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Abstract

We give a set of sufficient conditions for uniqueness of a time-consistent stationary Markov consumption 
policy for a quasi-hyperbolic household under uncertainty. To the best of our knowledge, this uniqueness 
result is the first presented in the literature for general settings, i.e. under standard assumptions on pref-
erences, as well as some new condition on a transition probability. This paper advocates a “generalized 
Bellman equation” method to overcome some predicaments of the known methods and also extends our 
recent existence result. Our method also works for returns unbounded from above. We provide a few nat-
ural extensions of optimal policy uniqueness: convergent and accurate computational algorithm, monotone 
comparative statics result and generalized Euler equation.
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1. Introduction

The problem of dynamic inconsistency in sequential decision models was introduced in the 
seminal paper of Strotz (1956), further developed in the work of Phelps and Pollak (1968) and Pe-
leg and Yaari (1973), and has played an increasingly important role in many fields in economics 
(see Sorger, 2004; Nakajima, 2012; Bernheim et al., 2015; Drugeon and Wigniolle, 2016; Jackson 
and Yariv, 2014, 2015; Chatterjee and Eyigungor, 2016; Echenique et al., 2016 for some recent 
contributions). The classical toolkit for analyzing “time” consistency problems introduced in 
Strotz (1956) emphasized the language of recursive decision theory. In this approach, for sequen-
tial optimization problems with dynamically inconsistent objectives, one constructs dynamically 
consistent plans by imposing additional constraints on the agent’s decision problem (e.g., also 
see Kydland and Prescott, 1980). It is well-known that these constraints can be problematic to 
formulate. As has been observed by many researchers in subsequent work (e.g., Peleg and Yaari, 
1973 and Bernheim and Ray, 1986), even the existence of such optimal dynamically consistent 
plans in the class of Markovian solutions cannot be guaranteed, let alone the question of their 
uniqueness. Further, when such dynamically consistent optimal plans are known to exist, they 
can be difficult to characterize and/or compute (see Caplin and Leahy, 2006).

As a way of circumventing these serious problems, Peleg and Yaari (1973) proposed a dy-
namic game interpretation of the time-consistency problem. In this view, one envisions the 
decisionmaker as playing a dynamic game between one’s current self, and each of one’s future 
“selves”, with the solution concept for consistent plans being a subgame-perfect Nash equilib-
rium. But such an approach does not always simplify the analysis, as even when this approach 
to dynamic consistency is followed, the question of the existence of subgame-perfect Nash 
equilibrium is still not a trivial matter, nor is the question of sufficient conditions for the equi-
librium uniqueness in pure Markovian strategies (see Bernheim and Ray, 1986 and Leininger, 
1986).2 Finally, it bears mentioning the recent important work of Maliar and Maliar (2006, 
2016), where it is shown that providing sharp numerical algorithms that compute equilibria in 
the quasi-hyperbolic discounting problem even when unique Markovian equilibrium exists can 
be a difficult problem.3

In this paper, we seek conditions under which there exists a globally stable monotone iter-
ative numerical algorithm that: (i) characterizes the existence and uniqueness of pure strategy 
Markovian equilibrium, (ii) provides an explicit and accurate method for computing pure strat-
egy Markovian equilibrium, and (iii) facilitates the characterization of monotone comparative 
statics in the deep parameters of the model. From the perspective of the existence question, our 
paper is closely related to the important papers of Bernheim and Ray (1986) or Harris and Laib-
son (2001), where the authors add noise of invariant support of the game to develop conditions 
that guarantee the existence of a time-consistent policy in a class of Markovian equilibria that 
are locally of bounded variation and Lipschitz for sufficiently small hyperbolic discount factor. 
We should also mention, there is a critical difference between approaches taken in this literature 
(e.g., Harris and Laibson, 2001, and many papers subsequent), and many of those advocated in 
the present paper: our methods do not rely on so-called “generalized Euler equations”. Rather, 
in our paper, we propose a “generalized Bellman equation” approach, where a new “value itera-

2 The works of Kocherlakota (1996) and Maskin and Tirole (2001) provide an extensive set of motivations for why one 
might be interested in concentrating on equilibria in Markovian strategies as opposed to subgame perfect equilibria.

3 We should mention, uniqueness in these models is within a “class” of Markovian equilibrium, where closed-form 
solutions are available.
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tion” method is constructed that provides a globally stable “generalized value iteration” method 
for computing equilibrium values/policies. The approach we advocate can provide an important 
new link between the methods in the existing literature based on generalized Euler equation 
methods (which are a type of generalized policy iteration methods), and new methods based 
on our generalized Bellman approach. Indeed, under some conditions, we show our general-
ized value iteration methods imply the existence of generalized Euler equation methods. But the 
latter approach requires stronger conditions than necessary for computing unique time consis-
tent Markovian equilibrium. Further, our new approach allows us to link the stochastic games 
approach studied in Harris and Laibson (2001), with a recursive optimization/value function 
methods suggested by Strotz (1956), and further developed by Caplin and Leahy (2006). In par-
ticular, we give sufficient conditions on primitives where generalized Euler equation methods are 
globally valid.

We should mention the recent contribution in Chatterjee and Eyigungor (2016), where the 
authors propose an interesting method to show existence of a continuous randomized Markov 
perfect equilibria in a quasi-hyperbolic discounting model with a strictly positive lower bound 
on wealth. Specifically, they show that once consumers are allowed to randomize their investment 
strategies (keeping the expected investment constant) they will endogenously choose a strategy 
that concavifies the expected continuation value function. Our approach is similar in spirit to 
their approach, but attacks the problem from the vantage point of a stochastic game (as opposed 
to using a lotteries approach). This is an important difference between these two approaches. 
In particular, in our paper, we place conditions on the primitives of a stochastic game that in 
essence “concavify” the continuation expected utility exogenously in a similar manner to the 
lotteries approach in Chatterjee and Eyigungor (2016). Aside from not requiring one to resort to 
lotteries, our approach has the additional benefit relative to Chatterjee and Eyigungor (2016) of 
allowing us to state simple sufficient conditions on primitives for obtaining unique equilibrium 
in pure Lipschitzian Markov strategies.

More specifically, under standard assumptions on preferences, and some condition on a tran-
sition probability that has been applied extensively in the existing literature on stochastic games, 
we are able to develop a monotone value iteration approach to show existence and uniqueness of 
equilibrium policy. Further, we are able to provide sharp characterizations of their Lipschitzian 
structure, as well as their monotonicity properties. Finally, and equally as important, as we ob-
tain sufficient conditions for the uniqueness of Markovian equilibrium policy on a minimal state 
space and work for returns that are bounded or unbounded above. Therefore, our new methods 
nicely complement those of Chatterjee and Eyigungor (2016) on the existence of continuous 
Markovian equilibria in such time consistency problems.

We are also able to construct a simple successive approximation scheme for computing 
unique pure strategy Markovian equilibrium values in the appropriate norm, as well as conduct 
monotone comparative statics with the model parameters. These comparative statics and approx-
imation results are important for applied research in the field. For example, in Sorger (2004), he 
proposes settings under which any twice continuously differentiable function can be supported 
as a policy of a time consistent hyperbolic consumer. This result can be subsequently linked to a 
Gong et al. (2007), where it is shown that a hyperbolic discounting is not observationally equiv-
alent to exponential discounting. However, the two models have radically different comparative 
statics. Hence, our approach allows us characterize an exact answer to this question, and provide 
theoretical monotone comparative statics to clarify empirical questions that are asked by applied 
researchers. Finally, being motivated by payoff specifications in applied work, as an important 
technical matter, we are able in our setting to dispense with the requirement of bounded returns 
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above. This allows our results to hold for many utility specifications common in the applied 
literature on quasi-hyperbolic discounting.

2. Main results

The environment we study is standard in the literature on quasi-hyperbolic discounting. We 
have an individual decision maker who views herself as a sequence of “selves” indexed in discrete 
time t ∈ {0, 1, . . .}. In any period t , given output or asset level (i.e. state) st ∈ S (where S =
[0, ∞)), “self t” chooses a consumption ct ∈ [0, st ], and then she leaves it := st −ct as investment 
for her future “selves”. As in effect we are ruling out borrowing, we interpret the asset held by 
any self t as being a productive one (and hence, we shall typically refer to this asset as “capital”). 
Together with current output level st , these choices (consumption and hence investment levels) 
in the current period t determine a transition probability Q(dst+1|st − ct , st ) for next period’s 
output or productive asset holding (or simply state st+1).

Self t preferences are represented by a infinite horizon utility function given by:

u(ct ) + βEt

∞∑
i=t+1

δi−t u(ci),

where 1 ≥ β > 0 and 1 > δ ≥ 0, u is a instantaneous utility function and expectations Et are 
taken with respect to a realization of a random variable si drawn each period from a transition 
distribution Q, and will be well-defined by the Ionescu–Tulcea theorem.

2.1. Generalized Bellman operator

Under some natural continuity assumptions on u and Q (to be specified later), we can de-
fine a pure strategy Markovian equilibrium to be an h ∈ H, where H = {h : S → S|0 ≤ h(s) ≤
s, h is Borel measurable}, where h satisfies the following functional equation:

h(s) ∈ arg max
c∈[0,s]u(c) + βδ

∫
S

Vh(s
′)Q(ds′|s − c, s), (1)

where Vh : S → R is a continuation value function for the household of “future” selves following 
a stationary policy h from tomorrow on. The value function in such a pure strategy Markovian 
equilibrium for the future selves, therefore, must solve the following additional functional equa-
tion in the continuation given as follows:

Vh(s) = u(h(s)) + δ

∫
S

Vh(s
′)Q(ds′|s − h(s), s).

In our case such a pure strategy Markovian equilibrium is also time-consistent policy for quasi-
hyperbolic consumer.

Therefore, if we define the value function for the self t to be:

Wh(s) := u(h(s)) + βδ

∫
S

Vh(s
′)Q(ds′|s − h(s), s),

we obtain the fundamental relation we study in this paper:
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Vh(s) = 1

β
Wh(s) − 1 − β

β
u(h(s)). (2)

Equation (2) is our generalized Bellman equation. Solutions to this functional equation char-
acterize a Markovian value function that solves our original maximization problem, where the 
element 1−β

β
u(h(s)) is the adjustment that must be made to the standard Bellman operator to 

account for changing preferences. That is, for β = 1, equation (2) reduces to the standard Bell-
man equation. Based on equation (2), we can define an operator whose fixed points, say V ∗, 
correspond to values for some pure strategy Markovian equilibrium policy. From there, we can 
recover the set of (pure strategy) Markovian equilibrium policy functions.

2.2. Assumptions

Unlike recent work in the literature, we allow for period returns to be unbounded above (but 
bounded below). To do this, we need to introduce some definitions. Let (Kj)j∈N be a sequence 
of compact subsets of S that are increasing under the set inclusion partial order such that each of 

Kj contains 0, and let the state space be S =
∞⋃

j=1
Kj . For V : S 	→ R, V bounded on each Kj , 

j ∈ N, define the collection of seminorms (see Matkowski and Nowak, 2011):

||V ||j := sup
s∈Kj

|V (s)|.

Put mj := ||u||j
1−β

, and define:

||V || :=
∞∑

j=1

||V ||j
mj

βj ,

with the convention ||V || = ∞, if the series on the right hand side above tends to ∞. By M(S), 
we denote a set of real-valued, positive, and Borel measurable functions on S. Consider a vector 
space

V := {
V ∈ M(S) : V (0) = 0, and for all j ∈N, ||V ||j < ∞, and ||V || < ∞}

and denote

Vm := {V ∈ V : ||V ||j ≤ mj for each j ∈ N}.
We can now state our fundamental assumption on the primitives for our stochastic game:

Assumption 1. Let us assume:

• u : S →R+ is continuous, increasing and strictly concave with u(0) = 0;
• for any s, i ∈ S Q(·|i, s) = p(·|i, s) + (1 − p(S|i, s))δ0(·), where δ0 is a delta Dirac measure 

concentrated at point 0, while p(·|i, s) is some measure such that
– for each s ∈ S \ {0}, i ∈ [0, s] p(S|i, s) < 1 and p(S|0, 0) = 0;
– for each V ∈ Vm, the function

(i, s) 	→
∫
S

V (s′)p(ds′|i, s)

is continuous with (i, s) but increasing and concave with i;
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– for each j ∈N, p(Kj+1|i, s) = p(S|i, s) if s ∈ Kj and i ∈ [0, s];
• the sequence (mj )j∈N satisfies

δ sup
j∈N

{
mj+1

mj

}
≤ β.

We make a few remarks.
First, our assumptions on preferences are completely standard. That is, here, we only impose 

the strict concavity of a period utility functions to restrict attention to single valued best replies 
in the equation (1). This allows us to study a single-valued operator whose fixed points generate 
corresponding equilibrium values and corresponding time consistent policies. It bears mention-
ing, a careful reading of the proof of our main existence theorem below (Theorem 1) indicates 
this assumption can be weakened if the existence (but not uniqueness) of pure strategy Markovian 
equilibrium is all that one seeks, as in the case of multi-valued best reply maps, one can simply 
work with the increasing selections/ascending correspondence from a best response map.4

Second, our assumption on the transition probability Q requires a few remarks. First, although 
this is a powerful technical assumption, the conditions is satisfied in many applications (e.g., see 
the discussion in Chassang (2010) for a particular example of this exact structure). Additionally, 
observe Q is a mixture of measures p and δ0. That is, one gets a draw from p or (with measure 
1 − p) ends in 0, which again by our assumption is an absorbing state. The most restrictive part 
of our assumption, however, is a requirement that for any positive and integrable function v, the 
mapping v: i 	→ ∫

S
V (s′)p(ds′|i, s) is increasing and concave with i. This means that the higher 

the investment, the larger the measure p(·|i, s) for each measurable set. Indeed, as we assume 
positive returns (i.e., u(·) ≥ 0), our assumptions above assure that the expected continuation value 
is monotone and concave in its arguments. For this to be meaningful, we require that p(·) < 1; 
hence, an absorbing state 0 must be always attainable with nonzero probability.

Although this stochastic structure is restrictive, it is common in the stochastic games litera-
ture. For example, a stronger version of this assumption was introduced by Amir (1996), used 
extensively in a series of papers by Nowak (see Nowak, 2006; Balbus and Nowak, 2008 and 
references within), as well as in the context of stochastic games with strategic complementarities 
with public information in Balbus et al. (2014). We refer the reader to our related paper (see 
Balbus et al., 2015) for a detailed discussion of the nature of these assumptions.

Third, we can provide many simple examples of where our assumptions on the transition 
probability Q are satisfied. A typical example would have p be given as follows: p(·|i, s) =∑J

j=1 gj (i, s)ηj (·|s), where ηj (·|s) are measures on S (set of subsets of S), where each gj : S ×
S → [0, 1] is an element of the set of continuous functions, that are additionally increasing and 
concave for each i, with 

∑J
j=1 gj (·) ≤ 1 and gj (0, 0) = 0. To see in this setting our assumptions 

on Q are satisfied, note we have:

Q(·|i, s) =
J∑

j=1

gj (i, s)ηj (·|s) + (1 −
J∑

j=1

gj (i, s)ηj (S|s))δ0(·).

In this case, Q becomes a linear combination of measures {ηj }Jj=1 and δ0, all indepen-
dent on i, with gj (i, s) interpreted as a probability of obtaining a draw from ηj , while 

4 E.g., via Topkis’ theorem, the best reply correspondence is strong set order ascending with least and greatest increas-
ing selections.
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1 − ∑J
j=1 gj (i, s)ηj (S|s) a probability of obtaining a draw from δ0(·). When integrated over 

v ∈ V , this gives:

∫
S

V (s′)Q(ds′|i, s) =
J∑

j=1

gj (i, s)

∫
S

V (s′)ηj (ds′J
j=1gj (i, s)ηj (S|s))

∫
S

V (s′)δ0(ds′)

=
J∑

j=1

gj (i, s)

∫
S

V (s′)ηj (ds′J
j=1gj (i, s)ηj (S|s))V (0)

=
J∑

j=1

gj (i, s)

∫
S

V (s′)ηj (ds′|s),

as V (0) = 0. Clearly, for any positive and integrable V , function

i 	→
J∑

j=1

gj (i, s)

∫
S

V (s′)ηj (ds′|s)

is increasing and concave (as each gj ∈ Gj is increasing and concave). Moreover, 0 is an ab-
sorbing state as gj (0, 0) = 0.

Notice, we generally do not require p to be a probability measure; i.e., there are other exam-
ples of p, where it cannot be expressed by a linear combination of stochastic kernels, yet still 
satisfy all of our assumptions.

Fourth, our assumptions on Q imply that for v ∈ V , the expected value function remains con-
cave. In this sense, our approach is similar to the randomization/lotteries technique advocated in 
Chatterjee and Eyigungor (2016). To see the relationship between the nature of this assumption 
on primitives of the stochastic game, and their endogenous concavification result, observe when-
ever v is not concave at the neighborhood of zero capital, the optimal endogenous randomization 
mechanism would require choosing an atom at zero (exactly as required by our assumption). The 
difference is that in our setting, our assumption is of a global nature (i.e. satisfied for any can-
didate measurable value function V , rather than the local one as in their paper). Hence, in our 
paper, the question of pure strategy Markovian equilibrium existence/uniqueness can be attacked 
directly.

Finally, our assumptions impose the needed structure required to construct the sequence of 
(mj )j∈N that can be used to define our collection of semi-norms, as well as p(Kj+1|i, s) =
p(S|i, s) if s ∈ Kj , i ∈ [0, s], each required to prove pure strategy Markovian equilibrium exis-
tence and uniqueness, when returns are unbounded from above. A special case of our assumption 
is, when u is in fact bounded on S. Next, note that the assumptions can be even further weakened 
for the case of a bounded state space S. That is, in both cases (either u bounded or S bounded), 
assumptions discussed in this paragraph are not required.

2.3. Pure strategy Markov equilibrium uniqueness

We start by noting an important auxiliary result.

Lemma 1. V is a Banach space and || · || is its norm.

Proof. It follows from Remark 1 and Lemma 1 in Matkowski and Nowak (2011). �
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It is easy to verify, that Vm is a closed subset of V , hence by Lemma 1 a complete metric space. 
Following Rincon-Zapatero and Rodriguez-Palmero (2003, 2009) we define k-local contractions:

Definition 1. Let k ∈ {0, 1}. An operator T : Vm 	→ Vm is k-local contraction with modulus 
γ ∈ (0, 1) if for each pair V1, V2 ∈ Vm

||T (V1) − T (V2)||j ≤ γ ||V1 − V2||j+k.

We now construct an operator T : V 	→ V by:

T V (s) = 1

β
AV (s) − 1 − β

β
u(BV (s)),

where the pair of operators A and B defined on space Vm are given by:

AV (s) = max
c∈[0,s]

⎧⎨
⎩u(c) + βδ

∫
S

V (s′|s − c, s)Q(ds′|s − c, s)

⎫⎬
⎭ ,

BV (s) = arg max
c∈[0,s]

⎧⎨
⎩u(c) + βδ

∫
S

V (s′|s − c, s)Q(ds′|s − c, s)

⎫⎬
⎭ .

Notice, in the above, we have defined the operator B to map between candidates for equilibrium 
values V to spaces of pure strategy best replies H. That is, in effect, we have a pair of operator 
equations we need to solve if we are to construct the set of Markov equilibrium values V ∗ ∈ V . 
Recall also:

T V (s) = u(BV (s)) + δ

∫
S

V (s′)Q(ds′|s − BV (s), s).

For each j ∈ N, let Vj be a set of all restrictions of V to Kj . Endow, Vj with natural compo-
nentwise order. Before proceeding, we make a useful observation implied by Assumption 1.

Lemma 2. Assume 1, then for any V ∈ V:∫
S

V (s′)Q(ds′|i, s) =
∫
S

V (s′)p(ds′|i, s).

Proof. Indeed:∫
S

V (s′)Q(ds′|i, s) =
∫
S

V (s′)p(ds′|i, s) + (1 − p(S|i, s))
∫
S

V (s′)δ0(ds′)

=
∫
S

V (s′)p(ds′|i, s) + (1 − p(S|i, s))V (0) =
∫
S

V (s′)p(ds′|i, s). �

Lemma 3. Let j ∈N, s ∈ Kj , V1, V2 ∈ Vj , and suppose that V1(s
′) ≤ V2(s

′) for each s′ ∈ Kj+1. 
Then, BV1(s) ≥ BV2(s), and T V1(s) ≤ T V2(s).
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Proof. To see the monotonicity of B , consider a function G : [0, s] × S × Vj+1 	→R

G(c, s,V ) = u(c) + βδ

∫
S

V (s′)p(ds′|s − c, s).

We now show that c → G(c, s, V ) is supermodular and has decreasing differences in (c, V ). 
Indeed, for any V ∈ Vj the function G(·, s, V ) is trivially supermodular on [0, s] ⊂R.

Moreover, (c, V ) → ∫
S
V (s′)p(ds′|s −c, s) has decreasing differences. To show this, let V2 ≥

V1 and c2 ≥ c1. By Assumption 1 for each s, p(·|s − c1, s) − p(·|s − c2, s) is a signed measure. 
That is, observe for each Borel set S′, ε · 1S′ ∈ Vm for sufficiently small ε > 0, by Assumption 1, 
we have ε ·(p(S′|s−c1, s) −p(S′|s−c2, s)) ≥ 0. Therefore, this difference is a measure. Further, 
we have

0 ≤
∫
S

V1(s
′)p(ds′|s − c1, s) −

∫
S

V1(s
′)p(ds′|s − c2, s),

=
∫
S

V1(s
′)[p(ds′|s − c1, s) − p(ds′|s − c2, s)],

≤
∫
S

V2(s
′)[p(ds′|s − c1, s) − p(ds′|s − c2, s)].

Therefore, the function (c, V ) → G(c, s, V ) has decreasing differences on [0, s] × Vj+1. Since 
[0, s] is a lattice,5 and Vj+1 is a poset, we obtain by Topkis (1978) theorem, the (unique) best 
reply BR(V )(s) = arg maxc∈[0,s] G(c, s, V ) is decreasing on Vj+1. Since A is increasing, and B
decreasing, by definition of T , we have T is increasing. �

The following lemma is straightforward to prove.

Lemma 4. For each j ∈ N, V ∈ V , s ∈ Kj and constant k ∈ N, B(V + k)(s) = BV (s), and 
A(V + k)(s) = AV (s) + βδk. As a result, T (V + k)(s) = T V (s) + δk.

Lemma 5. T maps Vm into itself.

Proof. Let V ∈ Vm, j ∈ N and s ∈ Kj be given. Observe BV (s) ∈ Kj . Then, by the definition 
of T , we have

T V (s) ≤ (1 − β)mj + δ

∫
Kj

V (s′)Q(ds′|s − BV (s), s) ≤ (1 − β)mj + δmj+1 (3)

≤ (1 − β)mj + βmj = mj . (4)

Here, (3) follows from our assumption on the sequence of (mj )j∈N. Since j and s were fixed 
arbitrarily, (4) implies that T V (·) ∈ Vm. �
Lemma 6. T : Vm 	→ Vm is 1-local contraction with modulus δ.

5 Recall, a poset X is a lattice, if for any x, x′ ∈ X we have sup{x, x′} ∈ X and inf{x, x′} ∈ X.
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Proof. Let V1, V2 ∈ Vm, j ∈ N, s ∈ Kj , and put k0 := ||V1 − V2||j+1. Then, by Assumption 1, 
Q(Kj+1|s − BVi(s), s) = 1. By Lemma 4, we have

T (Vi + k0)(s) = T Vi(s) + δk0.

Further, by Lemma 3,

T V2(s) − δk0 = T (V2 − k0)(s) ≤ T V1(s) ≤ T (V2 + k0)(s) = T V2(s) + δk0.

Hence, |T V1(s) − T V2(s)| ≤ δk0. The proof is now complete as s ∈ Kj is chosen arbitrary. �
For any fixed point V ∗ of the operator T , this value function corresponds to a pure, stationary 

Markov equilibrium policy h∗ = BV ∗ ∈ H. Equip the space of pure strategies H with the usual 
pointwise partial order. In this case, we obtain our main result:

Theorem 1 (Uniqueness of pure strategy Markovian equilibrium). Let Assumption 1 hold. Then, 
there is a unique value V ∗ ∈ Vm and corresponding unique pure strategy Markovian equilibrium 
h∗ ∈H. Moreover, for any V ∈ Vm, we have

lim
t→∞||T tV − V ∗|| = 0. (5)

Proof. Observe from Lemma 1, (V, || · ||) is a Banach space; hence (Vm, || · ||) is complete 
metric space. Furthermore, by Lemma 5, T maps Vm into itself, and by Lemma 6, T is 1-local 
contraction with modulus δ. Therefore, by Theorem of Rincon-Zapatero and Rodriguez-Palmero 
(2003, 2009) or Matkowski and Nowak (2011), T is a contraction with respect to the metric 
space (Vm, || · ||). From standard Banach Contraction Principle, there is unique fixed point of T , 
V ∗ ∈ Vm, and (5) holds. �

Theorem 1 is the central result of our paper. It is important for many reasons.
First, it guarantees existence of pure strategy Markov equilibrium value V ∗ and policy h∗. 

Second, it asserts that such an equilibrium value and equilibrium policy is unique, where the 
uniqueness result holds within a large class of functions (i.e., unbounded (from above) or 
bounded measurable value functions). In turn, this implies that sequences generated by operator 
T are converging to V ∗ in the appropriate norm topology.

Such a strong characterization of equilibrium policies is obtained due to two central assump-
tions: (a) concentrating on Markovian policies and (b) the mixing assumption imposed on Q. 
Without these assumptions, our results would be substantially weaker. That is, the operator T is 
a Bellman type operator and expresses the time-consistency problem recursively for Markovian 
policies. However, generally if Assumption 1 is not satisfied, the mapping T does not have the 
useful properties of similar Bellman-type operators applied in the study of optimal economies.6

Finally, although under Assumption 1 T is a contraction, the useful properties concerning equi-
librium h∗ characterization do not follow from standard arguments used in Stokey et al. (1989). 
For this reason, we present the result further characterizing the equilibrium policy functions.

6 It suffices to change δ-Dirac measure with some other nontrivial one in Assumption 1 and equilibrium uniqueness 
results would not hold. In such a case one could show Markov-equilibrium existence using topological arguments but 
with no hope of uniqueness. Also equilibrium computation would become substantially complicated (see Maliar and 
Maliar, 2006, 2016).
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Theorem 2 (Monotonicity of pure strategy Markovian equilibrium policies). Assume 1, and con-
sider a pure strategy Markovian equilibrium h∗. If p(·|i, s) is constant with s, for any i, then h∗
is increasing and Lipschitz with modulus 1.

Proof. Let h∗ = BV ∗ for V ∗ = T V ∗. Consider the function

G(c, s,V ∗) = u(c) + βδ

∫
S

V ∗(s′)p(ds′|s − c).

First, note G is supermodular in c on a lattice [0, s], and the feasible action set [0, s] is increas-
ing in the Veinott’s strong set order.7 Moreover, by concavity of i → ∫

S
V ∗(s′)p(ds′|i), G has 

increasing differences with (c, s). Indeed, for any c2 ≥ c1 and s2 ≥ s1 we have:

0 ≤
∫
S

V ∗(s′)p(ds′|s2 − c1) −
∫
S

V ∗(s′)p(ds′|s2 − c2)

≤
∫
S

V ∗(s′)p(ds′|s1 − c1) −
∫
S

V ∗(s′)p(ds′|s1 − c2),

where in the second inequality follows from concavity (i.e., concave functions have differences 
that decrease). Next, by Topkis (1978) theorem argument maximizing h∗ is increasing with s
on S.

Similarly, recalling that i denotes investment, we also can rewrite this problem as:

H(i, s,V ∗) = u(s − i) + βδ

∫
S

V ∗(s′)p(ds′|i),

where H is supermodular with the choice variable i on a lattice [0, s], and the set [0, s] is increas-
ing in Veinott’s strong set order. Again, by concavity of u, we conclude that H has increasing 
differences with (i, s). Therefore, by Topkis (1978) theorem, the optimal solution i∗ is increasing 
with s on S.

Clearly i∗(s) = s − h∗(s). Finally as both h∗ and i∗ are increasing on S, we conclude h∗ and 
i∗ are Lipschitz with modulus 1. �

Notice the result in the above theorem is very important, as it extends the result reported in 
Harris and Laibson (2001) on Lipschitz continuity of equilibrium to a broader scope of quasi-
hyperbolic discount factors. It also provides strong structural characterization of pure strategy 
Markovian equilibrium policies.

2.4. Monotone comparative statics

We next turn to the question of the existence and computation of monotone comparative 
statics. Aside from the obvious interest is such a question, this is an especially important consid-
eration given the indeterminacy result in Maliar and Maliar (2006); Gong et al. (2007). It is also 
important, if one wants to study the mode from an econometric point of view.

7 We say poset X2 is greater than poset X1 in the Veinott’s strong set order, whenever for any x1 ∈ X1 and x2 ∈ X2
we have sup{x1, x2} ∈ X2 and inf{x1, x2} ∈ X1.
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Along these lines, consider a parameterized version of our optimization problem in the previ-
ous section of the paper. For a partially ordered set �, with θ ∈ � a typical element, define the 
unique pure strategy Markovian equilibrium as h∗

θ . We make the following assumption.

Assumption 2. Let us assume:

• u does not depend on θ and obeys Assumption 1;
• for any s, i ∈ S and θ ∈ � let Q(·|i, s, θ) = p(·|i, s, θ) + (1 − p(S|i, s, θ))δ0(·), where for 

each θ p(·|i, s, θ) obeys Assumption 1;
• for each V ∈ V , we have (i, θ) → ∫

S
V (s′)p(ds′|i, s, θ) has decreasing differences with 

(i, θ) and θ → ∫
S
V (s′)p(ds′|i, s, θ) is decreasing on �.

Lemma 7. Let φ : S × � 	→ R be a function such that φ(·, θ) ∈ V for each θ ∈ �, and φ(s, ·) is 
decreasing for each s ∈ S. Then θ 	→ Tθ (φ(·, θ))(s) is a decreasing function.

Proof. It is easy to see for all V ∈ V , the mapping θ ∈ � 	→ Aθ(V ) is a decreasing function. 
This follows immediately from Assumption 2. We now show that Bθ(V ) is increasing in θ . For 
each s ∈ S, define

G(c,V, θ) := u(c) + βδ

∫
S

V (s′)p(ds′|s − c, s, θ).

Suppose that c1 < c2 ≤ s. By Assumption 2, we have:

G(c2,V , θ) − G(c1,V , θ)

:= u(c2) − u(c1) + βδ

∫
S

V (s′)p(ds′|s − c1, s, θ) − βδ

∫
S

V (s′)p(ds′|s − c2, s, θ)

increasing in θ . Then, by Topkis (1978) theorem, BVθ(V ) is increasing in θ . Further, by As-
sumption 2 and Lemma 3, V ∈ V 	→ Bθ(V ) is decreasing. As a result, Bθ(φ(·, θ)) is increasing 
in θ . Furthermore, θ 	→ Tθ (φ(·, θ))(s) is decreasing function for any s ∈ S. �

With Assumption 2 in place, we can now prove our main result on monotone comparative 
statics for extremal equilibrium policies.

Theorem 3 (Monotone comparative statics). Let Assumption 2 be satisfied. Then, the equilibrium 
mapping θ → h∗

θ is increasing.

Proof. Observe by Theorem 1, we have

V ∗
θ (s) = sup

n
T n

θ (0)(s) = lim
n→∞T n

θ (0)(s)

where 0 is a zero function. By Lemma 7, Tθ (0)(·) ∈ V and is decreasing in θ . Consequently, all 
T n

θ (0)(s) satisfy all conditions of Lemma 7; hence V ∗
θ (s) decreases in θ . To finish the proof, 

observe that hθ(·) = Bθ(V
∗
θ )(·), and hence by Lemma 7, hθ is increasing in θ . �
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2.5. Existence of a generalized Euler equation

Since Harris and Laibson (2001), many researchers have applied the “generalized Euler equa-
tion” approach to solving dynamic/stochastic games. In this approach, one essentially assumes 
a smooth Markovian equilibrium exists, and then develops numerical methods for computing it. 
The problem is in general, there is not reason to believe such smooth equilibria exist. We now 
provide sufficient conditions for the existence of a unique differentiable pure strategy Markovian 
equilibrium, and state the version of the generalized Euler equation that characterizes it.

For V ∈ V , let FV (i) := βδ
∫
S
V (s′)Q(ds′|i), where Q(·|i) denotes transition Q(·|i, s) that is 

independent on s.
We first prove a Lemma that shall be used in the sequel:

Lemma 8. Assume 1. Then, BV ∗(·) and V ∗(·) are a.e. differentiable.

Proof. Take any8 V ∈ V . Obviously

AV (s) := max
c∈[0,s](u(c) + FV (s − c)) = max

i∈[0,s](u(s − i) + FV (i)). (6)

By Assumption 1, u and FV are concave functions, and u is strictly concave. Similarly, as in the 
proof of Theorem 2, we obtain that (i, s) → u(s− i) +FV (i) as well as (c, s) → u(c) +FV (s−c)

have increasing differences on a Veinott’s strong set order increasing set [0, s]. As a result, by 
Topkis (1978) Theorem, the solution of the right hand side of the problem (6), i.e. c∗(s) = BV (s)

as well as i∗(s) = s − BV (s) are increasing on S. As

T V (s) = u(BV (s)) + δ

∫
S

V (s′)Q(ds′|s − BV (s)),

we obtain s → T V (s) is also increasing.
Next, by Theorem 1, T n(0) ⇒ V ∗ hence V ∗ is increasing. By the above arguments, similarly 

BV ∗(s) and s − BV ∗(s) are increasing functions of s. As a result, by the Lebesgue Theorem 
(see Theorem 17.12 in Hewitt and Stromberg, 1965), there is a Lebesgue null set N , such that 
for s ∈ S \ N , V ∗ and BV ∗ have a finite derivative. �

Next, to assure that Markovian equilibrium strategy and value are differentiable on (0, ∞) we 
need the following assumption.

Assumption 3. Assume that

• u is twice continuously differentiable. Moreover for any increasing V ∈ V we have:
• function FV is twice continuously differentiable on S \ {0};
• limc→0 u′(c) = ∞ and limi→0 F ′

V (i) = ∞,
• |u′′(s)| > 0 or |F ′′

V (s)| > 0 for any s ∈ S.

Clearly, the Inada type conditions are assumed to obtain interior solution. The last assumption 
is necessary to use implicit function theorem. Clearly, both are satisfied e.g. by a power utility 
function. The next remark discusses the class of stochastic transitions that satisfy our conditions.

8 In fact we can weaken our assumptions, so that Assumption 1 holds for any increasing V ∈ V .
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Remark 1. A class of measures Q satisfying Assumption 3 was provided by Amir (1996), i.e. 
Q(·|i) = (1 −g(i))η1(·) +g(i)η2(·) for twice continuously differentiable function g : S → [0, 1]
satisfying Inada condition. In particular, a class of transitions satisfying additionally Assump-
tion 1 can be a special case allowing η1 to be a delta Dirac concentrated at point 0. Finally, Amir 
(1997) characterizes a class of measures Q satisfying Assumption 3, if associated cdf q(s|i) is 
twice continuously differentiable with i with integrable derivatives for any s ∈ S.

Theorem 4. Under Assumption 1 and 3 pure strategy Markovian equilibrium policy h∗ and value 
V ∗ are differentiable on (0, ∞).

Proof. Fix arbitrary s0 > 0. We now show that AV ∗′(s0) exists. By Lemma 8 and Assumption 3, 
i∗(s0) < s0. Choose ε > 0 such that 
 := [i∗(s0 − ε), i∗(s0 + ε)] ⊂ [0, s0 − ε] ⊂ S. As i∗ is 
increasing, we have i∗(s) ∈ 
 := [i∗(s0 −ε), i∗(s0 +ε)], whenever s ∈ [s0 −ε, s0 +ε]. Moreover, 
we can construct ε such that i∗(s0 − ε) > 0; hence, we have

u′(s − i∗(s)) − F ′
V ∗(i∗(s)) = 0.

Put L′
1(s, i) = u′(s − i) − F ′

V ∗(i), and observe that

inf
(s,i)∈[s0−ε,s0+ε]×


∂

∂i
L′

1 = inf
(s,i)∈[s0−ε,s0+ε]×


(−u′′(s − i) − F ′′
V ∗(i)) > 0.

Then, by the implicit function theorem, we obtain differentiability of BV ∗ and consequently V ∗
and T V ∗ at s0. �

Similar to Harris and Laibson (2001) or Judd (2004), we can now write the generalized Eu-
ler equations characterizing pure strategy Markovian equilibrium investment i. For this reason, 
suppose i∗ is a differentiable investment equilibrium, i.e. i∗(s) = s − h∗(s). To simplify nota-
tion we drop ∗ from V ∗ and i∗. Additionally, by q(·|i) denote a cdf associated with measure Q
(such that Assumption 3 is satisfied). We have the following version of the Euler equation in a 
time-consistent Markov equilibrium:

u′(s − i(s)) = βδ
d

di

∫
S

V (s′)dq(s′|i(s)), (7)

where we have:

V ′(s) = u′(s − i(s))(1 − i′(s)) + δi′(s) d

di

∫
S

V (s′)dq(s′|i(s)). (8)

Using the Fundamental Theorem of the Integral Calculus for Riemann–Stieltjes integrals (see 
Hewitt and Stromberg, 1965 Theorem 18.19 or Amir, 1997, Theorem 3.2), we have the envelope 
for V (s):

d

di

∫
S

V (s′)dq(s′|i) = −
∫
S

V ′(s′)q ′(s′|i)ds′,

where q ′(s′|i) = d q(s′|i). We can integrate equation (8) to arrive at:

di
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∫
S

V ′(s)q ′(s|x)ds =
∫
S

u′(s − i(s))(1 − i′(s))q ′(s|x)ds

+ δ

∫
S

i′(s)

⎡
⎣ d

di

∫
S

V (s′)dq(s′|i(s))
⎤
⎦q ′(s|x)ds.

Let I (x) := d
di

∫
S
V (s′)dq(s′|x). Then, we have additionally

−I (x) =
∫
S

u′(s − i(s))(1 − i′(s))q ′(s|x)ds + δ

∫
S

I (i(s))i′(s)q ′(s|x)ds.

From equation (7):

−I (x) =
∫
S

u′(s − i(s))(1 − i′(s))q ′(s|x)ds + 1

β

∫
S

u′(s − i(s))i′(s)q ′(s|x)ds.

Therefore, the generalized Euler equation can be obtained by rewriting equation (7) as:

u′(x − i(x)) = −βδ

∫
S

u′(s − i(s))(1 − i′(s))q ′(s|i(x))ds

− δ

∫
S

u′(s − i(s))i′(s)q ′(s|i(x))ds

= −βδ

∫
S

u′(s − i(s))[1 + (
1

β
− 1)i′(s)]q ′(s|i(x))ds.

The above equation is a stochastic counterpart of the generalized Euler equation in Harris and 
Laibson (2001) or Judd (2004). Recall, our application of Lebesgue differentiation theorem for 
Riemann–Stieltjes integrals is satisfied for absolutely continuous functions, a class including 
functions of bounded variation studied in the original construction of the generalized Euler equa-
tion by Harris and Laibson (2001). We further relate this result with the existing literature in the 
last section of the paper.

3. Relating the results to the literature

Equilibrium non-existence and/or multiplicity of equilibria have constituted a significant chal-
lenge for applied economists who sought to study models where dynamic consistency failures 
play a key role (see e.g. Maliar and Maliar, 2016). These issues have been equally as challeng-
ing for researchers that seek to identify tractable numerical approaches to computing Markovian 
equilibria in these (and related) dynamic games (e.g., see the discussion in Krusell and Smith, 
2003 or Judd, 2004).

Krusell et al. (2002) propose a generalized Euler equation method for a version of a hyper-
bolic discounting consumer, and additionally obtain explicit solution for logarithmic utility and 
Cobb–Douglas production examples. Per the latter result, of course, this is simply an example, 
which is well-known to not be robust to small variations of the primitive data of the economy. In 
Harris and Laibson (2001) and Judd (2004), the author’s propose a generalized Euler equation 
approach to analyze smooth time-consistent policies and proposes a perturbation method for cal-
culating them. The problem with this approach is providing sufficient conditions under which at 
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any point in the state space, the generalized Euler equations represent a sufficient first order the-
ory for an agent’s value function in the equilibrium of the game. Concentrating on non-smooth 
policies, Krusell and Smith (2003) define a step function equilibrium, and show its existence and 
resulting indeterminacy of steady state capital levels. Further, in a deterministic setting, general 
existence result of optimal policies under quasi-geometric discounting can be provided using 
techniques proposed by Goldman (1980). The problem raised by these results concern the mul-
tiplicity and/or indeterminacy of dynamic equilibrium, which makes the structure of the set of 
equilibrium of such models very difficult to characterize (hence, the models are difficult to use 
in applied work).

To circumvent some of this issues, many authors have added noise to agent decision problems, 
and/or studied the existence of time-consistent solutions in relevant dynamic game formulations. 
Specifically, in a (recursive) decision approach, by adding noise (making payoff discontinuities 
negligible) Caplin and Leahy (2006) prove existence of recursively optimal plan for a finite hori-
zon decision problem and general utility functions. Similarly, Bernheim and Ray (1986) show 
that by adding enough noise to the dynamic game (to smooth discontinuities away) existence of 
strategy Markovian equilibrium is guaranteed. Such stochastic game approach was later devel-
oped by Harris and Laibson (2001) who characterize the set of smooth Markovian equilibrium 
by (generalized) first order conditions.

In the related paper Balbus et al. (2015) propose a similar stochastic game method for studying 
pure strategy Markovian equilibrium policies of the more general quasi-hyperbolic discount-
ing game. Based on their generalization of the Tarski–Kantorovich fixed point theorem, they 
are able to show existence of the equilibria for the case of bounded returns in a wide range of 
problems, and provide successive approximation procedures that compute extremal equilibrium 
values. Unfortunately, the question of approximating equilibrium that support such equilibrium 
values remains a substantial problem in their work. In this paper, we provide new sufficient con-
ditions under which unique Markovian equilibria policies can also be computed associated with 
unique equilibrium values via a simple generalized Bellman method. Further, per the question of 
existence, we relax conditions on the boundedness of period return functions.

Additionally, recently Balbus and Woźny (2016) provided an APS type method for analyz-
ing non-stationary Markovian policies of the quasi-hyperbolic discounting game numerically 
using set approximation techniques. One issue with this method is its inability to characterize 
the set of non-stationary Markovian policies that support the equilibrium value correspondence 
in the game. In principle, our results in this paper are also related to strategic dynamic pro-
gramming/APS approaches (as the latter approaches amount to set-valued dynamic programming 
methods). If the methods of Balbus and Woźny (2016) are applied to the environment studied in 
this paper, they would converge to the unique equilibrium value associated with a pure strategy 
Markovian equilibrium.

Finally, in an interesting recent paper, Chatterjee and Eyigungor (2016) prove a existence re-
sult in randomized Markovian strategies, and discuss when such equilibria exist in a class of 
continuous functions. As compared to our paper, note that apart from differences in assumptions 
(endogenous vs. exogenous concavification of the expected value function), our results differ in 
many important dimensions. First, our existence result concern pure strategies, rather then ran-
domized policies. Second, our uniqueness result is satisfied relative to a wide class of bounded, 
measurable value functions, not just continuous values. This fact, when added with a version of 
our existence result proven in Balbus et al. (2015) (Theorem 5) can be used to show existence of 
continuous (pure) Markovian equilibrium. Finally, notice our assumption on stochastic transition 
probability for the game requires an atom at zero asset level. This condition has a flavor of the 
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nonexistence of a lower bound of wealth, the assumption that was shown by Chatterjee and Eyi-
gungor (2016) to be a critical source of problems with continuous (pure) Markovian equilibrium 
existence.
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