,F , P ) if:

(i) L� F includes all sets from L ⊗ F ;

(ii) for an arbitrary set E ∈ L�F and (λ⊗P )-almost every (α, ω) ∈ Λ×Ω, the sections

Eα and Eω are F - and L-measurable, respectively, while

(λ� P )(E) =

∫
Ω

λ(Eω)P (dω) =

∫
Λ

P (Eα)λ(dα).

A Fubini extension is rich, if there is a (L�F)-measurable functionX : Λ×Ω→ R such

that the random variables (Xα)α∈Λ is essentially pairwise independent and the random

variable Xα has the uniform distribution over [0, 1], for λ-almost every α ∈ Λ.15

A process is a (L � F)-measurable function with values in a Polish space. For any

process f and set E ∈ L such that λ(E) > 0, we denote the restriction of f to E × Ω by

fE. Naturally, LE � F :=
{
W ∈ L � F : W ⊆ E × Ω

}
and (λE � P ) is a probability

measure re-scaled from the restriction of (λ � P ) to (LE � F). The following version of

(exact) Law of Large Numbers is by Sun (2006).

Proposition 1 (Law of Large Numbers). Suppose that f is a process from a rich Fubini

extension (Λ × Ω,L � F , λ � P ) to some Polish space. Then, for all E ∈ L such that

λ(E) > 0 and P -almost every ω ∈ Ω, we have λ(fEω )−1 = (λE � P )(fE)−1.16

2.2 Lattices, chains, and fixed points

A partial order ≥X over a set X is a reflexive, transitive, and antisymmetric binary

relation. A partially ordered set, or a poset, is a pair (X,≥X) consisting of a set X and a

partial order ≥X . Whenever it causes no confusion, we denote (X,≥X) with X.

15 Existence of the rich Fubini extension is proven in Proposition 5.6 of Sun (2006), for Λ = [0, 1].

Moreover, L can not be a collection of Borel subsets of Λ (see Proposition 6.2 in Sun, 2006). In fact,

Podczeck (2010) shows that existence of the rich Fubini extension is necessary and sufficient for the space

to be super-atomless. Moreover, without loss, one may assume the random variables (Xα)α∈Λ to be

independent, rather than pairwise-independent.
16 Given the probability space (Λ,L, λ) and a measurable function f : Λ → Y , we denote measure

λf−1(U) := λ
(
{α ∈ A : f(α) ∈ U}

)
, for any measurable subset U of Y .
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For any x, x′ ∈ X, their infimum (the greatest lower bound) is denoted by x∧ x′, and

their supremum (the least upper bound) by x ∨ x′. The poset X is a lattice if for any x,

x′ ∈ X both x ∧ x′ and x ∨ x′ belong to X. Set A is a sublattice of X, if A ⊆ X and it is

a lattice with the induced order, with x ∧ x′ and x ∨ x′ defined with ≥X .17

For any subset A of a poset X, we denote the supremum and infimum of A by
∨
A

and
∧
A, respectively.18 A lattice X is complete, if each both

∨
A and

∧
A belong to X,

for any A ⊆ X. We define a complete sublattice analogously.

A chain is a completely ordered poset. A poset X is (countably) lower chain complete

if any (countable) chain A ⊆ X has its infimum in X. The poset is (countably) upper

chain complete if any such chain has its supremum in X.

Given posets X and Y , function f : X → Y is increasing (decreasing) if x′ ≥X x

implies f(x′) ≥Y (≤Y ) f(x). Below is a useful generalization of Tarski’s fixed point

theorem, that builds on Theorem 9 in Markowsky (1976).19 We prove it in the Appendix.

Proposition 2. Let (X,≥X) be a lower chain complete poset with the greatest element.

The set of fixed points of an increasing function f : X → X is a nonempty lower chain

complete poset. Moreover, its greatest fixed point is given by
∨{

x ∈ X : f(x) ≥X x
}

.

Given posets X and Y , function f : X → Y is monotone sup-preserving if, for any

increasing sequence {xk}k∈N, we have f
(∨
{xk}k∈N

)
=
∨{

f(xk)
}
k∈N. It is monotone

inf-preserving if f
(∧
{xk}k∈N

)
=
∧{

f(xk)
}
k∈N, for any decreasing sequence {xk}k∈N.

We conclude with a useful theorem, that extends the classic fixed point comparative

statics results of Veinott (1992) and Topkis (1998) to countably chain complete posets. It

is based on the Tarski-Kantorovich theorem See Balbus et al. (2015c) for a proof.20

17 A basic example of a lattice is the Euclidean space R` endowed with the natural product order ≥,

i.e., we have x′ ≥ x if x′i ≥ xi, for all i = 1, . . . , `. In this case, we have x ∧ x′ and x ∨ x′ are given by

(x ∧ x′)i = min{xi, x′i} and (x ∨ x′)i = max{xi, x′i}, for all i = 1, . . . , `.
18This is to say that,

∨
A is the least element of X such that

∨
A ≥ a, for all a ∈ A. Clearly, by

definition, we have x ∨ x′ =
∨
{x, x′}. We define

∧
A analogously.

19 There is an obvious order dual to this result for increasing functions on upper chain complete sets

and the functions least fixed points.
20 Analogously, if X is upper countably chain complete with the least element, fθ is increasing and

monotone sup-preserving, the least fixed point of fθ is given by
∨{

fnθ (
∧
X)
}
n∈N. If f is increasing in

the product order and fθ is monotone sup-preserving, for all θ ∈ Θ, then the fixed point is increasing.
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Proposition 3. Let X be a lower countably chain complete poset with the greatest element,

and Θ be a poset. For any function f : X × Θ → X and θ ∈ Θ such that fθ is in-

creasing and monotone inf-preserving over X, the greatest fixed point of fθ is given by∧{
fnθ (
∨
X)
}
n∈N.21 In addition, if f is increasing in the product order and fθ is monotone

inf-preserving, for all θ ∈ Θ, then the greatest fixed point is increasing over Θ.

This generalization of Tarski’s theorem and Markowsky’s theorem is critical in proving

our comparative dynamics results on a poset of equilibrium distributions and equilibrium

law of motions in Section 4.

3 Large stochastic games with complementarities

Consider a stochastic game in discrete time of an infinite horizon. Let (Λ,L, λ) be a

probability space of players, which we assume to be super-atomless. In each period n ∈

{1, 2, . . . ,∞}, a player is endowed with a private type t ∈ T ⊆ Rp, where T is compact

and T denotes its Borel σ-algebra. Given a distribution τ of types of all (other) players,

the player chooses an action a in Ã(t, τ) ⊆ A, where A ⊆ Rk is a compact space of all

conceivable action endowed with the Borel σ-algebra A. Endow T and A with the natural

product partial order ≥.

Let M be a set of probability measures on T ⊗ A and MT be the set of probability

measures on T . Endow both spaces with its induced first order stochastic dominance

order.22 The player’s payoff in a particular period is determined by a bounded function

r : T × A ×M → R taking values r(t, a, µ), for a private type t, an action a, and the

probability measure µ over types and actions of all players.

In this paper, we investigate dynamic games in which private types of players are

determined stochastically in each period. The transition probability is represented by a

function q : T × A ×M → MT that assigns to the current player type t, given their

action a, and measure µ of types-actions of all players, a probability measure q(·|t, a, µ)

21 By fn we denote the n’th composition of f , i.e., fn = f ◦ f ◦ . . . ◦ f (n times).
22 For any two probability measures µ and ν over Y , we say that µ dominates ν in the first order

stochastic sense, if
∫
f(y)µ(dy) ≥

∫
f(y)ν(dy), for any measurable, bounded function f : Y → R that

increases with respect to the corresponding ordering ≥Y .
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over T , where q(·|t, a, µ) determines the probability of the player’s type in the following

period.

3.1 Decision problems for the players

In order to define properly the sequential decision problems for each player, it is funda-

mental to specify how the individual is forming beliefs about types of all players in the

game, based on the current distribution of types and strategies of other players. We begin

with some basic assumptions on the primitives of the game:

Assumption 1. Assume the following.

(i) For all τ ∈MT , correspondence t→ Ã(t, τ) is measurable and compact-valued.

(ii) For all µ ∈M, function (a, t)→ q(·|t, a, µ) is Borel-measurable.

The super-atomless probability space of players together with Assumption 1 guarantee

that the (endogenous) transition of private signals satisfies the no aggregate uncertainty

condition in each period and evolves deterministically. Specifically, for the current distri-

bution µ of types and actions of all players, the measure of players with privates types in

some measurable set S in the following period is determined by

φ(µ)(S) :=

∫
T×A

q(S|t, a, µ)µ(dt× da). (1)

We now state a critical theorem that is applied repeatedly in the paper.

Theorem 1. Under Assumption 1, there is a sampling probability space (Ω,F , P ) and a

rich Fubini extension (Λ × Ω,L � F , λ � P ) such that, for any sequence σ = (σn)n∈N

of functions σn : T × MT → A, any initial state t ∈ T , and any initial distribution

τ ∈MT ,there is sequence of (L� F)-measurable functions Xn : Λ× Ω→ T satisfying:

(i) For all n ∈ N, the random variables
(
(Xn)α

)
α∈Λ

are (conditional on the history)

essentially pairwise independent.23

23 Recall that (Xn)α denotes the section of Xn, for a fixed α ∈ Λ.
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(ii) For all n ∈ N and P -almost every ω ∈ Ω, we have

τn := λ(Xn)−1
ω = (λ� P )X−1

n ; 24

as well as µn(σ) := λ
(
Xn, σn(Xn, τn)

)−1

ω
= (λ� P )

(
Xn, σn(Xn, τn)

)−1
.

(iii) The distribution of the random variable (Xn+1)α, conditional on
(
(Xj)α

)
j≤n, is given

by q
(
· |(Xn)α, σn

(
(Xn)α, µn(σ)

)
, µn(σ)

)
.

The proof of this theorem is in the Appendix. As pointed out in the introduction,

this theorem could be of independent interest for any large dynamic game/economy with

micro-level idiosyncratic risk that induces no aggregate risk.

We now define the decision problem of a player in a candidate Markov stationary

distributional equilibrium. Let H∞ be a set of all histories
{

(tn, an, τn)
}
n∈N, where

an ∈ Ã(tn, τn). Let Hn be the set of histories up to time n, that is Hn :=
{

(tj, aj, τj)
n
j=1 :

aj ∈ Ã(tj, τj)
}

. A strategy is a sequence of functions (σn)n∈N such that σn : Hn−1 × T ×

MT → A is Borel-measurable in (t1, t2, . . . , tn) ∈ T n, and σn(hn−1, tn, τn) ∈ Ã(tn, τn),

where we have H0 = ∅ and initial values of t1, τ1 are given.

A strategy profile is called Markov if in each period n, the strategy profile depends

only on the partition of histories consisting of the current state (t, τ). A strategy profile is

stationary if it is time-invariant. By Theorem 1, given any initial private state t, a public

distributional state τ , a Markov strategy profile σ′ of other players, a Markov strategy

σ induces the unique private measure P σ,σ′

t,τ on histories of the game.25 This implies the

sequential objective function for each player is:

R
(
t, (σ, σ′), τ

)
:= (1− β)Eσ,σ

′

t,τ

[
r(t, σ1(t, τ), µσ

′

1 ) +
∞∑
n=2

βn−1r
(
tn, σn(tn, τn), µσ

′

n

)]
, (2)

where β ∈ (0, 1) is a discount factor and Eσ,σ
′

t,τ is the expectation induced by P σ,σ′

t,τ and

µσ
′
n := τn(idT , σ

′(·, τn))−1. We impose the following additional assumptions.

24 To clarify our notation, recall that we denote λ(Xn)−1
ω = λ

(
{α ∈ Λ : (Xn)ω(α) ∈ U}

)
, for any

U ∈ T . We define the remaining measures analogously.
25 For λ−almost every α ∈ Λ, (Xα

n )n∈N has the same distribution, which exists by Ionescu-Tulcea

Theorem (Dynkin and Yushkevich, 1979; see also Theorem 15.26 in Aliprantis and Border, 2006).
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Assumption 2 (Payoffs). The function r (i) is continuous in (t, a); (ii) is monotone sup-

and inf-preserving in µ; (iii) is increasing in t; (iv) is supermodular in a;26 and (v) has

increasing differences in
(
a, (t, µ)

)
.27

Assumption 3 (Transition probability). The transition kernel q(·|t, a, µ) (i) is continuous

in (t, a); (ii) is monotone sup- and inf-preserving in µ; (iii) is stochastically increasing in

(t, a, µ);28 (iv) is stochastically supermodular in a;29 and (v) has stochastically increasing

differences in
(
a, (t, µ)

)
and (t, µ).30

Assumption 4 (Feasible actions). The feasible action correspondence Ã : T × µT → A (i)

is upper hemi-continuous; (ii) its values are compact sublattices; (iii) increases with t in

the sense of set inclusion;31 and (iv) satisfies strict complementarities.32

Most of these assumptions are standard in dynamic games with complementarities

(see Curtat, 1996 or Balbus et al., 2014) with the exception of some monotonicity re-

quirements on the payoff and transition functions. As shown later in the paper, these

are indispensable to preserve strategic complementarities across periods in the extensive

formulation of the game under Markovian strategies. Importantly, our framework en-

compasses the linear social interaction models studied in the econometric literature by

Blume et al. (2015); Kline and Tamer (2020); Kwok (2019).33 Additionally, an interesting

26 A function f : X → R over a lattice X is supermodular in x if f(x ∧ x′) + f(x ∨ x′) ≥ f(x) + f(x′).
27 Given posets X and T , a function f : X × T → R has increasing differences in (x, t) if, for any

x′ ≥X x and t′ ≥T t, we have f(x′, t′)− f(x, t′) ≥ f(x′, t)− f(x, t).
28 That is, whenever (t′, a′, µ′) dominates (t, a, µ) in the corresponding product order, then q(·|t′, a′, µ′)

first order stochastically dominates q(·|t, a, µ).
29 This is, function a →

∫
f(t′)q(dt′|t, a, µ) is supermodular, for any T -measurable, bounded, and

increasing function f : T → R.
30 That is, function g(t, a, µ) :=

∫
f(t′)q(dt′|t, a, µ) has increasing differences in

(
a, (t, µ)

)
and (t, µ),

for any a ∈ A and any T -measurable, bounded, and increasing function f : T → R.
31 That is, if t ≥ t, then Ã(t, τ) ⊆ Ã(t′, τ).
32 Correspondence Ã satisfies strict complementarities if for any t′ ≥ t, τ ′ ≥ τ , a ∈ Ã(t, τ ′), and

a′ ∈ Ã(t′, τ), we have a ∧ a′ ∈ Ã(t, τ) and a ∨ a′ ∈ Ã(t′, τ ′).
33 There, we have r(t, a, µ) =

[
β1t+β2

∫
T
f1(t, t′)t′ µT (dt′)

]
a− 1

2a
2−β3

2

[
a−β4

∫
T×A f2(t′)a′ µ(dt′×da′)

]2
,

for some positive βi’s and linear, positive, increasing functions f1, f2 that weight social interaction by

measuring contextual and peer network effects respectively. Our computable monotone comparative

statics/dynamics results developed in the following section may be very useful in developing and charac-

terizing estimators to test equilibrium distributions in empirical models. See, for example, the methods

discussed in Echenique and Komunjer (2009), Echenique and Komunjer (2013), DePaula (2013), and

Uetake and Watanabe (2013), among others.
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example of a transition function q satisfying Assumption 3 is

q(·|t, a, µ) := g(t, a, µ)ρ(·) +
(
1− g(t, a, µ)

)
ν(·),

where g(t, a, µ) is supermodular in a; has increasing differences in
(
a, (t, µ)

)
and (t, µ);

and is increasing in (a, t, µ); while ρ, ν are probability distributions over T such that ρ

first order stochastically dominates ν. This class of transitions was introduced in Curtat

(1996) and Amir (2002), and has been successfully applied in the related literature.34

Remark 1. Our assumption on a stochastic transition generally implies that transition can

not be deterministic. Indeed, supermodularity and increasing differences of the integrand∫
f(t′)q(dt′|t, a, µ) must hold for any integrable and monotone function f , which is gen-

erally not satisfied by deterministic transitions. However, if A ⊆ R (an important special

case in the applied literature), then the deterministic transition given by q(S|t, a, µ) = 1

if g(a) ∈ S, and q(S|t, a, µ) = 0 otherwise, for some continuous and increasing func-

tion g : A → T , satisfies our assumption trivially. So critically, we do not always need

stochastic transitions to apply the tools developed in this paper.35

Remark 2. Additionally, whenever the action space A is one-dimensional and the tran-

sition function q depends only on action a, our results remain true even if the payoff

function r and the correspondence Ã are not increasing in t (in the appropriate sense).

This fact will be clear in a moment, and follow directly from our constructive argument

presented in Section 3.3.

An important feature of our framework is that the original problem in (2) admits a

recursive representation. Specifically, suppose that function Φ : M → M determines

the next period distribution Φ(µ) over types and actions of all players based on the

current distribution µ. Given our observation in (1), the marginal of Φ(µ) over T must

be φ(µ)(S) =
∫
T×A q(S|t, a, µ)µ(dt× da), for any measurable set S. Moreover, we restrict

34For example, see Balbus et al. (2013) for a discussion on the nature of these assumptions.
35 Note that, this implies that the transition is independent of µ and t.
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our attention to functions Φ that are monotone inf-preserving. Formally, let

D :=
{

Φ :M→M : Φ is increasing and monotone

inf-preserving and margT (Φ(µ)) = φ(µ), for any µ ∈M
}
, (3)

endowed with the componentwise order.

Remark 3. Dually, we can consider D′ :=
{

Φ :M→M : Φ is increasing and monotone

sup-preserving and margT
(
Φ(µ)

)
= φ(µ), for any µ ∈ M

}
. For expositional reasons,

we focus on D but all our constructions and results have their counterpart in D′.

Denote µT := margT (µ). In the remainder of this section, we show that for any initial

distribution µ and any function Φ, the value corresponding to the problem (2) satisfies

v∗(t, µ; Φ) = max
a∈Ã(t,µT )

{
(1− β)r(t, a, µ) + β

∫
T

v∗
(
t′,Φ(µ); Φ

)
q(dt′|t, a, µ)

}
.36 (4)

Given the initial distribution µ and a perceived law of motion Φ, the player’s problem

is a MDP with uncertainty about the private signal t only. Thus, under D-ELLN, the

sequence of aggregate distributions {µn}n∈N is deterministic. Using standard arguments,

we can show that the the best response correspondence of each player can be written as

Markov on the natural state space of t and µ. However, our definition of equilibrium

requires consistency between such policy correspondence and the perceived law of motion

Φ. Since Φ also specifies beliefs of players on continuation paths of the game, we write

v∗(t, µ; Φ) to stress that the value function and the corresponding policy depend on the

beliefs.37 We discuss the importance of this construction in the next section.

3.2 Markov stationary distributional equilibria

We are ready to specify the notion of equilibrium in the game.38

36 Equivalently, one may use t, τ as state variables and construct µ by composing τ and a strategy

σ : T → A. In such a case, the strategy σ would have to be another parameter of the value function.
37 Compare with the notion of Markov equilibrium in Kalai and Shmaya (2018) for large but finite

repeated games with unknown fundamentals.
38Dually, we can define MSDE in M×D′.
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Definition 3 (Markov Stationary Distributional Equilibrium). A pair (µ∗,Φ∗) ∈ M× D

is a Markov Stationary Distribution Equilibrium (MSDE) whenever:

(i) there is a function v∗ such that, for any µ ∈M, and λ-almost every t ∈ T ,

v∗(t, µ; Φ∗) = max
a∈Ã(t,µT )

{
(1− β)r(t, a, µ) + β

∫
T

v∗
(
t′,Φ∗(µ); Φ∗

)
q(dt′|t, a, µ)

}
;

(ii) there is a measurable selection σµ,Φ∗ of correspondence Σµ,Φ∗ : T ⇒ A, where

Σµ,Φ∗(t) := arg max
a∈Ã(t,µT )

{
(1− β)r(t, a, µ) + β

∫
T

v∗
(
t′,Φ∗(µ); Φ∗

)
q(dt′|t, a, µ)

}
,

and µ∗ = µ∗T
(
idT , σµ∗,Φ∗)

−1 and Φ∗(µ) = φ(µ)
(
idT , σΦ∗(µ),Φ∗)

−1, for any µ ∈M.39

An MDSE consists of an initial distribution µ∗ and a Markov transition function Φ∗.

It also involves an equilibrium policy σµ,Φ∗ : T → A (or equivalently σ∗ : T ×MT → A).

Our equilibrium is stationary in the sense that strategies and beliefs of players are time-

invariant. Nevertheless, we allow for a dynamic interaction of players in with future

periods distributions (generated by the law of motion Φ∗) and summarized by the value

v∗
(
·,Φ∗(µ∗); Φ∗

)
. Condition (i) is a standard Bellman equation that characterizes players

best reply correspondences, while (ii) imposes a two-fold consistency. On one hand, we

have µ∗ = µ∗T (idT , σµ∗,Φ∗)
−1, hence, the distribution of actions must be generated by the

equilibrium strategy σµ∗,Φ∗ , given the initial distribution of types and the equilibrium

law of motion. In addition, we require that Φ∗(µ) = φ(µ)(idT , σΦ∗(µ),Φ∗)
−1. Thus the

perceived (macro belief) and the actual law of motion (i.e., generated by the best-response

selection σ) for aggregate distributions coincide.40 The Markov transition Φ∗ specifies

common beliefs which players each use to determine future paths of candidate equilibrium

distributions. In macroeconomic literature on recursive equilibrium, such beliefs are often

called rational. Since we require Φ∗(µ) = φ(µ)(idT , σΦ∗(µ),Φ∗)
−1, for any µ ∈M, these are

beliefs “on” and “off” the equilibrium paths.

Theorem 2. Under Assumptions 1–4, there exists the greatest MSDE of the game inM×D

and the least in M×D′.
39 That is, µ∗(S) = µ∗T

({
t ∈ T : (t, σµ∗,Φ∗(t)) ∈ S

})
, Φ∗(µ)(S) = φ(µ)

({
t ∈ T : (t, σΦ(µ∗),Φ∗(t)) ∈ S

})
.

40 Since we work with no aggregate uncertainty, we do not require that Φ∗ is measurable.
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The above theorem requires some comment. First, apart from providing sufficient

conditions to guarantee the existence of an MSDE, Theorem 2 implies there is the greatest

MSDE equilibrium that determines the upper bound for all equilibria in the spaceM×D.

Similarly, there exists the least MSDE that is also a lower bound for all equilibria in

M× D′. Moreover, whenever the set of maximizers corresponding to the optimization

problem on the right hand-side in (4) is unique, then the set of MSDE is chain complete,

i.e., closed under monotone sequences of equilibria in M×{D ∩ D′}.

Remark 4. Any MSDE induces a sequential distributional equilibrium as defined by Jo-

vanovic and Rosenthal (1988), i.e., (µ∗n)n∈N, where µ∗1 = µ∗ and µ∗n = Φ∗(µ∗n−1).

Given this, a natural question arises as to whether there is an invariant distribution

induced by MSDE. Hence, the following proposition. We omit the proof.

Proposition 4 (Invariant distributions). Under assumptions 1–4, there exists the greatest

invariant distribution ν̄ induced by the greatest MSDE (µ̄∗,Φ
∗
), i.e., ν̄ = Φ

∗
(ν̄) and the

least invariant distribution ν induced by the least MSDE (µ∗,Φ∗).

The greatest and least invariant distributions can be obtained through simple iterations

on the mappings Φ
∗

and Φ∗, respectively. Also note that for any MSDE (µ∗,Φ∗), and the

pair
(
Φ∗(µ∗), Φ∗

)
is also an MSDE. Thus, the pair (ν,Φ∗) is also an MSDE, for any

invariant distribution ν generated by Φ∗.41

Although we prove Theorem 2 in the following section, we make an important obser-

vation at this point. Importantly, our approach to MSDE is constructive. That is, we

can introduce an explicit iterative algorithm that can be used to approximate the great-

est equilibrium by successive approximation. To present our construction, we need to

introduce some additional notation. For any µ ∈M, Φ ∈ D, and function v, let

Γ(t, µ,Φ; v) := arg max
a∈Ã(t,µT )

{
(1− β)r(t, a, µ) + β

∫
T

v
(
t′,Φ(µ),Φ

)
q(dt′|t, a, µ)

}
, (5)

which is the set of maximizers of the player’s MDP. Define the greatest element of the set

by γ(t, µ,Φ; v), whenever it exists. Let ? be a binary operation between τ ∈MT and the

41 However, it must be that ν̄ is dominated by µ̄∗.
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set of measurable functions h : T → A returning probability measure on T × A:42

τ ? h := τ(idT , h)−1. (6)

Define operator Ψ mapping M×D to itself, where Ψ(µ,Φ) = (µ′,Φ′) and

µ′ := µT ? γ(·, µ,Φ; v∗) and Φ′(ν) := φ(ν) ? γ
(
·,Φ(ν),Φ; v∗

)
, (7)

for all ν ∈M, where v∗ : T ×M×D → R is a function solving (4).

Proposition 5 (Bounds approximation). Let µ̄ and Φ be the greatest elements of M and

D, respectively. Under Assumptions 1–4, limn→∞Ψ
n
(µ̄,Φ) is the greatest MSDE.

Again, similar construction allows to approximate the least MSDE.

3.3 Construction of equilibria

We devote this subsection to the proof of Theorem 2. We discuss the main intuition of

the argument and state the auxiliary results which may be of independent interest. Here,

in the construction we concentrate on the greatest MSDE and space M×D only. Let

Assumptions 1–4 be satisfied throughout. We begin by showing that the problem of each

player in (2) admits a recursive representation. In particular, for any Markov transition

function Φ ∈ D, there exists a unique function v satisfying equation (4).

Consider the space V of functions v : T ×M × D 7→ R such that: (i) functions v

are uniformly bounded by a value r̄ > 0, (ii) v(·, µ,Φ) is increasing and continuous, for

any (µ,Φ) ∈ M× D, (iii) v(t, ·, ·) is monotone inf-preserving, for any t ∈ T , (iv) v has

increasing differences in
(
t, (µ,Φ)

)
. Endow V with natural sup-norm topology || · ||∞.

Lemma 1. V is complete metric space.

Given that V is a subset of all bounded functions, it is a subset of a Banach space.

Hence, it suffices to show the set is closed. Noting the fact that continuity, monotonicity,

and increasing differences are preserved in the sup-norm convergence, the main difficulty

42 That is, (τ ? h)(S) = τ
(
{t ∈ T : (t, h(t)) ∈ S}

)
, for any measurable set S.
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is to show that any limit of monotone inf-preserving functions preserves this property.

The proof of this claim is shown in the Appendix.

The next lemma provides an important feature of the Markov transition functions Φ.

The proof is immediate from Lemma A.1 in the Appendix and we omit it.

Lemma 2. Let {µk}k∈N be a decreasing sequence in M that weakly converges to µ in M.

Let {Φk}k∈N be an decreasing sequence in D that pointwise weakly converges to some Φ in

D. Then
{

(Φk(µk)
}
k∈N weakly converges to Φ(µ).

Define an operator B : V → V as

(Bv)(t, µ,Φ) := max
a∈Ã(t,µT )

{
(1− β)r(t, a, µ) + β

∫
T

v
(
t′,Φ(µ),Φ

)
q(dt′|t, a, µ)

}
. (8)

Some basic properties of the operator B are provided in the following lemma:

Lemma 3. For any v ∈ V, function (Bv) is continuous and increasing in t, jointly mono-

tone inf-preserving in (µ,Φ), and has increasing differences in
(
t, (µ,Φ)

)
.

To keep our notation compact, denote the function within the brackets in (8) by

F (t, a, µ; v,Φ) := (1− β)r(t, a, µ) + β

∫
T

v
(
t′,Φ(µ),Φ

)
q(dt′|t, a, µ).

Given Assumptions 2–4,F (t, a, µ; v,Φ) is increasing in t, jointly continuous in (t, a) and

has increasing differences in
(
a, (t, µ,Φ)

)
and

(
t, (µ,Φ)

)
. We claim it is also monotone

inf-preserving and monotone sup-preserving in (µ,Φ). We will show the former property,

where the latter property follows by a similar argument. So see monotone inf-preserving,

suppose that
{

(µn,Φn)
}
k∈N is a decreasing sequence that converges to (µ,Φ). By Lemma

2, we have Φn(µn) → Φ(µ). By Assumption 2 and the choice of the set V , it must be

that both r(t, a, µk)→ r(t, a, µ) and v
(
t,Φk(µk), µk

)
→ v

(
t,Φ(µ), µ

)
. Moreover, we have∫

T
v
(
t′,Φk(µk), µk

)
q(dt′|t, a, µk) →

∫
T
v
(
t′,Φk(µk), µk

)
q(dt′|t, a, µk), which follows from

Lemma A.2 in the Appendix. We are ready to prove Lemma 3.

Proof of Lemma 3. Continuity of (Bv) follows from Berge Maximum Theorem (see Theo-

rem 17.31 in Aliprantis and Border, 2006). Monotonicity of (Bv) in t is implied by mono-

tonicity of F and the fact that Ã increases in t in the sense of set inclusion. To show that
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it is monotonically inf-preserving in (µ,Φ), take any decreasing sequence
{

(µk,Φk)
}
k∈N

that converges to some (µ,Φ). We know that F (t, ak, µk; v,Φk) → F (t, a, µ; v,Φ) when-

ever ak → a. By Lemma A.3, this suffices for (Bv)(t, µk,Φk) → (Bv)(t, µ,Φ). Finally,

the fact that (Bv) has increasing differences in
(
t, (µ,Φ)

)
can be shown as in the proof of

Lemma 1 in Hopenhayn and Prescott (1992).

The conditions guaranteeing the value function has increasing differences in both ar-

guments (i.e., in t, µ) along with the transition Φ∗ being monotone allows us to avoid

the problems in characterizing dynamic complementarities in actions between periods

and beliefs that have been reported in the literature (e.g., Mensch, 2020). As a result,

we dispense with some continuity assumptions that are typically critical for existence of

equilibria in these games. This is due to no aggregate uncertainty and the fact that a

player has no influence on aggregate distribution and macro beliefs.43

The next result follows immediately and concerns the solution to equation (4).

Proposition 6. Operator B : V → V has a unique fixed point in V.

Indeed, Lemma 3 guarantees that B is well-defined operator that maps a complete

metric space into itself. Since it is also a contraction, it has a unique fixed point v∗.

Finally, showing that the value coincides with the value of the original problem (2) can

be done using standard arguments. See, e.g., Theorem 9.2 in Stokey et al. (1989).

We now proceed with the second half of the argument in which we prove existence of

the greatest MSDE. First, recall the definition of the correspondence Γ from (5), with its

greatest selection γ : T ×M×D → A. Consider the following lemma.

Lemma 4. For any v ∈ V, the greatest selection γ(t, µ,Φ; v) is a well-defined function,

measurable in t, increasing in (t, µ,Φ), and monotone inf-preserving.

Proof. Take any v ∈ V . Clearly, we have Γ(t, µ; v,Φ) = arg maxa∈Ã(t,µT ) F (t, a, µ; v,Φ).

It is straightforward to verify that F is supermodular and continuous in a. Since set

Ã(t, µT ) is a complete sublattice of A, by Corollary 4.1 in Topkis (1978), set Γ(t, µ; v,Φ)

is a complete sublattice of A. Therefore, it admits both the greatest and least element. We

43See also Kalai and Shmaya (2018).
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postpone the proof of measurability of γ until the Appendix. Monotonicity follows from

increasing differences of F and Theorem 6.2 in Topkis (1978). To show that γ is monotone

inf-preserving, let
{

(µk,Φk)
}
k∈N be decreasing sequence converging to (µ,Φ). By the

previous argument, sequence
{
γ(t, µk,Φk; v)

}
k∈N is decreasing. Suppose it converges to

some γ, and thus γ(t, µk,Φk; v) ≥ γ, for all k ∈ N. Since F continuous and monotone

inf-preserving, Lemma A.3 guarantees that γ ∈ Γ(t, µ; v,Φ). Thus, it must be γ ≤

γ(t, µ,Φ; v), and so γ ≤ γ(t, µ,Φ; v) ≤ γ(t, µk,Φk; v).

Next, recall the definition of operator ? from (6).

Lemma 5. Take any measures τ, τ ′ ∈MT such that τ ′ first order stochastically dominates

τ , and increasing functions h, h′ : T ×A→ A such that h′ dominates h pointwise. Then,

the measure (τ ′ ? h′) first order stochastically dominates the measure (τ ? h).

The proof of the above lemma is straightforward, and hence we omit it.

Lemma 6. Let {τk}k∈N be a decreasing sequence in MT that converges to some τ , and

consider the sequence {hk}k∈N be a pointwise decreasing sequence that converges to some

h. where each function hk : T ×A→ A is increasing and monotone inf-preserving. Then

(τk ? hk)→ (τ ? h) weakly.

Proof. This follows from Lemma A.1.44 We only need to show that any of τ ? h is inf-

preserving in h. Let τ ∈ MT be arbitrary and let hk be a decreasing sequence of Borel

functions from T to A. Let h = lim
k→∞

hk. Then, for any measurable, continuous, and

bounded function f : T × A→ R, we obtain

lim
k→∞

∫
T×A

f(t, a)(τ ? hk)(dt× da) = lim
k→∞

∫
T

f
(
t, hk(t)

)
τ(dt)

=

∫
T

f
(
t, h(t)

)
τ(dt) =

∫
T×A

f(t, a)(τ ? h)(dt× da).

Hence (τ ? hk)→ (τ ? h) weakly. This completes the proof.

In order to prove Theorem 2 for the greatest equilibrium, take the unique function

v∗ that solves the equation (4). Define operator Ψu as in (7). Given monotonicity of

44 Here the role of Ξ plays MT , and the role of fk plays h 7→ (τk ? h).
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γ(t, µ,Φ; v) and Lemma 5, we conclude that it is increasing. Moreover, by Lemmas 4 and

6, it is also monotonically inf-preserving.

Lemma 7. The set D is a lower chain complete poset.

Proof. Let {Φj}j∈J be a chain of elements in D. Let Φ :=
∧
j∈J Φj. It suffices to show

that that Φ is monotone inf-preserving. Let {µk}k∈N be a decreasing sequence inM that

converges to µ. For any k, j, and increasing, measurable function f : T × A→ R,∫
T×A

f(t, a)(Φµ)(dt× da) ≤
∫
T×A

f(t, a)(Φµk)(dt× da) ≤
∫
T×A

f(t, a)(Φjµk)(dt× da).

As k →∞, we obtain∫
T×A

f(t, a)(Φµ)(dt× da) ≤ lim inf
k→∞

∫
T×A

f(t, a)(Φµk)(dt× da)

≤ lim sup
k→∞

∫
T×A

f(t, a)(Φµk)(dt× da) =

∫
T×A

f(t, a)(Φjµ)(dt× da).

We conclude the by taking the infimum with respect to over j on the right hand-side.

A dual version can be proved for D′. Moreover, a space D ∩ D′ is a chain complete

poset. We proceed with the proof of Theorem 2.

Proof of Theorem 2. We prove the case of the greatest MSDE. We show that there exists

a fixed point of Ψ defined as in (7). First we verify the monotonicity of both coordinates

of Ψ. By Lemma 4 the γ(t, µ,Φ; v∗) is jointly increasing in (t, µ,Φ). Hence by Lemma 6

the expression µ′ defined in (7) is jointly increasing in (µ,Φ). By the same argument Φ′ is

increasing as a function of ν ∈M and is increasing in Φ. By Lemma 6 and Lemma 4 we

easily conclude that Ψ is a monotone inf-preserving self-map on M×D. We can hence

apply Proposition 2 on a lower chain complete posetM×D to conclude existence of the

greatest MSDE. Similar argument works for the least MSDE.

4 Monotone equilibrium comparative dynamics

We next discuss the nature of monotone equilibrium comparative dynamics in the class

of games studied in Section 3. To do this, we parameterize primitives of our game with θ
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in a poset Θ, and seek conditions under which MSDE are ordered in the deep parameters

of the game. Given our definition of equilibrium, this means that a selection θ → µ∗(θ)

and the equilibrium law of motion θ → Φ∗(θ) are increasing. Hence, the use of the term

monotone comparative dynamics rather than monotone comparative statics.

We first define a positive shock.45

Assumption 5 (Positive shock). Let Θ be a poset, and assume the following: (i) Payoff

function r(t, a, µ; θ) has increasing differences in (a, θ) and (t, θ). (ii) Transition kernel

q(·|t, a, µ; θ) is increasing in θ and has increasing differences in (a, θ) and (t, θ). (iii) Fea-

sible action correspondence Ã(t, µ; θ) has strict complementarities in (t, θ).

Theorem 3 (Monotone Comparative Dynamics). Suppose that the parameterized mappings

r(·, θ), q(·; θ), and Ã(·; θ) satisfy Assumptions 1–4, for all θ ∈ Θ. Under Assumption 5,

the greatest equilibrium
(
µ̄∗(θ),Φ

∗
(θ)
)

of the parameterized game increases in θ. Similarly

does the least equilibrium
(
µ∗(θ),Φ∗(θ)

)
.

Proof. We prove the case of the greatest equilibrium only. Let Ψ
θ

be the counterpart

of the operator Ψ in the parameterized game with θ ∈ Θ. Similarly we denote φθ

and γθ. Given that q(·|t, a, µ; θ) is increasing in θ, it suffices to show that θ → γθ

is increasing. Observe that, under our assumptions, the objective (1 − β)r(t, a, µ, θ) +

β
∫
T
v∗(t′, φ(µ), θ)q(dt′|t, a, µ, θ) has increasing differences in (a, θ) and v∗(t, µ, θ) has in-

creasing differences in (t, θ), for any µ ∈ M. By Theorem 6.2. in Topkis (1978), we

conclude that γ is increasing in θ. See also Hopenhayn and Prescott (1992). By As-

sumption 5 and definition we conclude that θ → φθ is increasing. The same property

is inherited by Ψ
θ

from its definition and Lemma 5. Moreover, similarly as in the proof

of Theorem 2, we conclude that Ψ
θ

is an increasing operator, for any fixed θ. To finish

this proof we only need to apply Proposition 3, recalling that a poset of distributions and

poset of uniformly bounded functions are chain complete.

An immediate corollary to the above result is the following: Under Assumptions 1–4,

45 Our notion of a positive shock is consistent with the terminology of Acemoglu and Jensen (2015).

The difference here is we consider the situation of comparative equilibrium transitional dynamics. In a

sense, our question here is more related to related issues for Bewley models studied in Huggett (1997).

25



the greatest equilibrium increases in the initial distribution of types τ1.46 Indeed, if we

let θ = τ1 and Θ =MT is ordered in the stochastic sense, then Assumption 5 holds.

Our monotone comparative dynamics result improves upon and also complements some

important well know results in the existing literature, e.g., Adlakha and Johari (2013),

Acemoglu and Jensen (2010, 2015), Light and Weintraub (2019). These papers discuss

equilibrium comparative statics relative to (a) the set of equilibrium invariant distributions

and/or steady states, and (b) regarding games with aggregative structure. In contrast,

we provide conditions under which MSDE equilibrium transition paths are increasing in

the parameter. This extension is of utmost importance. The conditions in Acemoglu

and Jensen (2015) or Light and Weintraub (2019) that determine comparative statics of

invariant distributions are not sufficient for comparison of MSDE equilibrium transitional

dynamics. In our case, as the equilibrium distribution µ∗(θ) and the law of motion/belief

Φ∗(θ) increase in θ, so does the distribution Φ∗
(
µ∗(θ)

)
(θ) in the following period. This

guarantees that the entire equilibrium path shifts with respect to the parameter θ. Clearly,

this also suffices to show that the greatest invariant distribution ν̄ induced by the greatest

equilibrium is also increasing in θ.47

Additionally, our results apply to distributions over multidimensional space Rn. In

fact, the multidimensionality is inherent if one studies distributions over types and actions

(like in our motivating example). Since spaces of measures over multidimensional spaces

are not lattices, it is crucial to employ the new tools from Proposition 3. See also the

interesting discussion in Section 3 of Light and Weintraub (2019).

5 Approximating dynamic Bayesian games with finitely many

players

We now show how a large dynamic game of strategic complements can serve as an ap-

proximation (or “idealized limit”) of its counterpart with a finite number of players N ,

for N is sufficiently large. To relate the sets of equilibria in the two different classes of

46 An analogous comparative equilibrium transitional dynamics results applies to the least MSDE.
47Again: a similar argument works for the least equilibrium and the least invariant distribution.
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games, it is useful to introduce a behavioral equilibrium concept for a game with finitely

may players. To do so, we first define an N -player, dynamic Bayesian game, where the

sequence of priors from which players types are drawn in each period n is given by τn.48

Then we impose the following behavioral assumption in the finite player game: each of

the N players believes that the law of large numbers holds and updates their beliefs ac-

cordingly. That is, they do not form beliefs about the possible private type profiles in the

finite game; rather, they behave as if each period the types were drawn as in a game with

infinitely many players.49 Therefore, the belief regarding the distribution of types τn at

time n is determined as in (1), where τ1 = τ , for some initial τ , and

τn+1(Z) =

∫
T×A

q
(
Z|t, a, (τn ? σn)

)
(τn ? σn)(dt× da),

for n ≥ 1, where τn ? σn = τn(idT , σn)−1, for the symmetric strategy σn : T → A used

by all players at time n. This sequence of priors is assumed to be common knowledge.

In this section we formally compare the corresponding equilibrium in the finite game to

MSDE in the game with continuum of players.

Let (Ω,F ,P) be a probability space and T̃n : Ω→ TN be a random variable determin-

ing the types of players in period n. Define the mapping T̃n = (T̃ 1
n , . . . , T̃

N
n ), where T̃ ln

is the random variable determining the type of agent l, drawn i.i.d. from the theoretical

distribution τn. For any vector of types t̃ := (t̃1, . . . , t̃N) ∈ TN of players, i.e., vector of

realizations of the random variable T̃n, we construct the empirical distribution as follows:

τ̂Nn (t̃)(Z) =
#
{
l ∈ {1, 2, . . . , N} : t̃l ∈ Z

}
N

.

We seek to compare symmetric equilibrium profiles of games with different number of

players. To do this, suppose that all but the j’th player apply a sequence of (now fixed)

Markov policies (σn)n∈N. That is, any player l 6= j, after observing t̃l ∈ T and knowing

the theoretical distribution τn at time n, chooses the action σn(t̃l) ∈ Ã(t̃l, τn), where σn

is Borel measurable. Player j at time n selects strategy Sjn (a random variable). Let t̃ be

48 As a matter of notation, when it causes no confusion, we shall denote the set of players in the finite

player game and its cardinality both by N .
49 This is analogous of imagined-continuum equilibrium in Kalai and Shmaya (2018) for repeated games.
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a realization of T̃n, sj a realization of Sjn, and sl = σn(t̃l) some realization for l 6= j. The

empirical distribution on types-actions is given by:

µ̂Nn (t̃, sj)(D) :=
#
{
l ∈ {1, 2, . . . , N} : (t̃l, sl) ∈ D

}
N

=
1

N

∑
l 6=j

1D
(
t̃l, σn(tl)

)
+

1

N
1D(t̃j, sj).

The following preliminary lemma in needed to formalize the appropriate notion of an

idealized limit of this finite player dynamic game. It states that the empirical distribution

over types-actions of our Bayesian game with finitely many players converges weakly to

the theoretical one as the number of players increase.

Lemma 8. For any n ∈ N, let T̃−jn = (T̃ ln)l 6=j be a collection of T -valued random types for

l 6= j, drawn i.i.d. from τn. Let Sln := σn(T̃ ln), for all l 6= j. For any N , let (ξN , ηN) be

an alternative random vector of type and policy for j, such that (ξN , ηN) ∈ Gr
(
Ãn(·, τn)

)
almost surely. Then µ̂Nn

(
(T̃−j, ξ

N), ηN
)

converges weakly to (τn ? σn), P-almost surely.

We now proceed with the formal definition of histories in the game and player’s payoff.

Let Fn be the sigma-algebra generated by the sequence of random variables of types

(histories) T̃k, for k ≤ n. The selection Sjn for j is called admissible if

P
(
Sjn ∈ Ãn(T̃ jn, τn)

∣∣Fn) = 1, P-almost surely.

The selection for players other than j is admissible by definition of (σn). For any l, assume

that T̃ ln is a Markov chain controlled by all players, and the transition probability satisfies

P
(
T̃ ln+1 ∈ Z

∣∣Fn) = q
(
Z
∣∣T̃ ln, Sln, µ̂Nn (T̃n, S

j
n)
)
, for any Z ∈ T , P-almost surely.

Moreover, the random variables T̃ 1
n+1, . . . , T̃

N
n+1 are Fn-conditionally independent.50 The

history is generated by types and actions of all players. The set of histories up to time

n is Hn ⊆
∏n

k=0

(
Gr(Ãk)

)N
, with a generic element hn = (t̃1k, s

1
k, . . . , t̃

N
k , s

N
k )nk=0 and slk =

σk(t̃
l
k), for all l 6= j. Moreover, for any k, t̃jk+1 is in the support of q

(
· |t̃jk, s

j
k, µ̂n(t̃k, s

j
k)
)
.

Any initial type t̃j0 of player j, their (behavioral) policy π, policy of other players (σn),

initial distribution for all types τ1, and the transitions between types induce a unique

50 That is, T̃n+1 has Fn-conditional distribution qP
(
· |T̃n, Sn, µ̂Nn (T̃n, S

j
n)
)

:=
⊗N

j=1 q
(
· |T̃ jn, S̃jn, µ̂Nn (T̃n, S

j
n)
)
,

that is P
(∏N

j=1{T̃
j
n+1 ∈ Zj}|Fn

)
=
∏N
j=1 q

(
Zj |T̃ jn, Sjn, µ̂Nn (T̃n, S

j
n)
)
, for any Z1, . . . , ZN , all belonging to

T , and all ω ∈ Ω̃ (or modifying Ω̃ on a null set if necessary).
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private probability measure on histories and its expectation Eσ,π
t̃j1

(e.g., as before, see

Ionescu-Tulcea Theorem in Dynkin and Yushkevich (1979)). If player j unilaterally devi-

ates from the from Markov policy (σn) to π = (πn), the strategy profile is
(
(σn)−j, (πn)

)
,

since (σn) is symmetric for all players l 6= j. Given the initial private state t̃j1 = t, player

j payoff is

RN(σ−j, π)(t) := (1− β)Eσ,πt

[
∞∑
n=1

rNn (t̃jn, s
j
n)βn−1

]

= (1− β)E

[
∞∑
n=1

rNn (T̃ jn, S
j
n)βn−1

∣∣∣T̃ j1 = t

]
,

where rNn is a reward function defined as follows

rNn (t, a) :=

∫
TN−1

r
(
t, a, µ̂Nn

(
(t, t̃−j), a

))
τN−1
n (dt̃−j),

where τN−1
n = τn ⊗ τn . . .⊗ τn︸ ︷︷ ︸

N−1 times.

Similarly, let

qNn (·|t, a) :=

∫
TN−1

q
(
· |t, a, µ̂Nn ((t, t̃−j), a)

)
τN−1
n (dt̃−j).

Given the evolution of τn specified earlier, and the policy for all players (σn)n∈N, the

problem for player j is a Markov decision process with the value function

ṽN1 (t) := sup
π∈Σ
R(σ−j, π)(t),

where Σ is the set of all feasible policies, i.e., Borel measurable functions π := (πn)∞n such

that πn : Hn × T ×MT 7→ MA and πk
(
Ãn(tjn, τn)|hn, tjn

)
= 1 for all n, tjn ∈ T , hn ∈ Hn,

and all πn are Borel measurable function.51

Definition 4 (Approximation). A profile σ̂ = (σ̂n) is said to be an ε-equilibrium for an

initial distribution τ1, if there is some N0 ∈ N such that for any N > N0, any player

j = 1, 2, . . . , N , and any type t ∈ T , and any π ∈ Σ, we have

ε+RN(σ̂)(t) ≥ RN
(
(σ̂)−j, π

)
(t).

51 We denote by MA the set of probability distributions over A.
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A symmetric action profile σ̂ is an ε-equilibrium if it constitutes an ε-equilibrium for

a sufficiently large N . Clearly, both ε and N0 depend on the initial distribution τ1.

Assumption 6. Suppose that (i) function r is continuous, (ii) for any continuous function

f : T → R, the function (t, a, µ) →
∫
T
f(t′′|t, a, µ) is continuous, and (iii) for any τ , the

correspondence t→ Ã(t, τ) is continuous.

It is important to note that in our specification of the dynamic Bayesian game with

finitely many players, the agents do not control the theoretical distribution τn — rather,

they only control the empirical distribution µ̂n. Now, for some MSDE (µ∗,Φ∗) in the

counterpart large dynamic game, consider an associated equilibrium strategy profile σ∗

and its associated value function v∗. For µ∗1 := µ∗, consider the sequence of measures (µ∗n)

defined recursively by macro belief operator µ∗n+1 = Φ∗(µ∗n). Similarly, take the associated

distributions on types (τ ∗n), the policies (σ∗n), and values vn(t), where τ ∗n = margT (µ∗n),

σ∗n(t) := σ∗(t, µ∗n) = σµn,Φ∗(t) and vn(t) := v∗(t, µ∗n; Φ∗).

We then have the following main theorem of this section:

Theorem 4. Under Assumption 6, for any MSDE (µ∗,Φ∗) and ε > 0, the sequence of

implied policy functions (σ∗n) is an ε-equilibrium for τ1 = τ ∗.

We make a few remarks on this result relative to related results in the existing litera-

ture. Weintraub et al. (2008) and Adlakha et al. (2015), for example, study the asymptotic

Markov properties of both oblivious (OE) and mean-field equilibrium (MFE). Specifically,

they show in an OE-MFE for a dynamic game with finitely many players, the invariant

distribution becomes “approximately optimal” as the number of players tends to infinity.

Such approximation notion in their work requires both uniqueness and continuity of the

best reply. Moreover, as the authors work with unbounded states spaces and unbounded

payoffs, their result also requires the so-called light tail condition. Relative to this work,

we dispense with uniqueness and continuity of the best reply, but impose stronger condi-

tion relative to the boundedness on the state space and payoffs (so no light tail condition

is needed). Alternatively, Kalai and Shmaya (2018) show in their work that an imagined-

continuum Bayesian equilibrium with a finite number of players is an ε-equilibrium of the
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actual (repeated) game. Moreover, they also show that ε is arbitrarily small as N tends

to infinity. Aside from considering dynamic vs. repeated games, our results differs from

theirs as we do not require the aggregative structure of the interactions in our dynamic

game. Our results also complement earlier contributions by allowing for Markovian envi-

ronment in a dynamic game, and without restricting the asymptotic analysis to invariant

distributions, unique and continuous best replies, or aggregative games.52

6 Applications and examples

6.1 Motivating example revisited

Recall in the motivating example in the Introduction, in each period, the type of a player

was identified with their level of capital/wealth/rank t ∈ T = [0, 1]. Their actions (in-

vestments) a ∈ A = [0, 1] were chosen from the feasible correspondence Ã(t, τ) = [0, t].

Given the distribution µ of types-actions of all players, the payoff in a single period was

r(t, a, τ, θ) :=

∫
A×T

[
θm(t− t̃) + w(t− a− t̃+ ã)

]
µ(dã× dt̃).

Here we introduce a positive parameter θ with respect to the initial example.

Given an investment a, the cumulative probability distribution of capital level t′ in the

following period is q(t′|a). Thus, conditional on the macro belief Φ, the Bellman equation

determining the player’s value function in the infinite horizon game is

v(t, τ ; Φ) = max
a∈Ã(t,τ)

{
(1− β)r(t, a, τ, θ) + β

∫
v
(
t′,Φ(τ); Φ

)
q(dt′|a)

}
.

It is straightforward to verify this game satisfies Assumptions 1–4. Correspondence

Ã is measurable, continuous, compact valued, and increasing (both in the sense of set

inclusion and strong set order). Given that functions m and w are continuous, increasing,

and concave, function r is continuous over T × A, increasing over T , and has increasing

differences in
(
a, (t, µ)

)
and (t, µ). The function is also (trivially) supermodular in a and

52 We also refer the reader to recent results of approximation of large static games by Carmona and

Podczeck (2012, 2020) and related results in Qiao and Yu (2014); Qiao et al. (2016).
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continuous in µ. As long as the distribution q is continuous in a, the requirements of

Theorem 2 for existence of the greatest MSDE are satisfied.

As it was pointed out in the main body of the text, the equilibrium pair (µ∗,Φ∗)

generates the entire equilibrium path of distributions {µ∗n}, where µ∗0 = µ∗ and µn+1 =

Φ∗(µn), which allows us to investigate the dynamics of the model. Moreover, the sequence

converges to an invariant distribution, allowing for the study of steady states.

Apart from existence and approximation of equilibria, Theorem 3 allows us to say more

about its equilibrium comparative dynamics. In particular, the equilibrium (µ∗,Φ∗) and

the corresponding sequence {µ∗n} increase as the initial distribution of types τ1 increases

in the first order stochastic sense. That is, along the equilibrium path to a stationary

equilibrium, players invest more and have more capital levels (stochastically).We may

also analyze how the equilibrium changes with respect to the parameter θ. One can easily

verify that the return function r has increasing differences in (a, θ) and (t, θ). Given

that the correspondence Ã and transition kernel q are independent of θ, this suffices for

the equilibrium and its path to be increasing in θ. Thus, as the relative weight of the

wealth-driven status is higher, the individuals in the population invest (stochastically)

more (consume less).

The above results would hold under a more elaborate transition kernel q(·|t, a, µ), that

would depend on the investment of a player, their type, and the distribution of wealth-

investments in the population. However, this would require for Assumption 3 to hold.

6.2 Dynamics of social distance

We next analyze a dynamic model of social distance, described originally in Akerlof

(1997).53 Consider a measure space of agents. Let T = [0, 1] be the set of all possi-

ble social positions in the population. Each period an individual is characterized by an

identity t ∈ T (type), which determines the social position to which the agent aspires.

53 The model is related to multiple strands of the social economics literature, including models of

identity and economic choice as in Akerlof and Kranton (2000), or models with endogenous social reference

points, including Bernheim (1994), Brock and Durlauf (2001), Bisin et al. (2011), and Blume et al. (2015).

The model in this example is a dynamic extension of the static model formalized in Balbus et al. (2019).
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In every period an agent has to choose their own social position (action) a ∈ A := [0, 1].

The set of social positions feasible to agent with identity t is Ã(t, τ) :=
[
a(t), a(t)

]
, where

a, a : T → A are increasing functions that satisfy a(t) ≤ t ≤ a(t), for all t ∈ T .

When choosing social position, there is a trade-off between idealism and conformism.

On the one hand, the individual wants the social status a to be as close as possible to

their identity t. Specifically, given some continuous, decreasing, and concave function m :

[0, 1]→ R, the agent wants to maximize m
(
|a−t|

)
, that represents idealism. On the other

hand, the player experiences discomfort when interacting with agents that have different

social position from theirs. Here, whenever an agent of social position a encounters an

agent of social position a′, they receive utility w
(
|a−a′|

)
, for some continuous, decreasing,

and concave function w : [0, 1]→ R. This summarizes conformism.

Suppose that ν(t′|t) is a cumulative probability distribution determining the likelihood

of an agent with identity t meeting someone with identity t′. We assume it is continuous

and first-order stochastically increasing in t. It captures the idea that similar minds think

alike and players with similar identity are more likely to meet. Given the distribution of

types-actions µ, the one-period payoff of an agent of identity t, social position a is

r(t, a, µ) := m(|a− t|) +

∫
T

∫
A

w(|a− a′|)dµ(a′|t′)dν(t′|t),

where µ(·|t′) is the distribution of actions of other players in the population conditional

on t′. Therefore, payoff of an agent in a single period is the sum of their idealistic utility

and expected payoff to conformity relative to their interactions with other agents. In

particular, our specification implies that the social position can not be contingent on the

social statuses of other agents. It has to be chosen ex-ante before any interaction occurs.

Following the rule you become whom you pretend to be, we assume that the social

position in a current period has a direct impact on the identity in the following period.

Formally, the transition is governed by cumulative probability distribution q(t′|a), that

determines the likelihood of the agent acquiring identity t′ in the next period, following

their choice of a at the current date. Specifically, we assume that function a → q(·|a) is

continuous and first order stochastically increasing in a.

It is straightforward to verify that the above game admits the greatest (and the least)
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MSDE. Indeed, function r satisfies conditions (i), (ii) and (iv), (v) from Assumption 2.

Moreover, since the transition kernel q depends only on a, it satisfies Assumption 3.

Finally, as long as functions a, a are continuous, in addition to the previously stated

assumptions, correspondence Ã(t, τ) =
[
a(t), a(t)

]
is continuous, compact-valued, and

satisfy strong complementarity. Clearly, Assumption 1 holds as well.

In this example, it is crucial the transition function q depends only on action a. Follow-

ing Remark 2, this allows to dispense the assumption that function r and correspondence

Ã are increasing in t, which is critical for this application.

Apart from equilibrium existence, one can determine equilibrium comparative transi-

tional dynamics in the model. It is clear that as the initial distribution of identities τ1

shifts in the first order stochastic sense, the equilibrium pair (µ∗,Φ∗) increases as well.

This implies an increase in the entire equilibrium transition path {µ∗n}.

6.3 Parenting and endogenous preferences for consumption

We now show how our tools can be applied to dynamic games with short-lived agents,

where individuals make decisions in one period only, but their actions propel dynamics for

future generations. This dynastic choice example is inspired by the literature on paternal-

istic bequests, keeping-up-with-the-Joneses, and growth with endogenous preferences.54

Consider a society populated with a measure space of single-parent single-child fami-

lies. Each individual (a parent) lives for a single period and a parent-child sequence forms

a dynasty. The type of a parent is determined by their lifetime income y ∈ [0, 1] and a

parameter i ∈ [0, 1] that summarizes preferences of the individual toward consumption.

So in this setting, the space of types will be t = (y, i) is given by T = [0, 1]2.

Each period, the income can be devoted to consumption c and investment (savings) s.

Thus, the constraint y = c + s for each dynasty. Consumption yields immediate utility

u(c, g), where parameter g represents propensity to consume. Formally, we assume the

function u is continuous and concave in c, and has increasing differences in (c, g). That

is, higher g increases the marginal utility of consumption for the current generation.

54 See Cole et al. (1992), Doepke and Zilibotti (2017) and Genicot and Ray (2017).
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We assume paternalistic preferences, where a parent evaluates the well-being of their

child with a function w(t′, τ ′), where t′ = (y′, i′) is the the future type of the child and τ ′

is a distribution of types in the next period. We assume w is increasing in t, thus, the

parent values high income and high propensity to consume of the child. Since the parent

cares only about her immediate descendant, they want the child to consume as much as

possible. Moreover, let w have increasing differences in (t′, τ ′), i.e., the higher is the future

distribution of types the higher is the parent’s incremental benefit of the child’s type.55

Each parent devotes (e.g., educational) effort e ∈ E = [0, 1] to shape preferences of

their child (i.e., raise their aspiration level). The cost of effort is given by C(e, µE), where

µE denotes the distribution of efforts in the population. We assume that the cost function

is continuous and increasing with e, and has decreasing differences in (e, µE) — the higher

effort in the population, the easier it is for an individual to influence their child.

Given our description, the action of an individual is a = (s, e) and the action space is

A = [0, 1]2. Savings s and effort e affect both the future income and preferences of the

child. Let the cumulative distribution q(t′|s, e) determine the probability of the future

type of the child being t′ = (y′, i′), where q is stochastically increasing in both arguments

and supermodular. Thus, investment s and effort e are complements. Indeed, from the

parent’s perspective higher effort (that skews preference of the child towards consumption)

makes marginal investment/bequest more valuable. The higher amounts of child’s income

are devoted to consumption, the more it pleases a paternalistic parent.

Finally, the marginal propensity to consume g is generated endogenously for each

individual via keeping-up-with-the-Joneses effect. Formally, let g = θΓ(t, µC), for some

positive parameter θ and an increasing function Γ, that depends both on the type of the

player and the distribution of consumption levels across population. For example,

Γ(t, µC) := inf
{
c ∈ [0, 1] : i ≤ µC(c′′ ≤ c

)}
,

where t = (y, i). That is, Γ is equal to the i’th quantile of consumption in the population.

55 This model is broadly related to issues raised in Echenique and Komunjer (2009) and Doepke et al.

(2019) concerning endogenous transmission of preferences in dynastic models of household choice. Ours

is a version of the model with quantile aspiration preferences and paternalism. This could be extended

to altruistic dynastic choice, peer effects, or locational concerns as in Agostinelli et al. (2020).
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Given our description, the objective of a parent of type t = (y, i) is to maximize

u
(
y − s, θΓ(t, µC)

)
+

∫
[0,1]

w
(
t′,ΦT (µ)

)
q(dt′|s, e)− C(e, µE),

with respect to (s, e) ∈ Ã(t, τ) = [0, y]× [0, 1]. Here, the mapping ΦT (µ) is the projected

next-period distribution of types in the population. Note that, w is not a value func-

tion in the sense discussed Section 3; rather, a paternalistic evaluation of child’s welfare.

Specifically, preferences of a parent may be misaligned with future preferences of the child.

To verify whether assumptions of our theorems are satisfied, consider an increasing

Markov strategy: σ : T → A, with σs and σe being its projections on both coordinates.

Then for some measurable set Z, we have µC(Z) = τ
(
{t ∈ T : [y − σs(t)] ∈ Z}

)
,

µE(Z) = τ
(
{t : σe(t) ∈ Z}

)
, and ΦT (µ)(Z) =

∫
T
q
(
Z|σs(t), σe(t)

)
τ(dt). Then, higher

σ implies first order stochastic dominance increase of µE and ΦT (µ), but the first order

stochastic dominance decrease in µC .56 Increasing differences of u(c, g), w(t′, τ ′), and

−C(e, µE), together with assumptions on q suffice to show that there exist the greatest

MSDE (µ∗,Φ∗), that can be computed using successive approximations.

When considering ordered changes in the deep parameters of the model, we can ap-

ply our equilibrium comparative transitional dynamics and equilibrium approximation to

these types of models. In particular, one can show the greatest (and the least) MSDE are

decreasing with respect to the parameter θ.

The above observations are true even though the payoff function is not necessarily

increasing in t, nor it has increasing differences in (t, µ). In fact, whenever function

Γ is specified as above, the latter never holds. In our main argument the additional

assumptions are crucial to show particular properties of the value function in the infinite

horizon problem. In a game with short-lived agents, we may dispense such assumptions.

6.4 Legal norms and public enforcement

Here we discuss a version of the model of social/legal norms an public enforcement as in

Acemoglu and Jackson (2017). Suppose there is a continuum of agents, each endowed

56 Indeed, we have
∫
C
f(c)µ′C(dc) =

∫
T
f(y − σ′s(t))τ(dt) ≤

∫
T
f(y − σs(t))τ(dt) =

∫
C
f(c)µC(dc), for

any measurable and increasing function f : [0, 1]→ R, where σ′s pointwise dominates σs.
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with a private type t ∈ [0, 1]. Let the threshold L ∈ [0, 1] be the social/legal norm in

the society. In each period, an individual randomly interacts with other members of the

population. Before any interaction takes place, the individual of type t must choose an

action a ∈ [0, t]. We say that action a is legal if a ≤ L. Otherwise, it is illegal.

Whenever an agent of type t playing action a encounters an agent playing action ã,

the bilateral public enforcement takes place. If both actions a, ã are legal, the players

are allowed to play the selected actions. If action a is illegal, while ã is legal, the latter

agent forces the former to abide the law, i.e., the former has to change their action to L.

Analogously, if a ≤ L but ã > L, the latter agent has to change their action to L. Finally,

if both a, ã are illegal, the agents play their chosen actions, since none of the agents has

the moral ground to enforce the legal action.57

In this game individuals agent care about two things. One hand, they want their actual

action (the one after a potential enforcement) to be as close to their type as possible, since

it yields u
(
|t−a+1a>L1ã≤L(a−L)|

)
for some continuous, decreasing, and concave function

u, where 1ã≤L is the indicator function. The, the agent wants their action to be as close

as possible to the (potentially enforced) action of the other players, which yields utility

v
(
|a − ã + 1a≤L1ã>L(a − L)|

)
, for some continuous, concave, and decreasing v. The

one-period payoff of an agent of type t choosing action a is then given by

r(t, a, µ) :=

∫
[0,1]

[
u
(
|t− a+ 1a>L1ã≤L(a− L)|

)
+ v

(
|a− ã+ 1a≤L1ã>L(ã− L)|

)
− θ1a>L1ã≤L

]
µA(dã),

where µA is the probability distributions over actions in the population, and θ is a fine that

the individual has to pay when caught. The set of constraints is given by Ã(t, τ) := [0, t],

and the type t′ of each player is drawn stochastically each period from q(t′|a), that depends

and stochastically increases in the action a of the agent in the preceding period.

One can easily check that the assumptions necessary for existence of (the greatest)

MSDE are satisfied.58 In particular, the equilibrium generates a transitional path of dis-

57 It is straightforward to extend the above model in order to incorporate imperfect and/or exogenous

(police) enforcement. In order to simplify notation, we discuss only the most basic form of the game.
58 Note that, function r is upper semi-continuous in action a, rather that continuous. However, this

can be show to be sufficient for our results to hold in this class of games.
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tributions of types and actions. Appealing to our monotone equilibrium comparative

dynamics results (and approximation results), we can show that both the equilibria, tran-

sitional paths, and corresponding stationary equilibria decrease in the fine θ.

6.5 Dynamics of large contests with coordination failures and learning

Consider a prototypical coordination game based on Angeletos and Lian (2016), with

applications to beauty contests, bank runs, riot games, or currency attacks.59 Here focus

on a simple dynamic beauty contest. In this large dynamic game, each player receives a

private signal t and chooses an action a every period. Action is costly and the cost depends

on the type t, which is summarized in the utility function u(t, a). Moreover, we assume u

is increasing in t and has increasing differences in (t, a). In addition to the utility u, the

player’s payoff depends on actions taken by other players, say
∫
A
g(a, ã)µA(dã), where g

also has increasing differences between a, ã.

As is standard in global games and dynamic coordination games with complementar-

ities, we study symmetric monotone in type equilibria, where each player is using some

increasing strategy σ : T → A. The one-period payoff of an agent playing a is

r(t, a, µ) := u(t, a) +

∫
T

g
(
a, σ(t̃)

)
µT (dt̃),

Such payoff satisfies assumptions of Theorem 2, and so there exists the greatest MSDE,

where each player is using an increasing strategy σ.60

Similarly, the framework can applied to riot games with private types, where

r(t, a, µ) := a

[∫
S

(t1 + L)1{R(µ)≥s̃}ν(ds̃)− L
]
− c(a, t2),

for some player type by t = (t1, t2) and a compact interval S ⊆ R. Thus, taking the risky

action a = 1 allows the player to“win” t1 if a sufficient number R(µ) := µ
(
{(t, a) : a = 1}

)
of players takes a risky (and costly) action, or loose L otherwise. The strength s of the

police is distributed according to measure ν. Whenever the cost function is decreasing

59 See Morris and Shin (2002) for an extensive discussion of this literature. See also Carmona et al.

(2017) for an interesting recent application of mean-field methods to a related class of games.
60 We may dispense monotonicity of u with respect to t as long as the transition function q depends

only on one-dimensional action a.
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in t2 and c(0, t2) = 0 (normalization), the dynamic game can be solved for a general

transition functions q(·|t, a, µ), allowing to model inertia, habit formation, or dynamic

social externalities. See also Morris and Yildiz (2016) applications.

6.6 Idiosyncratic risk under multidimensional production externalities

and technological dynamics

Finally, our model can be applied to analyze dynamics of technological progress in large

economies where agents face uninsurable private productivity risk. This includes the

model of Romer (1986) in a Bewley-Huggett-Aiyagari type setting with ex-ante identical

agents and ex-post heterogeneity in production and no borrowing.61

The economy is populated with a measure space of producers, each endowed with

capital t ∈ T = [0, 1], one unit of time, and a private technology f . The technology

transforms private inputs into finished outputs. Moreover, its productivity depends on

economy-wide externality summarized by the distribution of capital and labor in the

economy. Specifically, each agent with t units of capital and expending l ∈ L = [0, 1]

units of time is able to produce y = f(t, l, µT×L) units of a a finished output, where µT×L

is the distribution of capital-labor levels in the population. We assume the production

function f is continuous, increasing with respect to all arguments, and possess increasing

differences in (t, l), in (t, µ) and (l, µ). In particular, the private technologies endowed to

each agent need not be convex. In addition, our reduced form of technology allows for

nontrivial interactions with market leaders, closely related companies, or a competitive

fringe in both capital and labor dimensions.

The output can be devoted to consumption c or investment i, hence, c + i = y.

When c units of the output are consumed and labor supply is l, the agent receives utility

U(c, l) = u(c) + v(1− l), where u, v : R→ R are smooth, concave and strictly increasing.

Whenever i ∈ I := [0, 1] units of the good are invested, the capital in the next period is

determined stochastically with probability measure q(·|i).62

61 See also Angeletos and Calvet (2005) for a related study.
62 Our methods allow to analyze two sector economies. A consumption good sector with technology

f and investment good sector with stochastic technology q(·|t, i, l, µT×L). In the example we consider a
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To preserve complementarity structure to the value functions, we require some known

complementarity conditions for joint monotone controls (see Hopenhayn and Prescott,

1992 and Mirman et al., 2008). Along those lines, we assume the standard condition

−u′′/u′ ≤ f ′′12/(f
′
1f
′
2). It requires that degree of complementarity between private capital

and labour is high relatively to the curvature of the utility function. This suffices for pay-

offs to have increasing differences in (t, l). To guarantee increasing differences in (t, µT×L),

we require that u′
(
f(t, l, µT×L)− c

)
f ′1(t, l, µT×L) is increasing in µT×L.63 Analogous con-

ditions guarantee increasing differences in (l, µT×L).64

One can easily verify that the above conditions are sufficient for Theorem 2 to hold.

Therefore, there exist extremal MSDE for this large dynamic nonmarket economy (inter-

preted as a large anonymous game). Moreover, the extremal equilibria can be approxi-

mated using iterative methods.

This example (along with many of the others above) highlights the difference between

our results and those in the existing literature. Specifically, we consider Markov station-

ary transitional dynamics and comparative dynamics results (in additional to stationary

equilibrium comparative statics). For example, Acemoglu and Jensen (2015) discuss sta-

tionary equilibria and comparative statics given single dimensional aggregates that sum-

marize production externalities.65 Our conditions on the primitives that guarantee each

player’s value function has increasing differences in (t, µ) are not crucial for their results.

simple version of q depending on investment i only.
63 Whenever the externality can be summarized with some increasing aggregate G(µT×L) ∈ R, where

y = f
(
t, l, G(µT×L)

)
, the condition can be reduced to −u′′/u′ ≤ f ′′13/(f

′
1f
′
3).

64 Notice, in our setting, the correspondence A(t, l, µT×L) =
[
0, f(t, l, µT×L)

]
× L does not have strict

complementarities. To assure that the value function v∗ in (4) preserves increasing differences in (t, µ)

we need to use constructions of Mirman et al. (2008) (Lemmas 11, 12 and Theorems 3, 4). They show

that under assumptions stated on u, v, and f the value function posses increasing differences in t and µ.
65 In Acemoglu and Jensen (2015), to identify positive shocks one would require additional structure

on primitives to preserve increasing differences between individual states and shock parameters. Thus,

more assumptions are needed than noted in their Lemma 1.
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7 Related literature

This paper contributes to many strands of the recent literature in economics. Our work

contributes first to large anonymous sequential games literature that date back to a series

of papers by Jovanovic and Rosenthal (1988), Bergin and Bernhardt (1992), and Karatzas

et al. (1994). Relative to these, our work proves existence of minimal state space stationary

Markovian distributional equilibrium.

Further, of independent interest, we also contribute to an important literature on the

existence and characterization of dynamic exact law of large numbers (D-ELLN). Not

only does such a result underpin all large anonymous stochastic games, but also is the

foundation for many results in large dynamic economics (e.g., Bewley models). What is

shared in all of these settings is that each from a measure space of agents draws private

state each period, and hence the model’s state variable must include a measure-valued se-

quence that summarize the distribution of states across players. To keep the environment

tractable, this measure-valued process must be deterministic. Relative to this literature,

we provide a new characterization of a D-ELLN which provides a conditional independence

of player types (relative to histories of the game), and a deterministic transition of ag-

gregate distribution on types using rich Fubini extensions in saturated or super-atomless

measure spaces of players. This is not a mere technical detail; rather, in our setting,

given the strategic interaction between players, our equilibrium construction cannot even

proceed without an appropriate D-ELLN. Our construction builds upon the important

contributions of Sun (2006), Keisler and Sun (2009) and Podczeck (2010).

Additionally, our paper extends the class of games of strategic complementarities

(GSC) to a dynamic setting with a measure space of players. Following the important

work of Van Zandt (2010), in few recent papers including Balbus et al. (2015a, 2019,

2015b) and Bilancini and Boncinelli (2016), the class of supermodular games and GSC

has been extended to situations of normal-form games with complete and incomplete in-

formation. Simultaneously, a number of papers studied dynamic GSC with complete and

incomplete information.66 This paper directly relates to this literature in many ways.

66 See the seminal papers of Curtat (1996), Amir (2005), or more recently Mensch (2020).

41



First, the tools used in the current paper heavily extend that developed by Balbus et al.

(2013, 2014) to study Markovian equilibria in the finite number of players games. In doing

so, we provide sufficient conditions for preserving dynamic complementarities between the

periods to player’s value functions. The conditions allow one to avoid many of the issues

related to the notion of extensive-form supermodular games as discussed in Vives (2009),

Amir (2002), Echenique (2004), and Mensch (2020). Our new conditions imply that value

functions have increasing differences between private types and the aggregate distribution

summarizing agents types and actions. Very importantly, with our sufficient structure

in place, our large stochastic supermodular games remains extensive-form supermodu-

lar over the infinite horizon. This fact is critical for all of our equilibrium comparative

dynamic/statics results. In this sense, our work also relates to a recent literature on

characterizing single-crossing differences over distributions studied in the recent papers of

Quah and Strulovici (2012), Kartik et al. (2019), and Mensch (2020).

Given the distributional game specification, and the structural properties implied by

our D-ELLN, we are able to avoid many of problems in characterizing dynamic comple-

mentarities in actions between periods and beliefs reported recently in Mensch (2020)

for dynamic Bayesian games with a finite number of players. Finally, as in the work of

Balbus et al. (2014), all our proofs are constructive and computable via simple successive

approximations. In this sense, we are able to provide the applied researchers with tools

allowing to approximate the equilibrium distributions.

Importantly, our paper also contributes to the recent literature on characterizing the

equilibrium comparative statics and dynamics for large dynamic economies and games.

The literature is extensive and we refer the reader to Acemoglu and Jensen (2015) and

Light and Weintraub (2019) for an excellent discussion and citations. In particular, our

results provide a foundation for a theory of equilibrium monotone comparative transitional

dynamics relative to ordered perturbations of the space of games/economies.67 Specifi-

cally, we provide sufficient conditions on payoffs and transition probabilities such that the

sequence of equilibrium distributions, as well as the aggregate law of motion (specifying

67 Our work complements the approach to transitional dynamics in large economies discussed in Huggett

(1997).
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transition dynamics but also rational beliefs is our game), evolve monotonically in type

for any positive shock to the game. Interestingly, our methods extend therefore equi-

librium comparative statics results of Adlakha and Johari (2013), Acemoglu and Jensen

(2015, 2018), and Light and Weintraub (2019), applied to comparative statics of invariant

distributions or “stochastic steady states”.

Further, in many papers on equilibrium comparative statics, the results only apply

to equilibrium aggregates. Our approach contains this as a special case, and extends the

results in many directions. Moreover, we are able to perform multidimensional equilib-

rium comparative static/dynamics relative to a (infinite dimensional) set of equilibrium

distributions. Indeed, recall we compare distributions over Rn. Set of such objects are

not in general lattices, hence the need to apply our new equilibrium comparative statics

tools based upon Proposition 3 in the paper.

It also bears mentioning the assumptions of Acemoglu and Jensen (2015, 2018), and

Light and Weintraub (2019) are not sufficient to obtain results of our paper. The key

central difference between our work and these papers is that when studying stationary

equilibrium (or mean-field equilibrium) comparative statics, one does not need conditions

on the game that imply single crossing in distribution between private actions and ag-

gregates.68 This is because one is only characterizing the “steady state” structure of the

sequential or Markovian equilibrium. For the results in the present paper on MSDE, one

must deal with the influence of perturbations of dynamic interactions between players

and their distributional counterparts via the value function that is needed to recursively

define each player’s stage game payoffs. In additional, one must study the equilibrium

structure away from the fixed points of the equilibrium law of motion.

Finally, our monotone comparative statics/dynamics results are also shown to be com-

putable, as we characterize the chain of parameterized equilibria converging to the one of

interest for a particular parameter. This is of utmost importance for applied economists

that calibrate the equilibrium invariant distributions’ moments, or attempt to develop

econometric methods for estimating equilibrium comparative statics/dynamics in data

68 Characterizing sufficient single crossing conditions with respect to beliefs in static large, Bayesian

games with strategic complementarities is a challenge. See Balbus et al. (2015a); Liu and Pei (2017).
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(e.g., via the quantile methods of Echenique and Komunjer (2009, 2013)).

Our paper is also related to the recent work on oblivious (or stationary) equilibrium

(OE) and mean-field games (MFGs). This is a large and important growing literature

that includes papers by Ifrach and Weintraub (2016); Weintraub et al. (2008), Adlakha

and Johari (2013), Adlakha et al. (2015), Doncel et al. (2016), Lacker (2018), and Light

and Weintraub (2019), among many others.69 This work in OE and MFGs is motivated

primarily by computability and complexity considerations, and many of these papers

build methods for games in continuous time, with finitely many states, finite actions sets,

symmetric equilibrium in mixed strategies, where games externalities are characterized by

distributions or aggregates on states only (so not on actions). Equilibrium of such games

are stationary distributions on players states. Such mean field equilibrium implies a best

response oblivious strategy, i.e. distribution on action sets, where each players’ action is

optimal taking the invariant mean field distribution as given. For some recent progress

on this line of literature we refer the reader to e.g. Adlakha et al. (2015).

In a related context, we also extend a very interesting result of Kalai and Shmaya

(2018) on foundations of epsilon Bayesian Nash equilibrium of a finite number of players

game via imagined-continuum equilibrium. An imagined-continuum is a powerful, and

tractable, tool that as itself is a behavioral concept of equilibrium in a Bayesian game,

where although the players are playing a game with a finite number of players, they

view the equilibrium interaction and learning (and in particular, their belief formation)

as in a game with a continuum of players. For this setting, we show that the equilib-

rium of the imagine-continuum version of the Bayesian game converges to the stationary

Markovian equilibrium of the actual game. Our paper extends Kalai-Shmaya setting to

non-stationary equilibria and does so without imposing assumption that players take the

equilibrium aggregates as given.

69 For related work on large dynamic supermodular games see Wiecek (2017), who analyses a supermod-

ular game in continuous time, where each player moves in a discrete but different period of time. Moreover,

Adlakha and Johari (2013), study a mean-field version on our large dynamic supermodular game with

one-dimensional actions and strategic interaction via distribution on types. For such environment they

show existence of a mean-field equilibrium, i.e., an oblivious strategy and invariant distribution.
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A Appendix

A.1 Auxiliary results

Lemma A.1. Let (Ξ,≥) be a poset with its order topology, and {fk} be a sequence of

increasing and monotone inf-preserving functions fk : Ξ→ R. Whenever xk ↓ x in Ξ and

fk ↓ f (pointwise), then fk(xk)→ f(x).

Proof. Let n ∈ N. Since {fk} is decreasing sequence of increasing functions and xk ↓ x,

then k ≥ n implies f(x) ≤ fk(xk) ≤ fk(xn). Thus, we have f(x) ≤ lim infk→∞ fk(xk) ≤

lim supk→∞ fk(xk) ≤ f(xn). To finish the proof, let n→∞.

Lemma A.2. Let {νk} be a sequence of probability measures on a Polish space S, and {hk}

be a sequence of bounded, measurable functions hk : S → R. If νk ↓ ν (stochastically and

in weak topology) and hk ↓ h, then limk→∞
∫
hkdνk =

∫
hdν.

Proof. It is a consequence of Lemma A.1, where Ξ is a space of bounded, measurable, real

valued functions on S, and fk(x) :=
∫
S
x(s)νk(ds), xk(s) = hk(s).

Lemma A.3. Let S1, S2 be topological spaces and f : S1 × S2 7→ R be a continuous

function. Let Γ : S1 ⇒ S2 be a continuous, compact-valued correspondence and Γ∗(x) :=

arg max
y∈Γ(x)

f(x, y). If xk → x in S1, yk → y in S2, and yk ∈ Γ∗(xk), then y ∈ Γ∗(x).

Proof. Let y′ ∈ Γ(x). By continuity of Γ, for any k ∈ N, there is y′k ∈ Γ(xk) such that

y′k → y′. Since yk ∈ Γ∗(xk), we have f(xk, yk) ≥ f(xk, y
′
k), for all k ∈ N. By continuity of

f , we have f(x, y) ≥ f(x, y′). Since y′ ∈ Γ(x) is arbitrary, hence y ∈ Γ∗(x).

A.2 Omitted proofs

Proof of Proposition 2. This argument is analogous to Echenique (2005). Let x̄ be the

greatest element of X. Let I be a set of ordinal numbers with cardinality strictly greater

than X. Define the following transfinite sequence with the initial element x0 = x̄ and

xi =
∧{

f(xj) : j < i
}

, for i ∈ I \ {0}. We claim that {xi} is a well-defined decreasing

sequence. Clearly x1 = f(x0) ≤ x0. Suppose that {xj}j<i is well-defined and decreasing

45



for some i. Then
{
f(xj)

}
j<i

is a decreasing sequence, that has an infimum equal to xi.

Consequently xj is well defined and decreasing on [0, i]. By transfinite induction, the

transfinite sequence {xi}i∈I is well defined and decreasing. Since I has the cardinality

strictly greater than X, there is no one-to-one mapping between I and X. Consequently,

take the least element ī in {i ∈ I : xi = xi+1}. Then xī = xī+1 = f(xī), and e∗ := xī is a

fixed point of f . To show that e∗ =
∨{

x ∈ X : f(x) ≥ x
}

, set X :=
{
x ∈ X : f(x) ≥ x

}
.

Obviously, we have e∗ ∈ X . For any other y ∈ X , we have y ≤ x0. Suppose there is

i ∈ I such that y ≤ xj, for any j < i. Since y ∈ X , by transfinite induction, we have

y ≤ f(y) ≤ f(xj). Thus, y ≤
∧{

f(xj) : j ≤ i
}

and y ≤ xi, for any i ∈ I , including ī. �

Proof of Theorem 1. By Proposition 5.6 of Sun (2006) and Theorem 1 in Podczeck

(2010) there is a probability space (Ω,F , P ) and a rich Fubini extension of a natural

product space on Λ×Ω, denoted by (Λ×Ω,L�F , λ� P ). Consequently, we can find a

process η : Λ×Ω→ [0, 1] such that the family (ηα)α∈Λ is essentially pairwise independent

with the uniform distribution on [0, 1]. Define (ηn)n∈N as a set of independent copies of

η. Construct a sequence (Xn)∞n=1 satisfying theses (i)–(iii). Let (I, I, ι) be the standard

interval I = [0, 1], with Borel sets I, and the Lebesgue measure ι. For any µ ∈M, there

is a (I ⊗ T ⊗A)-measurable function Gµ : I × T × A 7→ T such that

ι
(
Gµ

(t,a)

)−1
(Z) = ι

({
l ∈ I : Gµ(l, t, a) ∈ Z

})
= q(Z|t, a, µ),

for any Z ∈ T .70 For any initial distribution τ1 ∈ MT , there exists a T -valued (I ⊗ T )-

measurable function G̃ such that τ0 = ιG̃−1.71 PutX1 := G̃(η1). Having the initial random

variable X1, define the following process Xn+1 = Gµn(ηn+1, Kn), for n > 1, where Kn :=(
Xn, σ(Xn, τn)

)
, τn := (λ�P )X−1

n , and µn := (λ�P )K−1
n . As usual, put (Kn)α(ω) :=

Kn(α, ω) for (α, ω) ∈ Λ × Ω. Let Sn by the sigma field generated by {ηk : k ≤ n}. By

definition of X1 and Xn+1, we conclude that Xn is Sn-measurable. Hence, (Xn)α and

(ηn+1)α are independent, for λ-almost every α ∈ Λ. We show that (i)–(ii) are satisfied

by induction on n. For n = 1, the claim holds by essential independence of η1 and X1.

Moreover, by Proposition 1, for P -almost every ω ∈ Ω the sampling distribution λ(X1)−1
ω

70 For example, see Lemma A5 in Sun (2006).
71 Again, see Lemma A5 in Sun (2006).
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of X1, i.e., satisfies λ(X1)−1
ω = (λ�P )X−1

1 = τ . Again by Proposition 1, for P -almost all

ω ∈ Ω, we have λ(K1)−1
ω = (λ� P )K−1

1 := µ1. Hence, (ii) is satisfied for n = 1. Suppose

that both (i) and (ii) hold, for some n ≥ 1. Observe that
(
(ηn+1)α, (Xn)α

)
α∈Λ

is a family

(λ ⊗ λ)-almost everywhere pairwise conditionally independent random variables. This

follows from induction hypothesis for (Xn)α, and the previous observation that random

variables (Xn)α and (ηn+1)α are independent λ-almost surely. Hence, by construction of

Xn+1, the family
(
(Xn+1)α

)
α∈Λ

is (λ⊗λ)-almost surely pairwise conditionally independent.

Hence the property (i) is satisfied for (n+ 1). By Proposition 1, we obtain (ii) for (n+ 1).

Thus, (i) and (ii) hold for all n ≥ 1. To show (iii), let (Sn)α be the sigma field generated

by {(ηk)α : k ≤ n} and similarly (Σn)α by {(Xk)α : k ≤ n}. By definition of Xn and (Σn)α

we conclude that σ
(
(Xn)α

)
⊆ (Σn)α ⊂ (Sn)α. Let E be the standard expectation with

respect to P . Hence the conditional distribution of (Xn+1)α with respect to (Σn)α satisfies

P
(
(Xn+1)α ∈ Z

∣∣(Σn)α
)

= E
[
P
(
(Xn+1)α ∈ Z

∣∣(Sn)α)|(Σn)α

]
= E

[
P
(
Gµn((ηn+1)α, (Kn)α) ∈ Z

∣∣(Sn)α
)
|(Σn)α

]
= E

[
q
(
Z|(Kn)α, µn

)∣∣(Σn)α

]
= q

(
Z
∣∣(Xn)α, σ

∗((Xn)α, τn
)
, µn

)
for λ-almost all α ∈ Λ and all Z ∈ T , where the last equality follows from independence

of (ηn+1)α and (Xn)α. Hence, property (iii) is satisfied. �

Proof of Lemma 1. Suppose that vn ∈ V , for all n ∈ N, and vn → v. Furthermore,

let (µk) and (Φk) be decreasing sequences in M and D, respectively, such that µk → µ

(weakly) and Φk → Φ (pointwise). Take any t ∈ T and ε > 0. There is n0 ∈ N such that,

for all k ∈ N and n ≥ n0, we have

|v(t, µk,Φk)− v(t, µ,Φ)| ≤ |v(t, µk,Φk)− vn(t, µk,Φk)|+ |vn(t, µk,Φk)− vn(t, µ,Φ)|

+ |vn(t, µ,Φ)− v(t, µ,Φ)| ≤ 2

3
ε+ |vn(t, µk,Φk)− vn(t, µ,Φ)| (9)

Take any n ∈ N satisfying (9). Therefore, since vn ∈ V , for large enough k, we obtain∣∣vn(t, µk,Φn)− vn(t, µ,Φ)
∣∣ ≤ ε/3. Given (9), this implies |v(t, µk,Φk)− v(t, µ,Φ)| < ε, for

large k. Hence v is monotonically sup- and inf-preserving. Thus, v ∈ V . �
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Continuation of the proof to Lemma 4. We prove (vi). Using Assumption 2, definition

of V , and Lemma 4(ii), one can show that F is a Carathéodory function in (t, a), i.e.,

measurable in t and continuous in a. Hence, by Lemma 1 and Measurable Maximum

Theorem (Theorem 18.19 in Aliprantis and Border, 2006) the correspondence Γ(t, µ; v,Φ)

is measurable in t, hence, weakly measurable.72 For each j = 1, 2, . . . , k, the func-

tion πj(t) := maxa∈Γ(t,µ;v,Φ) aj is measurable (again, by Measurable Maximum Theorem).

Thus, t→ γ(t, µ,Φ; v) =
(
π1(t), π2(t), . . . , πk(t)

)
is measurable. �

Proof of Lemma 8 Suppose that f : T × A 7→ R belongs to the space of bounded and

continuous function C(T×A). Clearly, we have (1/N)f
(
ξN(ω), ηN(ω)

)
→ 0, for all ω ∈ Ω.

By the standard Kolmogorov Law of Large Numbers Theorem, we obtain

lim
N→∞

1

N − 1

∑
l 6=j

f
(
T̃l, σn(T̃l)

)
=

∫
T

f
(
t, σn(t)

)
τn(dt) =

∫
T×A

f(t, a)(τn ? σn)(dt× da),

P-almost surely. Consequently, for P-almost every ω ∈ Ω,

lim
N→∞

∫
T×A

f(t, a)µ̂Nn
(
(T̃−j, ξ

N), ηN
)

=

∫
T×A

f(t, a)(τn ? σn)(dt× da). (10)

Let F be a countable, dense set in C(T × A). Let Ω̃ ⊆ Ω be such that any element

of F obeys (10). Then, P(Ω̃) = 1. We claim that (10) holds for any f ∈ C(T × A)

whenever ω ∈ Ω̃. Take any ε > 0. Since F is dense in C(T × A), take f0 ∈ F such that

‖f − f0‖∞ < ε
3
. Then,

∫
T×A |f(t, a) − f0(t, a)|µ̂Nn

(
(T̃−j, ξ

N), ηN
)
(dt × da) ≤ ε

3
as well as∫

T×A |f(t, a)− f0(t, a)|(τn ? σn)(dt× da) ≤ ε
3
. This implies∣∣∣∣∫

T×A
f(t, a)µ̂Nn

(
(T̃−j, ξ

N), ηN
)
(dt× da)−

∫
T×A

f(t, a)(τn ? σn)(dt× da)

∣∣∣∣
≤
∫
T×A
|f(t, a)− f0(t, a)|µ̂Nn

(
(T̃−j, ξ

N), ηN
)
(dt× da)

+

∫
T×A
|f(t, a)− f0(t, a)|(τn ? σn)(dt× da)

+

∣∣∣∣∫
T×A

f0(t, a)µ̂Nn
(
(T̃−j, ξ

N), ηN
)
(dt× da)−

∫
T×A

f0(t, a)(τn ? σn)(dt× da)

∣∣∣∣ ≤
2

3
ε+

∣∣∣∣∫
T×A

f0(t, a)µ̂Nn
(
(T̃−j, ξ

N), ηN
)
(dt× da)−

∫
T×A

f0(t, a)(τn ? σn)(dt× da)

∣∣∣∣ . (11)

72See, e.g., Lemma 18.2 in Aliprantis and Border (2006).
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Since ω ∈ Ω̃, there exists an integer N0 such that, for any N > N0,∣∣∣∣∫
T×A

f0(t, a)µ̂Nn ((T̃−j, ξ
N), ηN)(dt× da)−

∫
T×A

f0(t, a)τn ? σn(dt× da)

∣∣∣∣ < ε

3
. (12)

Combining (11) and (12), for N > N0, we have∣∣∣∣∫
T×A

f(t, a)µ̂Nn ((T̃−j, ξ
N), ηN)(dt× da)−

∫
T×A

f(t, a)τn ? σn(dt× da)

∣∣∣∣ < ε. (13)

Since ε > 0, the (13) implies that (10) holds for f and ω ∈ Ω̃. Given that f ∈ C(T × A)

is arbitrary and P(Ω̃) = 1, we have µ̂Nn
(
(T̃−j, ξ

N), ηN
)
→ (τn ? σn), almost surely. �

Recall that ṽN1 (t) := supπ∈ΣR(σ−j, π)(t). Then, the Bellman equation for optimal value

ṽNn , updated for any n ∈ N, take the form of

ṽNn (t) = max
a∈Ã(t,τn)

{
(1− β)rNn (t, a) + β

∫
T

ṽNn+1(t′)qNn (ds′|t, a)

}
. (14)

Let C be the set of continuous real-valued functions on T , uniformly bounded by r̄, which

is a closed subset of a Banach space. The metric in product space C := C∞ is embedded

in the natural Banach space the following norm: For v = (vn)n∈N, define

‖v‖ζ :=
∞∑
n=1

1

ζn−1
sup
t∈T
|vn(t)|,

where ζ ∈ (0, 1/β) is a fixed value. Clearly, vN → v in ‖ · ‖ζ if and only if vNn → vn, for

any n ∈ N. Let v ∈ C, t ∈ T , and BN(v)(t) :=
(
BN
n (v)(t)

)
n∈N where

BN
n (v)(t) := max

a∈Ã(t,τn)

{
(1− β)rNn (t, a) + β

∫
T

vn+1(t′)qNn (dt′|t, a)

}
.

Similarly, define BN(v)(t) :=
(
BNn (v)(t)

)
n∈N where

BNn (v)(t) := (1− β)rNn
(
t, σn(t)

)
+ β

∫
T

vn+1(t′)qNn
(
dt′|t, σn(t)

)
.

For v ∈ C, let B∞(v)(t) := (B∞n (v)(t))n∈N where

B∞n (v) := max
a∈Ã

{
(1− β)rn(t, a) + β

∫
T

vn+1(t′)qn(dt′|t, a)

}
,

where rn(t, a) := r(t, a, τn ? σn) and qn(·|t, a) := q(·|t, a, τn ? σn), for (t, a) ∈ Gr
(
Ã(·, τn)

)
.

Similarly define B∞(v)(t) :=
(
B∞n (v)(t)

)
n∈N where

B∞n (v)(t)′ := (1− β)rn
(
t, σn(t)

)
+ β

∫
T

vn+1(t′)qn
(
dt′|t, σn(t)

)
.

Now we prove basic properties of BN and B∞.
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Lemma A.4. Let σ be a Borel measurable function. Then,

(i) mappings BN ,BNn , B∞, and B∞n map C into itself;

(ii) BN , BNn , B∞, and BNn are βζ-contraction mappings on C;

(iii) if vN → v in C, then BN(vN)→ B∞(v) and BN(vN)→ B∞(v) in C;

(iv) we have ‖ṽN − ṽ∞‖∞ → 0, where ṽN , ṽ∞ in C is a fixed point of BN , B∞;

(v) we have ‖v̌N − v̌∞‖∞ → 0, where v̌N , v̌∞ in C is a fixed point of BN , B∞.

Proof. In order to prove (i), take any v ∈ C. Given Assumptions 6, for any n and

N , the following functions ΠN
n (t, a, v) = (1 − β)rNn (t, a) + β

∫
T
vn+1(t′)qNn (dt′|t, a) and

Π∞n (t, a, v) = (1− β)rn(t, a) + β
∫
T
vn+1(t′)qn(dt′|t, a), are both continuous in (t, a). Since

BN
n (v)(t) = maxa∈Ã(t,τn) ΠN

n (t, a, v) and B∞n (v)(t) = maxa∈Ã(t,τn) Π∞n (t, a, v), statement (i)

follows immediately from Berge Maximum Theorem. We show (ii). It is routine to verify

‖BN
n (v) − BN

n (w)‖∞ ≤ β||vn+1 − wn+1||∞, for v, w ∈ C. By dividing both sides by ζn−1

and summing over n, we obtain

‖BN
n (v)−BN

n (w)‖ζ =
∞∑
n=1

‖BN
n (v)−BN

n (w)‖∞
ζn−1

≤ βζ
∞∑
n=1

‖vn − wn‖∞ = βζ‖vn − wn‖∞.

An analogous argument can be applied to prove the property for B∞. In order to show

(iii), suppose that vN → v in (C, ||·||∞) and (tN , aN)→ (t, a), for (tN , aN) ∈ Ã(tN , τn). We

claim that ΠN
n (tN , aN , vN) → Π∞n (t, a, v). By Lemma 8 and Assumption 6, we have that

rNn (tN , aN)→ rn(t, a) and qNn (·|tN , aN)→ qn(·|t, a). This proves the claim. Furthermore,

by (i), there is tN such that

sup
t∈T
|BN

n (vN)(t)−B∞n (v)(t)| = ‖BN
n (vN)(tN)−B∞n (v)(tN)‖.

Without loss of generality suppose that tN → t. Combining the definition of rn and

qn, Lemma 8, and the above claim, it follows that the right hand-side above tends to 0.

Hence, ‖BN(vN)−B∞(v∞)‖ζ → 0. Finally, to prove (iv), observe that

‖ṽN − ṽ∞‖κ = ‖BN(ṽN)−B∞(ṽ∞)‖ζ

≤ ‖BN(ṽN)−BN(ṽ∞)‖ζ + ‖BN(ṽ∞)−B∞(ṽ∞)‖ζ

≤ βζ||ṽN − ṽ∞||ζ + ||BN(ṽ∞)−B∞(ṽ∞)||ζ ,
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where the last inequality is by (ii). Thus, ‖ṽN − ṽ∞‖κ ≤ ‖BN(ṽ∞)−B∞(ṽ∞)‖ζ/(1− βζ).

To finish the proof, we only take N → ∞, since by (iii) the right hand-side above tends

to 0. The proof of (v) is analogous to (iv).

Lemma A.5. Consider MDP, where (τn)n∈N and (σn)n∈N are implied by sequences of distri-

bution on types-policies for some MSDE (µ∗,Φ∗). Then, the sequences of value functions

v̄ for (µ∗,Φ∗) is a common fixed point of B∞ and B∞. As a result, v̄ = ṽ∞ = v̌∞.

Proof. By Lemma A.4, it follows that B∞ and B∞ are both contractions on C. Hence, we

only need to show v̄ is the fixed point of B∞ and B∞. By definition of v̄, v∗, µn, and τn,

for any t ∈ T , we have v̄n(t) = v∗(t, τn,Φ
∗) and

v̄n(t) = max
a∈Ã(t,τn)

{
(1− β)r(t, a, µn) + β

∫
T

v∗(t′, µn+1,Φ
∗)q(dt′|t, a, µn)

}
= max

a∈Ã(t,τn)

{
(1− β)r(t, a, µn) + β

∫
T

v̄n+1(t′)q(dt′|t, a, µn)

}
= max

a∈Ã(t,τn)

{
(1− β)r(t, a, τn ? σn) + β

∫
T

v̄n+1(t′)q(dt′|t, a, τn ? σn)

}
= B∞n (v̄n+1)(t).

Hence v̄ = B∞(v̄) and by uniqueness of the fixed point of B∞, v̄ = ṽ∞. By the same

argument we obtain v̄ = B∞(v̄), and v̄ = v̌.

Proof of Theorem 4. Let ε > 0 and σ = (σn)n∈N be a sequential policy function associ-

ated with (µ∗,Φ∗). If player j unilaterally deviates from σ using π then, for any t ∈ T , we

have RN((σ)−j, π)(t)− v̌N1 (t) ≤ ṽN1 (tj1)− v̌N1 (tj1) ≤ ‖ṽN1 − v̌N1 ‖∞. By Lemma A.4, ṽN1 → v∞1

and v̌N1 → v̌∞1 . Since the policy is σ = σ∗ and the initial state is τ1 = τ ∗, then v̌∞1 = v∞,

by Lemma A.5. Thus, for large enough N , ‖ṽN1 − v̌N1 ‖∞ < ε. �
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