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In this note, we prove the existence of a Markov perfect equilibrium in a non-
stationary version of a paternalistic bequest game. The method we advocate is 
general and allows to study models with unbounded state space and unbounded 
utility functions. We cover both, the stochastic and deterministic cases. We provide 
a characterization of the set of all Markov perfect equilibria by means of a set-valued 
recursive equation involving the best response operator. In the stationary case, we 
show that there exists a set of strategies that is invariant under the best response 
mapping.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Since the seminal papers of Phelps and Pollak [16], Kohlberg [11], Bernheim and Ray [7], or Leininger [12]
researchers study a class of paternalistic bequest economies. Specifically, the economy they consider consists 
of a sequence of generations, each living one period, and deriving utility from its own consumption, as well 
as that of a successor generation. At the beginning of each period t, generation receives an endowment of 
a single homogeneous good, which for t ≥ 2 is the output from a bequest left by the previous generation. 
This endowment is divided between consumption and investment.

From a game-theoretic point of view this economy is represented by an infinite horizon “bequest game” 
on an uncountable, possibly unbounded state space with countably many short-lived players (generations). 
A natural solution concept for this class of games is the subgame (or Markov) perfect equilibrium. First 
results on the existence of Markov perfect equilibria in bequest games with deterministic transitions were 

* Corresponding author.
E-mail addresses: l.balbus@wmie.uz.zgora.pl (Ł. Balbus), anna.jaskiewicz@pwr.edu.pl (A. Jaśkiewicz), 

a.nowak@wmie.uz.zgora.pl (A.S. Nowak), lukasz.wozny@sgh.waw.pl (Ł. Woźny).
http://dx.doi.org/10.1016/j.jmaa.2017.07.018
0022-247X/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2017.07.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:l.balbus@wmie.uz.zgora.pl
mailto:anna.jaskiewicz@pwr.edu.pl
mailto:a.nowak@wmie.uz.zgora.pl
mailto:lukasz.wozny@sgh.waw.pl
http://dx.doi.org/10.1016/j.jmaa.2017.07.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2017.07.018&domain=pdf


Ł. Balbus et al. / J. Math. Anal. Appl. 456 (2017) 394–401 395
proved (by different methods) in [7] and [12]. Although the model of the bequest game looks simple, the 
proofs given in the aforementioned papers are quite involved and based on some technical tricks. A simpler 
and more transparent proof is given in [4].

Extensions of the simple bequest game model involving more than one descendant for each generation and 
stochastic transitions were considered by many authors. A survey of the existing literature (both theoretical 
results and applications in economics) can be found in [10] and [6]. In the stochastic framework, the most 
general results (from the point of view of assumptions on the transition structure) are given in [2,3].

It should be noted that almost all of the papers in the literature were devoted to the stationary models 
where utility functions and transitions are independent of time. The authors have focused on existence and 
computation of (Markov) stationary Nash equilibria due to their simplicity and computational tractability. 
General techniques and results concerning non-stationary equilibria or non-stationary games are not very 
well developed. That is, while the existence of a stationary (Markov) perfect equilibrium in a stationary 
intergenerational game is a fixed point problem of a best response mapping in an appropriately defined 
function space, characterizations of the sets of non-stationary Markov perfect equilibria in bequest games 
are almost not known in the existing literature. Assuming that the utility functions and transitions are 
independent of generation number is obviously a restriction. It is natural to expect that tastes and production 
technologies change in time.

Existence of Markov perfect equilibria in a non-stationary deterministic game with bounded state space 
was established by Bernheim and Ray [7]. However, it is not clear how to extend the results given in [7] to an 
unbounded state space case. A natural idea to construct sets of Markov perfect equilibria in non-stationary 
bequest games is to use a generalization of strategic dynamic programming arguments leading to some 
“set-valued recursive equation.” Similar methods were used by Harris [9] for perfect equilibria in games 
of perfect information and Mertens and Parthasarathy [13] in their study of subgame perfect equilibria 
in discounted stochastic games as well as by Abreu et al. [1] in repeated games. Specifically, instead of 
analyzing fixed points of best response maps defined on particular classes of strategies, they construct a 
family of descending self-generating subsets of the strategies or the value sets, and show that these sets 
have a non-empty intersection. Then, they select a sequence of strategies (or values) from this intersection 
(the limiting set) and obtain the desirable equilibrium solution. For a short introduction and sketch of 
the main arguments used in studying equilibria in standard stochastic games the reader is also referred 
to pages 397–398 in [14]. A suitable modification of the Mertens and Parthasarathy method [13] suggests 
a direct way to construct the equilibrium sets in some classes of dynamic games with quasi-hyperbolic 
discounting as in [5].

In this paper, we apply the Mertens and Parthasarathy type method [13] to characterize the sets of non-
stationary Markov perfect equilibria in a large class of infinite horizon bequest games with both stochastic 
and deterministic transitions. As corollaries we prove the existence of non-stationary Markov perfect equi-
librium in two classes of games with different utility functions. Our approach is general and allows to analyze 
unbounded state spaces, unbounded utility functions as well as both, the stochastic and deterministic cases. 
To the best of our knowledge, existence of an MPE in non-stationary stochastic bequest games has not 
been established in the literature so far.

Additional and more detailed comments on our results and the literature are given in the last section of 
this note.

2. Non-stationary stochastic bequest games with additive utilities

Let R be the set of all real numbers and N be the set of all positive integers. Let S := [0, +∞), S+ :=
(0, +∞) and A(s) := [0, s] for s ∈ S. Consider an infinite sequence of generations labeled by t ∈ N. There is 
one commodity, which may be consumed or invested. Every generation lives one period and derives utility 
from its own consumption and consumption of its immediate descendant. Generation t ∈ N receives the 
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endowment st ∈ S and chooses a consumption level at ∈ A(st). The investment of yt := st − at determines 
the endowment of its successor according to some transition probability qt from S to S, which depends on 
yt ∈ A(st). If st = s, then we shall often write s′ for st+1.

Let Φ be the set of Borel measurable functions φ : S → S such that φ(s) ∈ A(s) for each s ∈ S. A 
strategy for generation t ∈ N is a function ct ∈ Φ.

The transition probability induced by qt and ct ∈ Φ is qt(·|it(s)), where it(s) := s −ct(s) is the investment
or saving in state s ∈ S. Assume that generation t ∈ N consumes a ∈ A(st) in state st = s and the following 
generation is going to use a strategy ct+1 ∈ Φ. Then, the expected utility of generation t is defined as follows

Pt(a, ct+1)(s) := ut(a) +
∫

S

vt(ct+1(s′))qt(ds′|s− a), (1)

where ut : S → S whereas vt : S → S is bounded and Borel measurable. In the sequel, we impose additional 
assumptions on functions ut and vt.

The solution concept given below dates back to Phelps and Pollak [16].

Definition 1. A Markov Perfect Equilibrium (MPE) in the model with the expected utility defined in (1)
is a sequence of strategies (c∗t )t∈N such that c∗t ∈ Φ for each t ∈ N and

sup
a∈A(s)

Pt(a, c∗t+1)(s) = Pt(c∗t (s), c∗t+1)(s)

for every s ∈ S and t ∈ N. An MPE (c∗t )t∈N is stationary, if c∗t = c∗1 for each t ∈ N.

Hence, an MPE is a sequence (c∗t ) of measurable functions mapping current states to consumption 
choices such that, if generation t +1 is going to use c∗t+1, then the best response of generation t is to use c∗t . 
Observe that (c∗t ) is a Nash equilibrium in the game played by countably many players (generations) using 
Markov strategies.

Let C(S) be the set of all bounded real-valued continuous functions on S. By P (S) we denote the set of 
all probability measures on the Borel subsets of S. We endow P (S) with the topology of weak convergence. 
Recall that a sequence (μn)n∈N of probability measures on S converges weakly to some μ ∈ P (S), if for 
every g ∈ C(S), it holds that

lim
n→∞

∫

S

g(s)μn(ds) =
∫

S

g(s)μ(ds).

We now formulate our basic assumptions in the stochastic case.

(A1) For every t ∈ N, the function ut : S → R is increasing, strictly concave and continuous.
(A2) For every t ∈ N, the function vt : S → R is bounded, increasing and continuous.

Assuming in the sequel that (A) holds we mean that both (A1) and (A2) are satisfied. Similarly, we shall 
refer to other conditions made below.

For the transition probability functions we accept two alternative sets of conditions (B) or (C).

(B) For every t ∈ N, the transition probability qt is weakly continuous on S, that is, if ym → y0 in S as 
m → ∞, then qt(·|ym) converges weakly to qt(·|y0) for every t ∈ N. Moreover, for each y ∈ S+, the 
probability measure qt(·|y) is non-atomic, and qt(·|0) has no atoms in S+.

(C1) For every t ∈ N, the transition probability qt is weakly continuous on S and qt({0}|0) = 1.
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(C2) For every s ∈ S and t ∈ N, the set Zs
t := {y ∈ S : qt({s}|y) > 0} is countable.

(C3) The transition probability qt is stochastically increasing, i.e., if s′ → Qt(s′|y) := qt([0, s′]|y) is the 
cumulative distribution function for qt(·|y), then for all y1 < y2 and s′ ∈ S, we have that Qt(s′|y1) ≥
Qt(s′|y2) for every t ∈ N.

A typical representation of the transition probabilities satisfying assumption (B) is as follows. Let

st+1 = f̄t(yt, zt),

where yt = st − at is the investment in state st, (zt)t∈N is a sequence of i.i.d. random “shocks” having a 
probability distribution π. The functions f̄t for t ∈ N are continuous and for any Borel set C in S and 
investment y ∈ S

qt(C|y) =
∫

S

1C(f̄t(y, z))π(dz)

where 1C is the indicator function of the set C. We would like to point out three special cases:

(D1) f̄t(yt, zt) = ztf
1
t (yt) + (1 − zt)f2

t (yt), where f1
t , f

2
t : S → S are continuous increasing functions such 

that f1
t (y) < f2

t (y) for y ∈ S+ and f1
t (0) = f2

t (0) = 0 for all t ∈ N. In addition, π is a non-atomic 
probability measure on [0, 1].

(D2) The model with additive shocks: f̄t(yt, zt) = ft(yt) + zt, where ft : S → S is a continuous increasing 
function for each t ∈ N. The probability measure π is non-atomic with support included in [0, +∞).

(D3) The model with multiplicative shocks: f̄t(yt, zt) = ft(yt)zt, where ft is as in (D2) and the probability 
measure π is non-atomic with support included in [0, +∞).

We conclude with an example of transition probability satisfying conditions (C).

(D4) Let {αt}t∈N be a set of numbers from the interval (0, 1). Define

qt(·|y) := αtδf1
t (y)(·) + (1 − αt)δf2

t (y)(·), y ∈ S, t ∈ N,

where f1
t and f2

t are as in (D1) and δfi
t (y)(·) is the Dirac measure concentrated at the point f i

t (y). 
Obviously, this transition probability satisfies (C1) and (C3). In order to see that (C2) also holds, let 
s ∈ S and note that Zs

t = {y ∈ A(s) : f1
t (y) = s or f2

t (y) = s} consists of at most two elements. In 
the pure deterministic case (with only one function f1

t ) Zs
t has at most one point.

3. MPE in non-stationary stochastic bequest games

We consider a special subclass F of functions in Φ defined as follows. A function φ belongs to F if and 
only if it is upper semicontinuous and the function s → s − φ(s) is non-decreasing on S. Note that every 
φ ∈ F is continuous from the left and has at most countably many discontinuity points.

Assume that F is endowed with the standard topology of weak convergence. Recall that a sequence 
(φn)n∈N converges to φ ∈ F if and only if φn(s) → φ(s) as n → ∞ at any continuity point s of φ. Applying 
Helly’s theorem for the functions from F restricted to any bounded interval [0, m] (m ∈ N) and using the 
standard diagonal method as in Lemma 1 in [4], one can prove the following auxiliary result.

Lemma 1. F is a metrizable and compact topological space.
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Let ct+1 ∈ F . Define

BCt(ct+1)(s) := arg max
a∈A(s)

Pt(a, ct+1)(s).

We say that BCt(ct+1)(s) is the set of all best reply consumption levels of generation t ∈ N in state s, given 
that the following generation is going to use a consumption strategy ct+1. This set is non-empty and compact
by Lemmas 3.7 and 3.8 in [2], if conditions (A) and (B) hold, or by Lemma 1 in [3], if assumptions (A) 
and (C) are satisfied. For any s ∈ S and t ∈ N, let us define

bct(ct+1)(s) = maxBCt(ct+1)(s). (2)

Lemma 2. Assume that (A) and (B) hold or (A) and (C) are satisfied. Then, for each t ∈ N, bct maps F
into itself and is continuous.

Proof. Under assumptions (A) and (B) the conclusion follows from the proof of Theorem 3.1 in [2]. If, on 
the other hand, (A) and (C) are assumed, then the continuity of bct follows from the proof of Theorem 1 
in [3], whereas the fact that bct maps F into F is proved in Lemma 8 in [3]. Although these proofs concern 
bequest games on bounded state space S = [0, ̄s] (for some s̄ > 0), they also work for S = [0, +∞). �

Define the composition of continuous mappings bcτ as follows:

bcmt (c) := bct ◦ bct+1 ◦ · · · ◦ bct+m(c),

where t, m ∈ N, c ∈ F .
Let bcmt (F ) := {bcmt (c) : c ∈ F} and

F ∗
t :=

⋂
m∈N

bcmt (F ).

Our first main result is as follows.

Proposition 1. If (A) and (B) hold or (A) and (C) are satisfied, then F ∗
τ is non-empty and compact for 

each τ ∈ N and

F ∗
t = bct(F ∗

t+1) for all t ∈ N. (3)

Proof. By Lemma 2, if G ⊂ F is compact, then the set bcmt (G) is also compact in F . It is easy to see 
that bcm+1

t (G) ⊂ bcmt (G) for all t, m ∈ N and G ⊂ F . Clearly, every set F ∗
t is non-empty. Note that 

bcmt (F ) ⊃ bct(F ∗
t+1) for all m ∈ N. Hence F ∗

t ⊃ bct(F ∗
t+1). Let ct ∈ F ∗

t . Then, ct ∈ bcm+1
t (F ) for all 

m ∈ N. Consequently, for each m ∈ N, there exists some gmt+1 ∈ bcmt+1(F ) ⊂ F such that ct = bct(gmt+1). 
By compactness of F , without loss of generality, we can assume that gmt+1 → gt+1 ∈ F as m → ∞. Since 
the sequence of sets (bcmt+1(F ))m∈N is decreasing, we conclude that gt+1 ∈ F ∗

t+1. By the continuity of the 
mapping bct, it follows that ct = limm→∞ bct(gmt+1) = bct(gt+1). Hence, ct ∈ bct(F ∗

t+1). Thus, we have shown 
that (3) holds. �
Corollary 1. Under assumptions of Proposition 1, the game with utility (1) has an MPE (c∗t )t∈N with c∗t ∈ F

for each t ∈ N.

Proof. Choose any c∗1 ∈ F ∗
1 . By (3) there exists c∗2 ∈ F ∗

2 such that c∗1 = bc1(c∗2) and c∗3 ∈ F ∗
3 such that 

c∗2 = bc2(c∗3) and so on. In this way we obtain a sequence (c∗t )t∈N, which is a Markov perfect equilibrium. �



Ł. Balbus et al. / J. Math. Anal. Appl. 456 (2017) 394–401 399
Remark 1. We can weaken our assumption, allowing each function vt to be unbounded, but then an addi-
tional condition on each qt is required. For example, we can impose that there exists a continuous increasing 
function y → It(y) such that qt([0, It(y)]|y) = 1, see [8] for a similar assumption in standard stochastic 
games of resource extraction.

4. MPE in non-stationary deterministic bequest games

It happens that within the deterministic framework we are allowed to consider even more general non-
additive utility functions. We assume that the generation t +1’s inheritance or capital is st+1 = ft(yt), where 
ft : S → S is a production function and yt is an investment of generation t. Generation t’s satisfaction de-
pends on its own consumption at ∈ A(st) and on the next generation’s consumption at+1 ∈ A(st+1) and is 
equal to Ut(at, at+1), where Ut : S × S → R is a utility function.

Definition 2. A Markov Perfect Equilibrium (MPE) in the model with the deterministic production function 
is a sequence of strategies (c∗t )t∈N such that c∗t ∈ Φ for each t ∈ N and

sup
a∈A(s)

Ut(a, c∗t+1(ft(s− a))) = Ut(c∗t (s), c∗t+1(ft(s− c∗t (s))))

for every s ∈ S and t ∈ N.

Let b > 0 and δ : [b, ∞) → R be a fixed function. Following Milgrom and Shannon [15], we say that δ has 
the strict single crossing property on [b, ∞), when the following holds: if there exists some x ≥ b such that 
δ(x) ≥ 0, then for each x′ > x, we have δ(x′) > 0. Note that both functions x → − 1

x and x → ln x
x have the 

strict single crossing property on [b, ∞) with b > 0 and the latter is not increasing on its domain.
We accept the following assumptions.

(E1) For every t ∈ N, the function Ut is bounded from below, continuous on S × S and increasing in each 
variable.

(E2) For any y2 > y1 in S, h > 0 and t ∈ N, the function ΔhUt(x) := Ut(x, y2) −Ut(x +h, y1) has the strict 
single crossing property on [b, +∞) for each b > 0.

(E3) For every t ∈ N, the function ft : S → S is continuous and increasing with ft(0) = 0.

Let ct+1 ∈ F . We define

BCt(ct+1)(s) := arg max
a∈A(s)

Ut(a, ct+1(ft(s− a)))

and

bct(ct+1)(s) := maxBCt(ct+1)(s).

Under assumptions (E) the set BCt(ct+1)(s) is non-empty and compact for each t ∈ N and s ∈ S. This fact 
is a consequence of Lemma 4 in [4]. Therefore, the mapping bct is well-defined. The sets F ∗

t and equation (3)
can also be considered in the present non-additive utility case.

Lemma 3. Assume that conditions (E) hold. Then, for each t ∈ N, bct maps F into itself and is continuous.

Proof. Proposition 1 and Lemma 6 in [4] imply that bct maps F into itself. The continuity of bct is shown 
in the proof of Theorem 1 in [4]. �
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The proofs of the following result is similar to that of Proposition 1 and is based on Lemma 3.

Proposition 2. Assume that conditions (E) hold. Then, F ∗
τ is non-empty and compact for each τ ∈ N and 

(3) is satisfied.

Corollary 2. Under assumptions (E) the game with utilities (Ut)t∈N has an MPE (c∗t )t∈N with c∗t ∈ F for 
each t ∈ N.

5. Concluding comments

Below we give some bibliographical notes and remarks on the results provided in this note.

Remark 2. The “set-valued recursive equation” (3) constitutes certain characterization of the set of MPE

in both deterministic and stochastic cases. If the model is stationary, i.e., ut = u, vt = v and qt = q for 
all t ∈ N, then we can define bc := bct choosing any t ∈ N. Hence, we have F ∗

t =: F ∗ for each t ∈ N. 
Moreover, F ∗ = bc(F ∗), i.e., the set F ∗ is invariant under the best response mapping. Observe that this 
property of F ∗ is not sufficient to get a stationary MPE (where c∗t = c∗t+1 for all t ∈ N) in the stationary 
model. We can only say that in equilibrium (c∗t )t∈N every c∗t ∈ F ∗. To obtain stationarity of equilibrium, 
an additional non-trivial tool as the Schauder–Tychonoff fixed point theorem must be applied. But then 
equation bc(F ∗) = F ∗ is not needed. One can apply the fixed point argument to the mapping bc : F → F , 
see [2–4] for details. Here, the derivation of (3) is simpler. However, one should note that Lemmas 2 and 3
on the continuity of bc play a crucial role in the non-stationary case.

Remark 3. The importance of the class F of strategies in studying deterministic intergenerational games was 
already noticed by Bernheim and Ray [7] and Leininger [12]. Bernheim and Ray [7] and Leininger [12] also 
studied non-stationary MPE in deterministic games with compact state spaces. However, their methods 
were different in many respects. Instead of working directly with strategies from the set F , Bernheim and 
Ray [7] worked with some “filled graphs” of the functions from F . As the authors themselves wrote on 
page 12: “the proofs are rather intricate.” We agree with this opinion and note that their proof is long and it 
is not clear how to extend the results to the unbounded state space S = [0, ∞). Leininger [12], on the other 
hand, used a “levelling” method that associates with any function c ∈ F a uniformly continuous function on 
the compact state space S. This idea was applied to obtain an MPE in the stationary model as well as a 
stationary MPE. The latter case additionally requires an application of the Schauder fixed point theorem 
for continuous transformations of compact convex sets in the Banach space of continuous functions on the 
compact set S endowed with the supremum norm. We would like to emphasize that the method used in 
[4] and in this note is more direct. It is based on the continuity result for bct (Lemma 3). Such continuity 
result was reported neither in [7] nor [12].

Remark 4. The existence of (non-stationary) MPE for deterministic bequest games was proved in [12] (for a 
compact state space) and in [4] (for an unbounded state space). However, the above-mentioned papers do not 
include any characterization of the set of Markov perfect equilibria. The idea was to consider, for each n ∈ N, 
a game Gn with active n generations, that is, every generation t with t > n chooses the zero consumption 
function. An MPE in Gn, say fn = (ft)t∈N, is constructed by backward induction method. Clearly, ft = 0
for t > n. An MPE in the original bequest game is then obtained as a limit of some subsequence chosen 
from (fn)n∈N by standard diagonal method. In this note, the sets bcmt (F ) are also constructed by backward 
induction. In this way, we obtain a nested family of compact sets having a non-empty intersection. The 
idea of deriving an MPE from (3) is new, but it resembles to some extent the technique utilized in [1,9,13]. 
For example, Harris [9] and Mertens and Parthasarathy [13] applied akin ideas to prove the existence of 
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subgame perfect equilibria in games of perfect information and discounted stochastic games, respectively. 
Furthermore, Abreu et al. [1] used a similar tool to establish the existence of a sequential equilibrium in 
a class of repeated games with imperfect monitoring. Finally, Balbus and Woźny [5] recently provided a 
characterization of MPE in stochastic games of resource extraction with quasi-hyperbolic discounting and 
special transition probability functions.

Remark 5. It is worth mentioning that our assumptions (E1) and (E2) embrace the ones used by Bernheim 
and Ray [7]. More precisely, Bernheim and Ray [7] (in order to prove their results, see Theorem 4.2) assume 
that Ut satisfies (E1), Ut is strictly concave in its first argument and

(ID) Ut has increasing differences, i.e., for any y2 > y1 in S the function ΔUt(x) := Ut(x, y2) − Ut(x, y1) is 
non-decreasing.

Hence, in this paper not only do we replace their increasing differences assumption on Ut by our weaker 
condition (E1), but most importantly our method allows to study bequest games with unbounded payoffs
and unbounded state spaces. The reader is referred to Examples 1-3 in [4], which illustrate that our conditions 
are indeed more general than those used in [7].
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