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Abstract

In this chapter, we survey how the methods of dynamic and stochastic games
have been applied in macroeconomic research. In our discussion of methods for
constructing dynamic equilibria in such models, we focus on strategic dynamic
programming, which has found extensive application for solving macroeconomic
models. We first start by presenting some prototypes of dynamic and stochastic
games that have arisen in macroeconomics and their main challenges related
to both their theoretical and numerical analysis. Then, we discuss the strategic
dynamic programming method with states, which is useful for proving existence
of sequential or subgame perfect equilibrium of a dynamic game. We then
discuss how these methods have been applied to some canonical examples in
macroeconomics, varying from sequential equilibria of dynamic nonoptimal
economies to time-consistent policies or policy games. We conclude with a
brief discussion and survey of alternative methods that are useful for some
macroeconomic problems.

Keywords
Strategic dynamic programming • Sequential equilibria • Markov equilibria •
Perfect public equilibria • Non-optimal economies • Time-consistency prob-
lems • Policy games • Numerical methods • Approximating sets • Computing
correspondences

1 Introduction

The seminal work of Kydland and Prescott (1977) on time-consistent policy design
initiated a new and vast literature applying the methods of dynamic and stochastic
games in macroeconomics and has become an important landmark in modern
macroeconomics.1 In their paper, the authors describe a very simple optimal policy
design problem in the context of a dynamic general equilibrium model, where
government policymakers are tasked with choosing an optimal mixture of policy
instruments to maximize a common social objective function. In this simple model,
they show that the consistent policy of the policymaker is not optimal because it does
not take account of the effect of his future policy instrument on economic agents’
present decision. In fact, Kydland and Prescott (1977) make the point that a policy
problem cannot be dealt with just optimal control theory since there a policymaker

1Of course, there was prior work in economics using the language of dynamic games that was
related to macroeconomic models (e.g., Phelps and Pollak 1968; Pollak 1968; Strotz 1955) but the
paper of Kydland and Prescott changed the entire direction of the conversation on macroeconomic
policy design.
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is interacting with economic agents having rational expectations. In other words, as
the successive generations of policymakers cannot commit to the future announced
plans of the current generation, they argue that one cannot assume that optimal plans
that are designed by any current generation of government policymakers will ever
be followed if they are not required to be additionally dynamically consistent. This
observation gave rise to a new and very important question of how to construct
credible government policies, as well as raising the question of whether discretion
vs. rules were more important to the design of optimal policy, and the study of
dynamic macroeconomic models with strategically interacting agents and limited
commitment begun (and has continued for the last four decades).

In subsequent work, Kydland and Prescott (1980) proposed a new set of
recursive methods for constructing time-consistent optimal policies in decentralized
dynamic equilibrium models with capital and labor. Their methods actually were
an integration of new dynamic optimization techniques under additional constraints
(i.e., constraints that were added to guarantee decision-makers would look forward
or backward in a manner that the resulting optimal decisions for future policy
were time consistent). Their methods in this paper introduced the idea of using
set-valued operators to construct time-consistent sequential equilibrium solutions
defined recursively on an expanded set of endogenous state variables that could be
used to provide the needed dynamic incentives for them to choose time-consistent
solutions.

Their methods, although not explicitly game theoretic, provided an important
preamble to the introduction of more general, powerful, and systematic game
theoretic approaches that are now central to much work in macroeconomics. These
new methods are referred in the literature as “strategic dynamic programming
methods” and are built upon the seminal work of Abreu et al. (1986, 1990) (APS)
for solving for the equilibrium value set of very general classes of repeated games.
As in the original Kydland-Prescott approach (e.g., Kydland and Prescott 1980),
they introduce new state variables (in this case, either value functions or envelope
theorems) and in essence are set-valued generalizations of standard dynamic
programming methods. This approach (especially since the pioneering paper of
Atkeson 1991) has found many important implementations to solve macroeconomic
models with limited commitment or dynamically inconsistent preferences and is
(in their structure) basically APS method extended to models with state variables.2

These methods both verify the existence of subgame perfect equilibrium in a
large class of dynamic/stochastic games, and they provide a systematic method
for constructing all the sequential or subgame perfect equilibria in many dynamic
macroeconomic models that can be formulated as a dynamic game.

2Strategic dynamic programming methods were first described in the seminal papers of Abreu
(1988) and Abreu et al. (1986, 1990), and they were used to construct the entire set of sequential
equilibrium values for repeated games with discounting. These methods have been subsequently
extended in the work of Atkeson (1991), Judd et al. (2003), and Sleet and Yeltekin (2016), among
others.
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In this chapter, we survey some of the important literature on macroeconomic
models that use the methods of dynamic and stochastic games. We first discuss
the literature and how dynamic and stochastic games naturally arise in dynamic
general equilibrium models that are the workhorse of macroeconomic modeling. We
then discuss strategic dynamic programming methods extending to setting with state
variables that are very important for solving these models. We focus on strategic
dynamic programming with states, as when these methods apply, they provide a
systematic method for constructing all dynamic equilibria in the models. At the end
of the chapter, we also discuss alternative optimization and Euler equation-based
methods for solving these models, which have also been studied in the literature.
These latter methods, although in some cases not explicitly game theoretic, provide
powerful alternatives to the set-theoretic approaches that APS methods with state
variables provide.

There are many prototype problems in macroeconomics that require the tools
of dynamic game theory, and there are a number of alternative methods for
studying these models. Take, for example, the paper of Phelan and Stacchetti
(2001), where they consider optimal taxation in a model first described in Kydland
and Prescott (1980), where the structure of optimal taxation in their model was
studied as a sequential equilibrium of a dynamic game played between overlapping
generations of government policymakers who are collectively tasked with choosing
an optimal sequence of capital and/or labor taxes to finance a stream of government
spending over an infinite horizon, where government policymakers maximize the
representative agent’s lifetime utility function in a sequential equilibrium. Further,
as Kydland and Prescott (1980) showed, as labor and capital decisions in the
private economy are made endogenously by households and firms, the resulting
dynastic social objective function for the collective government is not dynamically
consistent. This raised the interesting question of studying sustainable (or credible)
optimal taxation policies, where constraints forcing the government to make time-
consistent choices further restricted the set of optimal government policies (i.e.,
forced optimal government policies to satisfy a further restriction that all current
plans about decisions by future generations of government policymakers are actually
optimal for those successor generations of policymakers when their decisions have
to be made). This situation was distinct from previous work in dynamic general
equilibrium theory (as well as much of the subsequent work on optimal policy
design over the decade after their paper) which assumed perfect commitment on the
part of government policymakers.3 In showing this (far from innocuous) assumption
of perfect commitment in dynamic economies, Kydland and Prescott (1980) asked
the question of how to resolve this fundamental credibility issue for optimal policy
design. Their construction of dynamic equilibria incorporated explicitly the strategic
considerations between current and future policy agents into the design of sequential
equilibrium optimal plans.

3The model they studied turned out to be closely related to the important work on optimal dynamic
taxation in models with perfect commitment in the papers of Judd (1985) and Chamley (1986). For
a recent discussion, see Straub and Werning (2014).
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The papers of Kydland and Prescott (1980) and Phelan and Stacchetti (2001) also
provide a nice comparison and contrast of methods for studying macroeconomic
models with dynamic strategic interaction, dynamically inconsistent preferences, or
limited commitment. Basically, the authors study very related dynamic economies
(i.e., so-called „Ramsey optimal taxation models”), but their approaches to con-
structing time-consistent solutions are very different. Kydland and Prescott (1980)
viewed the problem of constructing time-consistent optimal plans from the vantage
point of optimization theory (with a side condition that is a fixed point problem
that is used to guarantee time consistency). That is, they forced the decision-maker
to respect the additional implicit constraint of time consistency by adding new
endogenous state variables to further restrict the set of optimal plans from which
government policymakers could choose, and the structure of that new endogenous
state variable is determined by a (set-valued) fixed point problem. This “recursive
optimization” approach has a long legacy in the theory of consistent plans and time-
consistent optimization.4

Phelan and Stacchetti (2001) view the problem somewhat differently, as a
dynamic game between successive generations of government policymakers. When
viewing the problem this way, in the macroeconomics literature, the role for
strategic dynamic programming provided the author a systematic methodology
for both proving existence of, and potentially computing, sequential equilibria in
macroeconomic models formulated as a dynamic/stochastic game.5 As we shall
discuss in the chapter, this difference in viewpoint has its roots in an old literature
in economics on models with dynamically inconsistent preference beginning with
Strotz (1955) and subsequent papers by Pollak (1968), Phelps and Pollak (1968),
and Peleg and Yaari (1973).

One interesting feature of this particular application is that the methods differ
in a sense from the standard strategic dynamic programming approach of APS
for dynamic games with states. In particular, they differ by choice of expanded
state variables, and this difference in choice is intimately related to the structure
of dynamic macroeconomic models with strategically interacting agents. Phelan
and Stacchetti (2001) note, as do Dominguez and Feng (2016a,b) and Feng (2015)
subsequently, that an important technical feature of the optimal taxation problem is
the presence of Euler equations for the private economy. This allows them to develop
for optimal taxation problems a hybrid of the strategic dynamic programming
methods of APS. That is, like APS, the recursive methods these authors develop

4Indeed, in the original work of Strotz (1955), this was the approach taken. This approach was
somehow criticized in the work of Pollak (1968), Phelps and Pollak (1968), and Peleg and Yaari
(1973). See also Caplin and Leahy (2006) for a very nice discussion of this tradition.
5In some cases, researchers also seek further restrictions of the set of dynamic equilibria studied
in these models, and they focus on Markov perfect equilibria. Hence, the question of memory
in strategic dynamic programming methods has also been brought up. To answer this question,
researchers have sought to generate the value correspondence in APS type methods using
nonstationary Markov perfect equilibria. See Doraszelski and Escobar (2012) and Balbus and
Woźny (2016) for discussion of these methods.
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employ enlarged states spaces, but unlike APS, in this particular case, these
additional state variables are Karush-Kuhn-Tucker (KKT) multipliers or envelope
theorems (e.g., as is also done by Feng et al. 2014).

These enlarged state space methods have also given rise to a new class of recur-
sive optimization methods that incorporate strategic considerations and dynamic
incentive constraints explicitly into dynamic optimization problems faced by social
planners. For early work using this recursive optimization approach, see Rustichini
(1998a) for a description of so-called primal optimization methods and also
Rustichini (1998b) and Marcet and Marimon (1998) for related “dual” recursive
optimization methods using recursive Lagrangian approaches.

Since Kydland and Prescott’s work was published, over the last four decades, it
had become clear that issues related to time inconsistency and limited commitment
can play a key role in understanding many interesting issues in macroeconomics.
For example, although the original papers of Kydland and Prescott focused on
optimal fiscal policy primarily, the early papers by Fischer (1980a) and Barro
and Gordon (1983) showed that similar problems arise in very simple monetary
economies, when the question of optimal monetary policy design is studied. In such
models, again, the sequential equilibrium of the private economy can create similar
issues with dynamic consistency of objective functions used to study the optimal
monetary policy rule question, and therefore the sequential optimization problem
facing successive generations of central bankers generates optimal solutions that
are not time consistent. In Barro and Gordon (1983), and subsequent important
work by Chang (1998), Sleet (2001), Athey et al. (2005), and Sleet and Yeltekin
(2007), one can then view the problem of designing optimal monetary policy as
a dynamic game, with sequential equilibrium in the game implementing time-
consistent optimal monetary policy.

But such strategic considerations have also appeared outside the realm of policy
design and have become increasingly important in explaining many important phe-
nomena observed in macroeconomic data. The recent work studying consumption-
savings puzzles in the empirical data (e.g., why do people save so little?) has
focused on hyperbolic discounting and dynamically inconsistent choice as a basis
for an explanation. Following the pioneering paper by Strotz (1955), where he
studied the question of time-consistent plans for decision-makers whose preferences
are changing overtime, many researchers have attempted to study dynamic models
where agents are endowed with preferences that are dynamically inconsistent (e.g.,
Harris and Laibson 2001, 2013; Krusell and Smith 2003, 2008; Laibson 1997).
In such models, at any point in time, agents make decisions on current and
future consumption-savings decisions, but their preferences exhibit the so-called
present-bias. These models have also been used to explain sources of poverty
(e.g., see Banerjee and Mullainathan 2010; Bernheim et al. 2015). More generally,
the question of delay, procrastination, and the optimal timing of dynamic choices
have been studied in O’Donoghue and Rabin (1999, 2001), which has started an
important discussion of how to use models with dynamically inconsistent payoffs to
explain observed behavior in a wide array of applications, including dynamic asset
choice.
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Additionally, when trying to explain the plethora of defaults that we observe
in actual macroeconomies, and further address the question of how to sustain
sovereign debt arrangements and debt repudiation, a new theory of asset markets
with strategic default has emerged, where the role of limited commitment has
generated a wide array of new models of dynamic insurance under incomplete
markets with strategic default. These models have been applied to many important
problems in international lending, where limited commitment plays a key role in
understanding financial arrangements. Strategic default also plays a key role in
the construction of dynamic models with endogenous borrowing constraints. These
models have played a critical role in explaining various asset pricing puzzles in the
macroeconomics literature. This literature began with the important early paper by
Atkeson (1991) which studies international lending and debt repudiation; but the
problem of sustainable debt under limited commitment has been studied in the early
work of Kehoe and Levine (1993, 2001), as well as in Alvarez and Jermann (2000),
and Hellwig and Lorenzoni (2009). Further, the issue of sovereign debt repudiation
has been studied in a number of papers including Arellano (2008), Benjamin and
Wright (2009), Yue (2010), and Broner et al. (2014, 2010).

One final prototype of a dynamic game in macroeconomics arises in models of
economic growth with limited commitment. One common version of this sort of
model arises in models of strategic altruism, where a dynastic household faces a
collective choice problem between successive generations of families. Models in
this spirit were first introduced in Phelps and Pollak (1968) and subsequently studied
in Bernheim and Ray (1983), Leininger (1986), Amir (1996b), Nowak (2006c),
Balbus et al. (2012, 2014, 2015a,b,c) and Woźny and Growiec (2012), among
others. Another classic example of strategic growth models arises in the seminal
work of Levhari and Mirman (1980), where the “great fishwar” was originally
studied. In this model, a collection of agents face the problem of managing a
common resource pool, where each period agents can consume from the existing
stock of resources, with the remainder of that stock being used as input to a
regeneration process (i.e., as investment into a social production function) that
produces next period stock of resources. This problem has been extensively studied
(e.g., Mirman (1979), Sundaram (1989a), Amir (1996b), Balbus and Nowak (2004),
Nowak (2006a,b), Jaśkiewicz and Nowak (2015), and Fesselmeyer et al. (2016)
among others).

As dynamic games have been introduced more extensively into macroeconomics,
researchers have developed some very powerful methods for studying sequential
or Markovian equilibrium in such models. For example, in the macroeconomic
models where sequential optimization problems for agents have preferences that
are changing over time, when searching for time-consistent optimal solutions,
since the work of Strotz (1955) it has been known that additional constraints on
the recursive optimization problem must be imposed. These constraints can be
formulated as either backward- or forward-looking constraints. In Kydland and
Prescott (1980), they proposed a very interesting resolution to the problem. In
particular, they reformulate the optimal policy design problem recursively in the
presence of additional endogenous state variables that are used to force optimal
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plans of the government decision-makers to be time consistent. That is, one can
formulate an agent’s incentive to deviate from a candidate dynamic equilibrium
future choices by imposing a sequence of incentive constraints on current choices.
Given these additional incentive constraints, one is led to a natural choice for a set
of new endogenous state variables (e.g., value functions, Kuhn-Tucker multipliers,
envelope theorems, etc.). Such added state variables also allow one to represent
sequential equilibrium problems recursively. That is, they force optimal policies
to condition on lagged values of Kuhn-Tucker multipliers. In these papers, one
constructs the new state variable as the fixed point of a set-valued operator (similar,
in spirit, to the methods discussed in Abreu et al. (1986, 1990) adapted to dynamic
games. See Atkeson (1991) and Sleet and Yeltekin (2016)).6

The methods of Kydland and Prescott (1980) have been extended substantially
using dynamic optimization techniques, where the presence of strategic interaction
creates the need to further constrain these optimization problems with period-by-
period dynamic incentive constraints. These problems have led to the development
of “incentive-constrained” dynamic programming techniques (e.g., see Rustichini
(1998a) for an early version of “primal” incentive-constrained dynamic program-
ming methods and Rustichini (1998b) and Marcet and Marimon (1998) for early
discussions of “dual” methods). Indeed, Kydland and Prescott’s methodological
approach was essentially the first “recursive dual” approach to a dynamic consis-
tency problem. Unfortunately, in either formulation of the incentive-constrained
dynamic programming approach, these optimization methods have some serious
methodological issues associated with their implementation. For example, in some
problems, these additional incentive constraints are often difficult to formulate (e.g.,
for models with quasi-hyperbolic discounting. See Pollak 1968). Further, when
these constraints can be formulated, they often involve punishment schemes that
are ad hoc (e.g., see Marcet and Marimon 1998).

Now, additionally, in “dual formulations” of these dynamic optimization
approaches, problems with dual solutions not being primal feasible can arise even
in convex formulations of these problems (e.g., see Messner and Pavoni 2016), dual
variables can be very poorly behaved (e.g., see Rustichini 1998b), and the programs
are not necessarily convex (hence, the existence of recursive saddle points is not
known, and the existing duality theory is poorly developed. See Rustichini (1998a)
for an early discussion and Messner et al. (2012, 2014) for a discussion of problems
with recursive dual approaches). It bears mentioning, all these duality issues also
arise in the methods proposed by Kydland and Prescott (1980). This dual approach
has been extended in a number of recent papers to related problems, including
Marcet and Marimon (2011), Cole and Kubler (2012), and Messner et al. (2012,
2014).

6The key difference between the standard APS methods and those using dual variables such as in
Kydland and Prescott (1980), and Feng et al. (2014) is that in the former literature, value functions
are used as the new state variables; hence, APS methods are closely related to “primal” methods,
not dual methods.
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In addition to recursive dual approaches, incentive-constrained dynamic pro-
gramming methods using “primal” formulations have been also proposed, and these
methods do not exploit the dynamic structure of the set of Karush-Kuhn-Tucker
multipliers associated with the recursive dual approach. As with dual dynamic
optimization approaches, these primal methods also suffer from the problem that
they are not concave programs. Further, characterizing optimal solutions can be
very problematic.

Because of issues related to these “dynamic optimization” approaches, strategic
dynamic programming has emerged as a systematic approach to this problem
of constructing sequential equilibrium in dynamic macroeconomic models that
can be formulated as a dynamic (or stochastic) game. For example, for the
optimal taxation economy in Kydland and Prescott, where time-consistent optimal
policies are viewed as subgame perfect equilibrium in a dynamic game played
by successive generations of government policymakers, one can first construct a
sequential equilibrium for the private economy for each sequential path for policy
and then considers in the second stage a dynamic game played between successive
generations of short-lived policymakers assuming no commitment (e.g., Dominguez
and Feng 2016b; Phelan and Stacchetti 2001). This method, in some broad sense,
can be thought of as a generalization of a “primal” incentive-constrained dynamic
programming method, and this method has played a key role in the study of
sustainable optimal government policy (e.g., see Sleet (2001) for an early discussion
of using strategic dynamic programming methods for studying optimal monetary
policy). In either case, one can additionally consider the role of reputation in the
sustainability of optimal government plans (e.g., see Rogoff (1987) for an early
discussion of this approach). In this latter approach, strategic dynamic programming
methods that extend the seminal work of Abreu (1988) and Abreu et al. (1986, 1990)
have been typically employed. We shall focus primarily on these strategic dynamic
programming methods for studying strategic interaction in macroeconomic models
that are formulated as a dynamic game in this chapter.

The rest of this chapter is laid out as follows: in the next section, we survey
the application of dynamic and stochastic games in macroeconomics. In Sect. 3,
we discuss the strategic dynamic programming approach to studying sequential
equilibrium (and subgame perfect equilibrium) in these models more formally.
We discuss both the extension of APS methods to models with states, as well
as in Sect. 4 discuss some computational issues associated with strategic dynamic
programming methods. In Sect. 5, we return to particular versions of the models
discussed in Sect. 2 and discuss how to formulate sequential equilibrium in these
models using strategic dynamic programming. In Sect. 6, we briefly discuss some
alternative approaches to dynamic games in macroeconomics, and in the last section,
we conclude.
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2 Dynamic and Stochastic Games in Macroeconomics

The literature on dynamic and stochastic games in macroeconomics is extensive.
These models often share a common structure and are dynamic general equilibrium
models where some (or all) of the economic agents have dynamically inconsistent
preferences or limited commitment generating a source of strategic interaction. In
some models, the dynamic inconsistency problems stem from the primitive data
of the model (e.g., models where agents have lifetime preferences that exhibit
hyperbolic discounting). In other models, strategic interactions emerge because of
the lack of commitment (i.e., as in dynastic models of economic growth where
current generations care about future generations, but cannot control what future
generations actually decide, or asset accumulations models with strategic default
where one cannot assume borrowers will reply unless it is in their incentive to
do so). Still in other models, the source of dynamic inconsistency comes from
the structure of sequential equilibrium (e.g., preferences for government decision-
makers designing optimal fiscal or monetary policy which are time inconsistent
because of how the private economy responses in a sequential equilibrium to
government policy). We now describe few prototypes of these models that we shall
discuss in Sect. 4 of the chapter.

2.1 Hyperbolic Discounting

One prototype for dynamic games in macroeconomics is infinite horizon model of
optimal economic growth or asset allocation where households have dynamically
inconsistent preferences. The most studied version of this problem is economy
where agents have preferences that exhibit hyperbolic discounting. This problem
was first studied in Strotz (1955), subsequently by Pollak (1968) and Phelps and
Pollak (1968), and has become the focus of an extensive literature in macroeco-
nomics (e.g., see Barro 1999; Bernheim et al. 2015; Harris and Laibson 2001, 2013;
Krusell et al. 2010; Krusell and Smith 2003; Laibson 1997).

The classical approach to studying the existence of time-consistent optimal plans
for these problems has emphasized the language of recursive decision theory, as was
discussed in the original paper by Strotz (1955). Unfortunately, as is well known,
optimal dynamically consistent (including Markov) plans for such models need not
exist, so the question of sufficient conditions for the existence of time-consistent
optimal plans is a question of a great deal of study (e.g., see Pollak (1968), Peleg
and Yaari (1973), and Caplin and Leahy (2006) for discussions of the nonexistence
question).

One reason time-consistent plans may be nonexistent lies in the seemingly
inherent presence of discontinuities in intertemporal preferences that arise very
naturally in these problems when the recursive decision theory approach is applied.
The reason for this lack of continuity is found in the inherent lack of commit-
ment between the current “versions” of the dynamic decision-maker and all her
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continuation “selves.” For example, from a decision theoretic perspective, when a
“current” decision-maker is indifferent between some alternatives in the future, the
earlier decision-maker (“planner”) can still strictly prefer one of such alternatives
in advance. As a result, he is willing to commit, yet lack access to a reasonable
“commitment device” that would impose discipline on the choices of her future
“selves” when tomorrow actually arrives. Due to this discontinuity, the optimal level
of “commitment” may be nonexistent, and the dynamic maximization problem can
turn out to be poorly defined (see, for example, Caplin and Leahy (2006) for an
excellent discussion of this point).

An alternative way of obtaining a set of consistent plans for a dynamic choice
problem with hyperbolic discounting is to view the dynamic choice problem as
a dynamic game among different generations of “selves.” In this formulation of
the decision problem, at any current period, the current “self” takes as given
a set of continuation strategies of all her “future selves” and best responds to
this continuation structure in the game. For example, in the context of optimal
growth, one could search for Markov perfect equilibrium in this dynamic game
played between successive “selves.” This is the approach advocated in the early
work of Peleg and Yaari (1973) and in subsequent work by Laibson (1997), Barro
(1999), Harris and Laibson (2001, 2013), Krusell and Smith (2003), Krusell et al.
(2010), Balbus et al. (2015d), Balbus and Woźny (2016), and Bernheim et al.
(2015). In this setting, one could take a candidate pure strategy continuation
policy for savings/investment of one’s future “self” as given, generate a value
from the program from tomorrow onward, and given this value function could
determine an optimal savings/investment decision problem for the current self. A
fixed point in this mapping between continuation savings/investment and current
savings/investment would be a Markov perfect equilibrium.

The problem is finding a space with sufficient continuity to study this fixed point
problem. For example, if you take the continuation decision on savings/investment
as continuous, the value function it generates need not be concave in the income
state; this then means the current decision problem is not concave (hence, the
best reply correspondence does not generally admit a continuous selection). If
the continuation policy is only semicontinuous, then the current generations best
reply correspondence need not contain a semicontinuous selection. So finding
sufficient continuity for the existence of even pure strategy Markov perfect plans is
problematic. Similar issues arise when considering subgame perfect equilibrium.7

Finally, when Markovian time-consistent plans do exist, they are difficult to
characterize and compute, as these models often suffer from an indeterminacy of
equilibria (e.g., Krusell and Smith 2003).

7It bears mentioning that this continuity problem is related to difficulties that one finds in looking
for continuity in best reply maps of the stage game given a continuation value function. It was
explained nicely in the survey by Mirman (1979) for a related dynamic game in the context of
equilibrium economic growth without commitment. See also the non-paternalistic altruism model
first discussed in Ray (1987).
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Perhaps the most well-studied version of hyperbolic discounting involves models
where preferences exhibit quasi-hyperbolic discounting. In the quasi-hyperbolic
model, agents have “ˇ � ı” preferences, where they have a “long-run” discount
rate of ı 2 .0; 1/; and a “short-run” discount rate of ˇ 2 .0; 1/: In such
models, agents have changing preferences, where at each period the preferences
exhibit a bias toward current consumption. Such preferences often lead to an
important role for public policy (e.g., Krusell et al. 2002, 2010). One class of
models where the introduction of quasi-hyperbolic discounting has been shown to
be important are models of asset accumulation (e.g., see the series of papers by
Laibson (1994, 1997), Harris and Laibson (2001, 2013), as well as the recent paper
by Bernheim et al. 2015). In these papers, the authors have shown using various
methods that Markovian equilibrium savings behavior of models where agents have
dynamically inconsistent preferences differ a great deal from models with standard
time separable, dynamically consistent preferences. It is well known that in models
with present-bias, savers consume more as a fraction of income than in models with
dynamically consistent, time-separable preferences (also, see Diamond and Koszegi
(2003) for examples of this in overlapping generations/life cycle models). In a very
important paper, Laibson (1997) showed that in a standard asset accumulation model
where agents possess preferences with quasi-hyperbolic preferences, and models
enhanced with illiquid assets, the impact of present-bias preference can be mitigated
by the presence of the illiquid asset. Indeed, illiquidity of assets can help constrain
time-inconsistent behavior by working as a commitment device. His work suggests
that financial innovation, therefore, can have a profound influence on equilibrium
savings rates.

These models have also been used in the study of equilibrium economic growth.
For example, Barro (1999) shows that in a version of the optimal growth model,
under full commitment, and isoelastic period utility, agents save more and consume
less; under imperfect commitment, saving rates and capital accumulation are lower.
Krusell and Smith (2003) study a version of the optimal growth model and
find additionally there exists a continuum of Markovian equilibria in their model
without commitment. Krusell et al. (2002) produce a very interesting result for a
particular parametric class of models. In particular, they show that for this particular
parametric case, social planning solutions are strictly worse in welfare terms than a
recursive equilibrium solution.

Extensions of this work of dynamic inconsistency in dynamic models have been
numerous. The paper by O’Donoghue and Rabin (1999) extends class of Strotzian
models to encompass models of procrastination. In their model, decision-makers
are sophisticated or naive about their future structure of preferences (i.e., the nature
of their future self-control problem), must undertake a single activity, and face
intermediate costs and rewards associated with this activity. In the baseline model,
“naive” decision-makers suffer procrastination (“acting too late”) about undertaking
a future activities with intermediate cost, while they act too soon relative to activities
with intermediate future rewards. Sophistication about future self-control problems
mitigates procrastination problems associated with dynamic inconsistency, while it
makes the problem of preproperation (“acting too early”) worse. In O’Donoghue
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and Rabin (2001), they extend this model to more general choice problems (with
“menus” of choices).

In another line of related work, Fudenberg and Levine (2006) develop a “dual-
selves” model of dynamically inconsistent choice and show that this model can
explain both the choice in models with dynamically inconsistent preferences (e.g.,
Strotz/Laibson “ˇ � ı” models) and the O’Donoghue/Rabin models of procrasti-
nation. In their paper, they model the decision-maker as a “dual self,” one being a
long-run decision-maker, and a sequence of short-run myopic decision-makers, the
dual self sharing preferences and playing a stage game.

There have been many different approaches in the literature to solve this problem.
One approach is a recursive decision theory (Caplin and Leahy 2006; Kydland and
Prescott 1980). In this approach, one attempts to introduce additional (implicit)
constraints on dynamic decisions in a way that enforces time consistency. It is
known that such decision theoretic resolutions in general can fail in some cases (e.g.,
time-consistent solutions do not necessarily exist).8 Alternatively, one can view
time-consistent plans as sequential (or subgame perfect) equilibrium in a dynamic
game between successive generations of “selves.” This was the approach first
proposed in Pollak (1968) and Peleg and Yaari (1973). The set of subgame perfect
equilibria in the resulting game using strategic dynamic programming methods is
studied in the papers of Bernheim et al. (2015) and Balbus and Woźny (2016). The
existence and characterization of Markov perfect stationary equilibria is studied in
Harris and Laibson (2001), Balbus and Nowak (2008), and Balbus et al. (2015d,
2016). In the setting of risk-sensitive control, Jaśkiewicz and Nowak (2014) have
studied the existence of Markov perfect stationary equilibria.

2.2 Economic Growth Without Commitment

Models of economic growth without commitment provide another important exam-
ple of dynamic and stochastic games in macroeconomics. These models have arisen
in many forms since the pioneering papers of Phelps and Pollak (1968), Peleg and
Yaari (1973), Ray (1987), and Levhari and Mirman (1980).9 For example, consider
the model of altruistic growth without commitment as first described in Phelps and
Pollak (1968) and Peleg and Yaari (1973) and extended in the work of Bernheim
and Ray (1983), Leininger (1986), Amir (1996b), and Nowak (2006c). The model
consists of a sequence of identical generations, each living one period, deriving
utility from its own consumption, as well as the consumption of its successor
generations. In any period of the economy, the current generation begins the
period with a stock of output goods which it must either consume or invest in a

8For example, see Peleg and Yaari (1973), Bernheim and Ray (1983), and Caplin and Leahy (2006).
9For example, models of economic growth with strategic altruism under perfect commitment have
also been studied extensively in the literature. For example, see Laitner (1979a,b, 1980, 2002),
Loury (1981), and including more recent work of Alvarez (1999). Models of infinite-horizon
growth with strategic interaction (e.g., “fishwars”) are essentially versions of the seminal models
of Cass (1965) and Brock and Mirman (1972), but without commitment.
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technology that reproduces the output good tomorrow. The reproduction problem
can be either deterministic or stochastic. Finally, because of the demographic
structure of the model, there is no commitment assumed between generations. In
this model, each generation of the dynastic household cares about the consumption
of the continuation generation of the household, but it cannot control what the future
generations choose. Further, as the current generation only lives a single period, it
has an incentive to deviate from a given sequence of bequests to the next generation
by consuming relatively more of the current wealth of the household (relative to, say,
past generations) and leaving little (or nothing) of the dynastic wealth for subsequent
generations. So the dynastic household faces a time-consistent planning problem.

Within this class of economies, conditions are known for the existence of
semicontinuous Markov perfect stationary equilibria, and these conditions have
been established under very general conditions via nonconstructive topological
arguments (e.g., for deterministic versions of the game, in Bernheim and Ray 1987;
Leininger 1986), and for stochastic versions of the game, by Amir (1996b), Nowak
(2006c), and Balbus et al. (2015b,c). It bears mentioning that for stochastic games,
existence results in spaces of continuous functions have been obtained in these latter
papers. In recent work by Balbus et al. (2013), the authors give further conditions
under which sharp characterizations of the set of pure strategy Markov stationary
Nash equilibria (MSNE, henceforth) can be obtained. In particular, they show that
the set of pure strategy MSNE forms an antichain, as well as develop sufficient
conditions for the uniqueness of Markov perfect stationary equilibrium. This latter
paper also provides sufficient conditions for globally stable approximate solutions
relative to a unique nontrivial Markov equilibrium within a class of Lipschitz
continuous functions. Finally, in Balbus et al. (2012), these models are extended
to settings with elastic labor supply.

It turns out that relative to the set of subgame perfect equilibria, strategic dynamic
programming methods can also be developed for these types of models (e.g., see
Balbus and Woźny 2016).10 This is interesting as APS type methods are typically
only used in situations where players live an infinite number of periods. Although
the promised utility approach has proven very useful in even this context, for models
with altruistic growth without commitment, they suffer from some well-known
limitations and complications. First, they need to impose discounting typically in
this context. When studying the class of Markov perfect equilibria using more direct
(fixed point) methods, one does not require this. Second, and more significantly, the
presence of “continuous” noise in our class of dynamic games proves problematic
for existing promised utility methods. In particular, this noise introduces significant
complications associated with the measurability of value correspondences that
represent continuation structures (as well as the possibility of constructing and
characterizing measurable selections which are either equilibrium value function or
pure strategies). We will discuss how this can be handled in versions of this model
with discounting. Finally, characterizations of pure strategy equilibrium values

10Also see Balbus et al. (2012) section 5 for a discussion of these methods for this class of models.
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(as well as implied pure strategies) is also difficult to obtain. So in this context,
more direct methods studying the set of Markov perfect stationary equilibria can
provide sharper characterizations of equilibria. Finally, it can be difficult to use
promised utility continuation methods to obtain any characterization of the long-run
stochastic properties of stochastic games (i.e., equilibrium invariant distributions or
ergodic distributions).11

There are many other related models of economic growth without commitment
that have also appeared in the literature. For example, in the paper of Levhari and
Mirman (1980), the authors study a standard model of economic growth with many
consumers but without commitment (the so-called great fishwar). In this model, in
each period, there is a collective stock of output that a finite number of players can
consume, with the remaining stock of output being used as an input into a productive
process that regenerates output for the next period. This regeneration process can be
either deterministic (e.g., as in Levhari and Mirman 1980 or Sundaram 1989a) or
stochastic (as in Amir 1996a; Nowak 2006c).

As for results on these games in the literature, in Levhari and Mirman (1980),
the authors study a parametric version of this dynamic game and prove existence of
unique Cournot-Nash equilibrium. In this case, they obtain unique smooth Markov
perfect stationary equilibria. In Sundaram (1989a), these results are extended to
symmetric semicontinuous Markov perfect stationary equilibria in the game, but
with more standard preferences and technologies.12 Many of these results have
been extended to more general versions of this game, including those in Fischer and
Mirman (1992) and Fesselmeyer et al. (2016). In the papers of Dutta and Sundaram
(1992) or Amir (1996a), the authors study stochastic versions of these games. In this
setting, they are able to obtain the existence of continuous Markov perfect stationary
Nash equilibrium under some additional conditions on the stochastic transitions of
the game.

2.3 Optimal Policy Design Without Commitment

Another macroeconomic model where the tools of dynamic game theory play a
critical role are models of optimal policy design where the government has limited
commitment. In these models, again the issue of dynamic inconsistency appears.
For example, there is a large literature studying optimal taxation problem in models
under perfect commitment (e.g., Chamley 1986; Judd 1985. See also Straub and
Werning 2014). In this problem, the government is faced with the problem of
financing dynamic fiscal expenditures by choosing history-contingent paths for
future taxation policies over capital and labor income under balanced budget
constraints. When viewing the government as a dynastic family of policymakers,
they collectively face a common agreed upon social objective (e.g., maximizing

11For competitive economies, progress has been made. See Peralta-Alva and Santos (2010).
12See also the correction in Sundaram (1989b).
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the representative agent’s objective function along sequential equilibrium paths
for the private economy). As mentioned in the introduction, this problem is often
studied under limited commitment (e.g., in Kydland and Prescott 1980; Pearce and
Stacchetti 1997; Phelan and Stacchetti 2001, and more recently Dominguez and
Feng 2016a,b, and Feng 2015). As the objective function in this class of models is
generally not time consistent, the question of credible optimal government policy
immediately arises.

The existence of time-consistent optimal plans for capital and labor income
taxes was first studied in Kydland and Prescott (1980). In their formulation of
the problem, the game was essentially a dynamic Stackelberg game, that is,
in the “first stage,” the agents in the private economy take sequences of tax
instruments and government spending as given, and a sequential equilibrium for
the private economy is determined. Then, in the second stage, this sequential
equilibrium induces dynastic social preferences of government policymakers over
these sequences of tax instruments and government spending (under a balanced
budget rule). These preferences are essentially the discounted lifetime utility of
a representative agent, and are maximized over the government’s fiscal choice,
which is not time consistent (therefore, as successive generations of government
policymakers possess limited commitment across time, announced future plans will
not necessarily be implemented by future government policymakers). To illustrate
the basic problems of their model, we consider the following example:

Example 1. Consider a two-period economy with preferences given by

u.c1/C ı.u.c2/C �u.g//;

with linear production, full depreciation, and initial capital k0 > 0. Then the
economy’s resource constraint is c1 C k D k0 and c2 C g D k, where g is a
public good level. Suppose that ı D 1, � D 1, and u.c/ D log.˛ C c/ for some
˛ > 0.

The optimal, dictatorial solution (benevolent government choosing nonnegative
k and g) to the welfare maximization problem is given by FOC:

u0.k0 � k/ D u0.k � g/ D u0.g/;

which gives 2g D k D 2
3
k0 with c1 D c2 D g D 1

3
k0.

Now consider a competitive equilibrium economy, where the government
finances public good g by levying a linear tax � 2 Œ0; 1� on capital income. The
household budget is c1 C k D k0 and c2 D .1 � �/k. Suppose that consumers
have rational expectations and we look for a credible tax level � under the balanced
budget condition g D �k. For this reason suppose that � is given and solve for
competitive equilibrium investment k. The FOC gives:

u0.k0 � k/ D .1 � �/u
0..1 � �/k/;
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which gives

k.�/ D
.1 � �/.˛ C k0/ � ˛

2.1 � �/
;

with k0.�/ < 0. Now, knowing this reaction curve, the government chooses
the optimal tax level solving the competitive equilibrium welfare maximization
problem:

max
�2Œ0;1�

u.k0 � k.�//C u..1 � �/k.�//C u.�k.�//:

Here the first-order condition requires

Œ�u0.k0 � k.�//C .1 � �/u
0..1 � �/k.�//�k0.�/C Œ�u0..1 � �/k.�//

Cu0.�k.�//�k.�/C �u0.�k.�//k0.�/ D 0:

The last term (strictly negative) is the credibility adjustment which distorts the
dynamically consistent solution from the optimal one. It indicates that in the
dynamically consistent solution, when setting the tax level in the second period,
the government must look backward for its impact on the first-period investment
decision.

Comment: to achieve the optimal, dictatorial solution the government would
need to promise � D 0 in the first period (so as not to distort investment) but then
impose � D 1

2
to finance the public good. Clearly it is a dynamically inconsistent

solution.

This problem has led to a number of different approaches to solving it. One
idea, found in the original paper of Kydland and Prescott (1980), was to construct
optimal policy rules that respect a “backward”-looking endogenous constraint on
future policy. This, in turn, implies optimal taxation policies must be defined
on an enlarged set of (endogenous) state variables. That is, without access to a
“commitment device” for the government policymakers, for future announcements
about optimal policy to be credible, fiscal agents must constrain their policies to
depend on additional endogenous state variables. This is the approach that is also
related to the recursive optimization approaches of Rustichini (1998a), Marcet and
Marimon (1998), and Messner et al. (2012), as well as the generalization of the
original Kydland and Prescott method found in Feng et al. (2014) that is used to
solve this problem in the recent work of Feng (2015).

Time-consistent polices can also be studied as a sequential equilibrium of a
dynamic game between successive generations to determine the optimal mixture of
policy instruments, where commitment to planned future policies is guaranteed in a
sequential equilibrium in this dynamic game between generations of policymakers.
These policies are credible optimal policies because these policies are subgame
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perfect equilibrium in this dynamic game. See also Chari et al. (1991, 1994) for
a related discussion of this problem. This is the approach taken in Pearce and
Stacchetti (1997), Phelan and Stacchetti (2001), Dominguez and Feng (2016a,b),
among others.

Simple optimal policy problems also arise in the literature that studies optimal
monetary policy rules; similar papers have been written in related macroeconomic
models. This literature began with the important papers of Fischer (1980b) and
Barro and Gordon (1983) (e.g., see also Rogoff (1987) for a nice survey of this
work). More recent work studying the optimal design of monetary policy under
limited commitment includes the papers of Chang (1998), Sleet (2001), Athey et al.
(2005), and Sleet and Yeltekin (2007).

3 Strategic Dynamic Programming Methods

In this section, we lay out in detail the theoretical foundations of strategic dynamic
programming methods for repeated and dynamic/stochastic games.

3.1 Repeated Models

An original strategic dynamic programming method was proposed by Abreu et al.
(1986) and further developed in Abreu et al. (1990) for a class of repeated games
with imperfect public information and perfect public equilibria. As the game is
repeated, the original APS methods did not have “states” (e.g., in addition to
promised utility). These methods have been used in macroeconomics (especially
in dynamic contract theory, but also in policy games when considering the question
of sustainable optimal monetary policy (e.g., see Chang 1998).13

Consider an infinitely repeated game between n-players with imperfect public
information. Let N D f1; 2; : : : ; ng be a set of players. In each period, each of
n-players chooses simultaneously a strategy so that the strategy profile is a D
.a1; a2; : : : ; an/ 2 A, where A D �niD1Ai , i.e., a Cartesian product of individual
action sets. Each a 2 A induces a distribution over the realization of publicly
observable signals y 2 Y , where Y � R

k .k 2 N/ given by Q.dyja/. Each
player i 2 N has a one-stage payoff given by ui .y; ai /, and its expectation is
gi .a/ WD

R
Y

ui .y; ai /Q.dyja/.

Remark 1. A repeated game with observable actions is a special case of this model,
if Y D A and Q.fagja/ D 1 and zero otherwise.

13Also, for repeated games with quasi-hyperbolic discounting, see Chade et al. (2008) and Obara
and Park (2013).



Dynamic Games in Macroeconomics 19

For each t > 1, let Ht be a public history at the beginning of period t .
Mathematically, it is a sequence of the signals before t; i.e., Ht WD Y

t with generic
element ht WD .y0; y1; : : : ; yt�1/. A public strategy of player i is a sequence
of functions �i WD .�i;t /

1
tD0, where each �i;t maps histories Ht to probability

distributions on Ai . A strategy �i;t is pure if it maps histories Ht into Ai . A strategy
profile is a product of strategies, i.e., � WD .�t /1tD0, where �t WD .�1;t ; : : : ; �n;t /.

Let H WD Y1 be a set of all public histories with generic element h WD
.y0; y1; : : :/. By Ionescu-Tulcea theorem, a transition probability Q and strategy
� induce the unique Borel probability measure on H . Let E� be an expectation
associated with this measure.

Assume a common discount factor ı 2 .0; 1/; then the player i ’s expected payoff
from the repeated game is given by:

Ui.�/ WD .1 � ı/E
�

 
1X

tD0

ıtgi .�t .h
t //

!

;

where .1�ı/ normalization is used to make payoffs of the stage game and infinitely
repeated game comparable.

We impose the following set of assumptions:

Assumption 1. (i) Ai is finite for each i 2 N ,
(ii) for each a 2 A, Q.�ja/ is absolutely continuous probability measure with

density q.�; a/,
(iii) the support ofQ.�ja/ is independent of a, and without loss of generality assume

that it is Y . That is

Y WD fy 2 Y W q.yja/ > 0; for all a 2 Ag;

(iv) for each i 2 N and ai 2 Ai , ui .�; ai / is a continuous function,
(v) the one-shot strategic form game .N; .Ai ; gi /i2N / has a pure strategy Nash

equilibrium.

Let V WD L1 .Y;Rn/ be a set of all equivalence classes of essentially bounded
Lebesgue measurable functions from Y into R

n: Endow V with its weak star
topology. Similarly, denote the measurable functions from Y to any subsets of Rn.
Moreover, with a slight abuse of notation, we will denote the i -th component of
v 2 V by vi W Y ! R, and hence v D .v1; v2; : : : ; vn/ 2 V .

A standard tool to deal with discounted n-player repeated games is the class of
one-shot auxiliary (strategic form) games �.v/ D .N; .Ai ;…i .vi //i2N /, where

…i.a/.vi / D .1 � ı/gi .a/C ı

Z

Y

vi .y/Q.dyja/
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is player i ’s payoff. Let W � R
n. By B.W / denote the set of all Nash equilibrium

payoffs of the auxiliary game for some vector function v 2 V having image in W .
Formally:

B.W / WD fw 2 R
n W there is a� 2 A; v 2 V such that

…i.a
�/.vi / � …i.a

�
�i ; ai /.vi /;

for all ai 2 Ai ; i 2 N; and v.y/ 2 W; for almost all y 2 Y g:

By the axiom of the choice, there is an operator � W B.W / ! L1.Y;W / and
� W W ! A such that for each i 2 N it holds

wi D …i.�.w//.�.w; �// � …i.��i .w/; ai /.�.w; �//:

Modifying on null sets if necessary, we may assume that �.w; y/ 2 W for all y. We
say that W � R

n is self-generating if W � B.W /. Denoting by V � � R
n the set

of all public perfect equilibrium vector payoffs and using self-generation argument
one can show that B.V �/ D V �. To see that we proceed in steps.

Lemma 1. If W is self-generating, then W � V �.

Self-generation is an extension of the basic principle of optimality from dynamic
programming. Let W be some self-generating set. Then, if w 2 W , by self-
generation, w 2 B.W /. Consequently, we may find a sequence of functions .vt /1tD1
such that vt W Y t ! W , for each t > 1 such that v1.y/ WD �.w; y/ and for t > 1

vt .y1; y2; : : : ; yt / WD �.v
t�1.y1; : : : ; yt�1/; yt / and a sequence of functions .�t /1tD0

such that �1 WD �.w/ and for t > 0 �tC1.y1; : : : ; yt / WD �.�.vt .y1; : : : ; yt ///.
We claim that � WD .�t /

1
tD0 is a perfect Nash equilibrium in public strategies and

wi D Ui.�/. Indeed, if player i deviates from � until time T , choosing Qati instead
of ati , then by definition of � and �:

wi D Ui.�/ � .1 � ı/
TX

tD1

ıtgi . Qa
t
i /C ı

TC1Ui
�
J T .�/

�
:

Here J T .�/ WD .�TC1; �TC2; : : :/. Taking a limit with T ! 1, we may conclude
� is a perfect Nash equilibrium in public strategies and w 2 V �. To formalize this
thinking, we state the next theorem. Let V � R

n be some large set of possible
payoffs, such that V � � V . Then:
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Theorem 1. Suppose that Assumption 1 holds. Then,

(i)
1T

tD1

Bt .V / ¤ ;,

(ii)
1T

tD1

Bt .V / is the greatest fixed point of B ,

(iii)
1T

tD1

Bt .V / D V �.

To see (i) of the aforementioned theorem, observe that V is a nonempty
compact set. By Assumption 1 (ii), (iv) and (v), we may conclude that B.V /
is nonempty compact set and consequently that each Bt.V / is nonempty and
compact. Obviously, B is an increasing operator, mapping V into itself. Bt.V /

is a decreasing sequence; hence, its intersection is not empty. To see (ii) and (iii)
of this theorem, observe that all sets Bt.V / include any fixed point of B and,

consequently, its intersection also. On the other hand,
1T

tD1

Bt .V / is self-generating,

hence by Lemma 1

1\

tD1

Bt .V / � V �: (1)

By Assumption 1 (iii), we may conclude that V � is self-generating; hence,B.V �/ �

V �. Consequently, V � D B.V �/; hence, V � �
1T

tD1

Bt .V /. Together with (1),

we have points (ii) and (iii). Moreover, observe that V � is compact. To see that,
observe that V � is bounded and its closure cl.V �/ is compact. On the other hand,
V � D B.V �/ � B.cl.V �//. By Assumption 1 (ii) and (iv), we have compactness
of B.cl.V �// and consequently cl.V �/ � B.cl.V �//; hence, by Lemma 1,
cl.V �/ � V �. As a result, V � is closed and hence compact.

An interesting property of the method is that the equilibrium value set can be
characterized using some extremal elements of the equilibrium value set only. Abreu
et al. (1990) call it a bang-bang property. Cronshaw and Luenberger (1994) (and
Abreu (1988) for some early examples) push this fact to the extreme and show that
the equilibrium value set of a strongly symmetric subgame perfect equilibrium can
be characterized using the worst punishment only. This observation has important
implications on computation algorithms and applications.14

For each W � R
n, let co.W / be a convex hull of W . By ext.W /, we denote the

set of extreme points of co.W /.

14See Dominguez (2005) for an application to models with public dept and time-consistency issues,
for example.
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Definition 1. We say that the function v 2 L1.Y;W / has bang-bang property if
v.y/ 2 ext.W / for almost all y 2 Y .

Using Proposition 6.2 in Aumann (1965), we have:

Theorem 2. Let W � R
n be a compact set. Let a� 2 A and v 2 L1.Y; co.W //

be chosen such that a� is Nash equilibrium in the game �.v/. Then, there exists a
function Qv 2 L1.Y; ext.W // such that a� is Nash equilibrium of �. Qv/.

Corollary 1. If W � R
n is compact, then B.W / D B.ext.W //.

Theorem 2 and its corollary show that we may choose �.w; �/ to have bang-bang
property. Moreover, if that continuation function has bang-bang properties, then we
may easily calculate continuation function in any step. Especially, if Y is a subset
of the real line, the set of extreme points is at most countable.

Finally, Abreu et al. (1990) present a monotone comparative statics result in
the discount factor. The equilibrium value set V � is increasing in the set inclusion
order in ı. That is, the higher the discount factor, the larger is the set of attainable
equilibrium values (as cooperation becomes easier).

3.2 Dynamic and Stochastic Models with States

We now consider an n-player, discounted, infinite horizon, stochastic game in
discrete time. This is the basic APS tool used in numerous applications in macroe-
conomics (e.g., all the examples discussed in Sect. 2, but others too). Along these
lines, consider the primitives of a class of stochastic games given by the tuple:

˚
S; .Ai ; QAi ; ıi ; ui /

N
iD1;Q; s0

�
;

where S is the state space,Ai � R
ki is player i ’s action space withA D �iAi , QAi.s/

the set of actions feasible for player i in state s, ıi is the discount factor for player i ,
ui W S � A ! R is the one-period payoff function, Q denotes a transition function
that specifies for any current state s 2 S and current action a 2 A, a probability
distribution over the realizations of the next period state s0 2 S , and finally s0 2 S
is the initial state of the game. We assume that S D Œ0; NS� � R and that QAi.s/ is a
compact Euclidean subset of Rki for each s; i .

Remark 2. A dynamic game is a special case of this model, if Q is a deterministic
transition.

Using this notation, a formal definition of a (Markov, stationary) strategy, payoff,
and a Nash equilibrium can be stated as follows. A set of all possible histories
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of player i till period t is denoted by Ht
i . An element hti 2 Ht

i is of the form
hti D .s0; a0; s1; a1; : : : ; at�1; st /. A pure strategy for a player i is denoted by
�i D .�i;t /

1
tD0 where �i;t W Ht

i ! Ai is a measurable mapping specifying an action
to be taken at stage t as a function of history, such that �i;t .hti / 2 QAi.st /. If, for some
t and history hti 2 H

t
i , �i;t .hti / is a probability distribution on QA.st /, then we say �i

is a behavior strategy. If a strategy depends on a partition of histories limited to the
current state st , then the resulting strategy is referred to as Markov. If for all stages
t; we have a Markov strategy given as �i;t D �i , then a strategy identified with �i
for player i is called a Markov stationary strategy and denoted simply by �i . For a
strategy profile � D .�1; �2; : : : ; �n/; and initial state s 2 S; the expected payoff for
player i can be denoted by:

Ui.�; s0/ D .1 � ıi /

1X

tD0

ıti

Z
ui .st ; �t .h

t //dmt
i .�; s0/;

where mt
i is the stage t marginal on Ai of the unique probability distribution (given

by Ionescu-Tulcea theorem) induced on the space of all histories for � . A strategy
profile �� D .���i ; �

�
i / is a Nash equilibrium if and only if �� is feasible, and for

any i , and all feasible �i , we have

Ui.�
�
�i ; �

�
i ; s0/ � Ui.�

�
�i ; �i ; s0/:

Assumption 2. (i) S is a standard Borel space,
(ii) Ai is a separable metric space and QA is a compact-valued measurable

correspondence,
(iii) Each ui is a uniformly bounded and jointly measurable function such that for

each s 2 S , ui .s; �/ is continuous on QA.s/,
(iv) For each Borel measurable subset D of S , .s; a/ 7! Q.Djs; a/ is jointly

measurable and for each s 2 S

lim
n!1

sup
D

jQ.Djs; an/ �Q.Djs; a/j D 0

whenever an ! a.

When dealing with discounted n-player dynamic or stochastic games, the main
tool is again the class of one-shot auxiliary (strategic form) games �s.v/ D
.N; .Ai ;…i .s; �/.vi //i2N /, where s 2 S � R

n is the current state, while v D
.v1; v2; : : : ; vn/, where each vi W S ! R is the integrable continuation value and the
payoffs are given by:

…i.s; a/.vi / D .1 � ıi /ui .s; a/C ıi

Z

S

vi .s
0/Q.ds0js; a/:
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Then, by K � R
n denote some initial compact set of attainable payoff vectors and

consider the large compact valued correspondence V W S � K. LetW W S � K be
any correspondence. By B.W /.s/ denote the set of all payoff vectors of �s.v/ inK,
letting v varying through all integrable selections fromW . Then showing thatB.W /
is a measurable correspondence, and denoting by a�.s/.v/ a Nash equilibrium of
�s.v/, one can define an operator B such that:

B.W /.s/ WD fw 2 K W there is integrable selection v of W

and a measurable Nash equilibrium a�.s/.v/ of �s.v/ such that

for each i 2 N it holds wi D …i.s; a
�.s/.v//.v/g:

It can be shown that B is an increasing operator; hence, starting from some large
initial correspondence V0, one can generate a decreasing sequence of sets .Vt /t
(whose graphs are ordered under set inclusion) with VtC1 D B.Vt /. Then, one can
show using self-generation arguments that there exists the greatest fixed point of B ,
say V �. Obviously, as V is a measurable correspondence, B.V / is a measurable
correspondence. By induction, one can then show that all correspondences Vt are
measurable (as well as nonempty and compact valued). Hence, by the Kuratowski
and Ryll-Nardzewski selection theorem (Theorem 18.13 in Aliprantis and Border
2005), all of these sets admit measurable selections. By definition, B.V �/ D V �;
hence, for each state s 2 S and w 2 B.V �/.s/ � K; there exists an integrable
selection v0� such that w D ….s; a�.s/.v0//.v0/. Repeating this procedure in the
obvious (measurable) way, one can construct an equilibrium strategy of the initial
stochastic game. To summarize, we state the next theorem:

Theorem 3. Suppose that Assumption 2 holds. Then,

(i)
1T

tD1

Bt .V / ¤ ;,

(ii)
1T

tD1

Bt .V / is the greatest fixed point of B ,

(iii)
1T

tD1

Bt .V / D V �,

where V � is the set of all values of subgame perfect behavior strategies.
The details of the argument are developed in Mertens and Parthasarathy (1987),

restated in Mertens and Parthasarathy (2003), and nicely summarized by Mertens
et al. (2015) (pages 397–398). See also Fudenberg and Yamamoto (2011) for
similar concepts used in the study of irreducible stochastic games with imperfect
monitoring, or Hörner et al. (2011) with a specific and intuitive characterization of
equilibria payoffs of irreducible stochastic games, when discount factor tends to 1.
See also Baldauf et al. (2015) for the case of a finite number of states.
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3.3 Extensions and Discussion

The constructions presented in Sects 3.1 and 3.2 offer the tools needed to analyze
appropriate equilibria of repeated, dynamic, or stochastic games. The intuition,
assumptions, and possible extensions require some comments, however.

The method is useful to prove existence of a sequential or subgame perfect
equilibrium in a dynamic or stochastic economy. Further, when applied to macroe-
conomic models, where Euler equations for the agents in the private economy are
available, in other fields like in economics (e.g., industrial organization, political
economy, etc.), the structure of their application can be modified (e.g., see Feng
et al. (2014) for an extensive discussion of alternative choices of state variables). In
all cases, when the method is available, it allows one to characterize the entire set of
equilibrium values, as well as giving a constructive method to compute them.

Specifically, the existence of some fixed point of B is clear from Tarski fixed
point theorem. That is, an increasing self-map on a nonempty complete lattice
has a nonempty complete lattice of fixed points. In the case of strategic dynamic
programming, B is monotone by construction under set inclusion, while the
appropriate nonempty complete lattice is a set of all bounded correspondences
ordered by set inclusion on their graphs (or simply value sets for a repeated game).15

Further, under self-generation, it is only the largest fixed point of this operator that
is of interest. So the real value added of the theorems, when it comes to applications,
is characterization and computation of the greatest fixed point of B . Again, it exists
by Tarski fixed point theorem.

However, to obtain convergence of iterations on B , one needs to have stronger
continuity type conditions. This is easily obtained, if the number of states S (or
Y for a repeated game) is countable, but typically requires some convexification
by sunspots of the equilibrium values, when dealing with uncountably many states.
This is not because of the fixed point argument (which does not rely on convexity);
rather, it is because the weak star limit belongs pointwise only to the convex hull of
the pointwise limits. Next, if the number of states S is uncountable, then one needs
to work with correspondences having measurable selections. Moreover, one needs
to show that B maps into the space of correspondences having some measurable
selection. This can complicate matters a good bit for the case with uncountable
states (e.g, see Balbus and Woźny (2016) for a discussion of this point). Finally,
some Assumptions in 1 for a repeated game or Assumption 2 for a stochastic game
are superfluous if one analyzes particular examples or equilibrium concepts.

As already mentioned, the convexification step is critical in many examples
and applications of strategic dynamic programming. In particular, convexification
is important not only to prove existence in models with uncountably many states
but also to compute the equilibrium set (among other important issues). We
refer the reader to Yamamoto (2010) for an extensive discussion of a role of
public randomization in the strategic dynamic programming method. The paper is

15See Baldauf et al. (2015) for a discussion of this fact.
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important not only for discussing the role of convexification in these methods but
also provides an example with a non-convex set of equilibrium values (where the
result on monotone comparative statics under set inclusion relative to increases in
the discount rate found in the original APS papers does not hold as well).

Next, the characterization of the entire set of (particular) equilibrium values is
important as it allows one to rule out behaviors that are not supported by any
equilibrium strategy. However, in particular games and applications, one has to
construct carefully the greatest fixed point of B that characterizes the set of all
equilibrium values obtained in the public perfect, subgame perfect, or sequential
equilibrium. This requires assumptions on the information structure (for example,
assumptions on the structure of private signals, the observability of chosen actions,
etc.). We shall return to this discussion shortly.

In particular, for the argument to work, and for the definition of operator B
to make sense, one needs to guarantee that for every continuation value v, and
every state s, there exists a Nash equilibrium of one-shot game �s.v/. This can be
done, for example, by using mixed strategies in each period (and hence mapping to
behavior strategies of the extensive form game). Extensive form mixed strategies in
general, when players do possess some private information in sequential or subgame
perfect equilibria, cannot always be characterized in this way (as they do not possess
recursive characterization). To see that, observe that in such equilibria, the strategic
possibilities at every stage of the game is not necessarily common knowledge (as
they can depend arbitrarily on private histories of particular players). This, for
example, is not the case of public perfect equilibria (or sequential equilibrium with
full support assumption as required by Assumption 1 (iii)) or for subgame perfect
equilibria in stochastic games with no observability of players’ past moves.

Another important extension of the methods applied to repeated games with
public monitoring and public perfect equilibria was proposed by Ely et al. (2005).
They analyze the class of repeated games with private information but study only
the so called “belief-free” equilibria. Specifically, they consider a strong notion of
sequential equilibrium, such that the strategy is constant with respect to the beliefs
on others players’ private information. Similarly, as Abreu et al. (1990), they provide
a recursive formulation of all the belief-free equilibrium values of the repeated game
under study and provide its characterizations. Important to mention, general payoff
sets of repeated games with private information lack such recursive characterization
(see Kandori 2002).

It is important to emphasize that the presented method is also very useful
when dealing with nonstationary equilibrium in macroeconomic models, where
an easy extension of the abovementioned procedure allows to obtain comparable
existence results (see Bernheim and Ray (1983) for an early example of this fact
for an economic growth model with altruism and limited commitment). But even in
stationary economies, the equilibria obtained using APS method are only stationary
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as a function of the current state and future continuation value. Put differently,
the equilibrium condition is satisfied for a set or correspondence of values, but
not necessarily its particular selection,16 say fv�g D B.fv�g/. To map it on the
histories of the game and obtain stronger stationarity results, one needs to either
consider (extensive form) correlated equilibria or sunspot equilibria or semi-Markov
equilibria (where the equilibrium strategy depends on both current and the previous
period states). To obtain Markov stationary equilibrium, one needs to either assume
that the number of states and actions is essentially finite or transitions are nonatomic
or concentrate on specific classes of games.

One way of restricting to a class of nonstationary Markov (or conditional
Markov) strategies is possible by a careful redefinition of an operator B to
work in function spaces. Such extensions were applied in the context of various
macroeconomic models in the papers of Cole and Kocherlakota (2001), Doraszelski
and Escobar (2012), or Kitti (2013) for countable number of states and Balbus and
Woźny (2016) for uncountably many states. To see that, let us first redefine operator
B to map the set of bounded measurable functions V (mapping S ! R

N ) the
following way. If W � V , then

Bf .W / WD f.w1;w2; : : : ;wn/ 2 V and

for all s; i we have wi .s/ D …i.s; a
�.s/.v//.vi /; where

v D .v1; v2; : : : ; vn/ 2 W and each vi is an integrable functiong:

Again one can easily prove the existence of and approximate the greatest fixed
point of Bf , say V �f . The difference between B and Bf is that Bf maps between

spaces of functions not spaces of correspondences. The operator Bf is, hence,
not defined pointwise as operator B . This difference implies that the constructed
equilibrium strategy depends on the current state and future continuation value, but
the future continuation value selection is constant among current states. This can be
potentially very useful when concentrating on strategies that have more stationarity
structure, i.e., in this case, they are Markov but not necessarily Markov stationary,
so the construction of the APS value correspondence is generated by sequential or
subgame perfect equilibria with short memory.

To see that formally, observe that from the definition of B and characterization
of V �, we have the following:

.8s 2 S/.8 number w 2 V �.s//.9 measurable function

v0� s.t. w D ….s; a�.s/.v0//.v0//:

16However, Berg and Kitti (2014) show that this characterization is satisfied for (elementary) paths
of action profiles.
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Specifically, observe that continuation function v0 can depend on w and s, and hence
we shall denote it by v0w;s . Now, consider operator Bf and its fixed point V �f . We
have the following property:

.8 function w 2 V �/.9 measurable function v0�f s.t. .8s 2 S/w.s/

D ….s; a�.s/.v0//.v0//:

Hence, the continuation v0 depends on w only, and we can denote it by v0w.
Observe that in both methods, the profile of equilibrium decision rules: a�.s/.v0/

is generalized Markov, as it is enough to know state s and continuation function
v0 to make an optimal choice. In some cases in macroeconomic applications,
this generalized Markov equilibrium can be defined using envelope theorems of
continuation values (not the value function itself).17 In construction ofBf , however,
the dependence on the current state is direct: s ! a�.s/.v0w/. So we can easily
verify properties of the generalized Markov policy, such as whether it is continuous
or monotone in s. In the definition of operator B , however, one has the following:
s ! a�.s/.v0w;s/. So even if the Nash equilibrium is continuous in both variables,
(generally) there is no way to control continuity of s ! v0w;s . The best example
of such discontinuous continuation selection in macroeconomics application of
strategic dynamic programming is, perhaps, the time-consistency model (see Caplin
and Leahy 2006) discussed later in the application section. These technical issues
are also important when developing a computational technique that uses specific
properties of (the profile) the equilibrium decision rules with respect to s (important
especially when the state space is uncountable).

4 Numerical Implementations

4.1 Set Approximation Techniques

Judd et al. (2003) propose a set approximation techniques to compute the greatest
fixed point of operator B of the APS paper. In order to accomplish this task, they
introduce public randomization that technically convexifies each iteration on the
operator B , which allows them to select and coordinate on one of the future values
that should be played. This enhances the computational procedure substantially.

More specifically, they propose to compute the inner V I and outer V O approx-
imation of V �, where V I � V � � V O . Both approximations use a particular
approximation of values of operator B , i.e., an inner approximation BI and an outer
approximation BO that are both monotone. Further, for any set W , the approximate
operators preserve the order under set inclusion, i.e., BI .W / � B.W / � BO.W /.

17See Kydland and Prescott (1980), Phelan and Stacchetti (2001), Feng et al. (2014), and Feng
(2015).
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Having such lower and upper approximating sets, Judd et al. (2003) are able to
compute the error bounds (and a stopping criterion) using the Hausdorff distance on
bounded sets in R

n, i.e.:

d.W O;W I / D max
wO2W O

min
wI2W I

jjwI � wO jj:

Their method is particularly useful as they work with convex sets at every iteration
and map them on R

m by using its m extremal points. That is, if one takes m points,
say Z � W � R

n; define W I D coZ. Next, for the outer approximation, take m
points for Z on the boundary of a convex set W , and let W O D

Tm
lD1fz 2 R

n W

gl � z � gl � zlg for a vector ofm subgradients oriented such that .zl �w/ �gl > 0. To
start iterating toward the inner approximation, one needs to find some equilibrium
values from V �, while to start iterating toward the outer, one needs to start from
the largest possible set of values, say given by minimal and maximal bounds of the
payoff vector.

Importantly, recent work by Abreu and Sannikov (2014) provides an interesting
technique of limiting the number of extreme points of V � for the finite number
of action repeated games with perfect observability. In principle, this procedure
could easily be incorporated in the methods of Judd et al. (2003). Further, an
alternative procedure to approximate V � was proposed by Chang (1998), who uses
discretization instead of extremal points of the convex set. One final alternative
is given by Cronshaw (1997), who proposes a Newton method for equilibrium
value set approximation, where the mapping of sets W and B.W / on R

m is done
by computing the maximal weighted values of the players’ payoffs (for given
weights).18

Finally, and more recently, Berg and Kitti (2014) developed a method for comput-
ing the subgame perfect equilibrium value of a game with perfect monitoring using
fractal geometry. Specifically, their method is interesting as it allows computation of
the equilibrium value set with no public randomization, sunspot, or convexification.
To obtain their result, they characterize the set V � using (elementary) subpaths, i.e.,
(finite or infinite) paths of repeated action profiles, and compute them using the
Hausdorff distance.19

4.2 Correspondence Approximation Techniques

The method proposed by Judd et al. (2003) was generalized to dynamic games (with
endogenous and exogenous states) by Judd et al. (2015). As already mentioned, an
appropriate version of the strategic dynamic programming method uses correspon-

18Both of these early proposals suffer from some well-known issues, including curse of dimen-
sionality or lack of convergence.
19See Rockafellar and Wets (2009), chapters 4 and 5, for theory of approximating sets and
correspondences.
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dences V � defined on the state space to handle equilibrium values. Then authors
propose methods to compute inner and outer (pointwise) approximations of V �,
where for given state s, V �.s/ is approximated using original Judd et al. (2003)
method. In order to convexify the values of V �, the authors introduce sunspots.

Further, Sleet and Yeltekin (2016) consider a class of games with a finite
number of exogenous states S and a compact set of endogenous states K. In their
case, correspondence V � maps on S � K. Again the authors introduce sunspots
to convexify the values of V �; this, however, does not guarantee that V �.s; �/
is convex. Still the authors approximate correspondences by using step (convex-
valued) correspondences applying constructions of Beer (1980).

Similar methods are used by Feng et al. (2014) to study sequential equilibria of
dynamic economies. Here, the focus is often also on equilibrium policy functions (as
opposed to value functions). In either case (of approximating values or policies), the
authors concentrate on outer approximation only and discretize both the arguments
and the spaces of values. Interestingly, Feng et al. (2014), based on Santos and
Miao (2005), propose a numerical technique to simulate the moments of invariant
distributions resulting from the set of sequential equilibria. In particular, after
approximating the greatest fixed point of B , they convexify the image of B.V / and
approximate some invariant measure on A � S by selecting some policy functions
from the approximated equilibrium value set V �.

Finally, Balbus and Woźny (2016) propose a step correspondence approximation
method to approximate function sets without the use of convexification for a class
of short-memory equilibria. See also Kitti (2016) for a fractal geometry argument
for computing (pointwise) equilibria in stochastic games without convexification.

5 Macroeconomic Applications of Strategic Dynamic
Programming

In this section, we apply strategic dynamic programming methods to the canonical
examples discussed in Sect. 2.

5.1 Hyperbolic Discounting

As already mentioned in Sect. 2.1, one important application of strategic dynamic
programming methods that is particularly useful in macroeconomics is finding
the time-consistent solutions to the quasi-hyperbolic discounting optimization
problem.20 We now present this application in more detail and provide sufficient
conditions to construct all the consistent plans for this class of models.

Our environment is a version of a ˇ � ı quasi-hyperbolic discounting model that
has been studied extensively in the literature. We envision an agent to be a sequence

20See, e.g., Harris and Laibson (2001) or Balbus et al. (2015d).
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of selves indexed in discrete time t 2 N[f0g. A “current self” or “self t” enters the
period in given state st 2 S , where for some NS 2 RC, S WD Œ0; NS�, and chooses an
action denoted by ct 2 Œ0; st �. This choice determines a transition to the next period
state stC1 given by stC1 D f .st�ct /. The period utility function for the consumer is
given by (bounded) utility function u that satisfies standard conditions. The discount
factor from today (t ) to tomorrow (t C 1) is ˇı; thereafter, it equals ı between any
two future dates t C 	 and t C 	 C 1 for 	 > 0. Thus, preferences (discount factor)
depend on 	 .

Let ht D .s0; s1; : : : ; st�1; st / 2 Ht be the history of states realized up to period
t , with h0 D ;. We can now define preferences and a subgame perfect equilibrium
for the quasi-hyperbolic consumer.

Definition 2. The sequence of functions � WD .�t /t2N is subgame perfect, if there
is a sequence .vt /t2N, such that for each t 2 N and s 2 S

�t .h
t / 2 arg max

c2Œ0;st �

˚
.1 � ı/u.c/C ˇıvtC1..h

t ; f .st � c///
�
;

and

vt .h
t / D .1 � ı/u.�t .h

t //C ıvtC1..h
t ; f .st � �t .h

t ////:

Here, for uniformly bounded vt , we have the following payoffs:

vt .h
t / D

1X

	D1

ı	�1u.�tC	 .h
tC	 //: (2)

Intuitively, current self best responds to the value vtC1 discounted by ˇı and
that continuation value vtC1 summarizes payoffs from future “selfs” strategies
.�	 /

1
	DtC1. Such a best response is then used to update vtC1 discounted by ı to

vt .
In order to construct a subset of SPNE, we proceed with the following construc-

tion. Put:

…
.s; c/.v/ WD .1 � ı/u.c/C 
v.f .s � c//

for 
 2 Œ0; 1�. The operator B defined for a correspondence W W S � R is given
by:

B.W /.s/ WD fv 2 R W v D …ı.s; a.s//.w/; for some a;w

s.t. a 2 arg max
c2Œ0;s�

…ˇı.s; c/.w/; and w 2 W .s/

�

:
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Based on the operator B , one can prove the existence of a subgame perfect equilib-
rium in this intrapersonal game and also compute the equilibrium correspondence.
We should note that this basic approach can be generalized to include nonstationary
transitions fftg or credit constraints (see, e.g., Bernheim et al. (2015), who compute
the greatest fixed point of operator B for a specific example of CIES utility
function). Also, Chade et al. (2008) pursue a similar approach for a version of this
particular game, where at each period n, consumers play a strategic form game. In
this case, the operator B must be adopted to require that a is not the optimal choice,
but rather a Nash equilibrium of the stage game.

Finally, Balbus and Woźny (2016) show how to generalize this method to include
a stochastic transition and concentrate on short-memory (Markov) equilibria (or
Markov perfect Nash equilibria, MPNE henceforth). To illustrate the approach to
short memory discussed in Sect. 3.3, we present an application of the strategic
dynamic programming method for a class of strategies where each �t depends on
st only, but in the context of a version of the game with stochastic transitions. Let
stC1 � Q.�jst � ct /, and CM be a set of nondecreasing, Lipschitz continuous (with
modulus 1) functions h W S ! S , such that 8s 2 S h.s/ 2 Œ0; s�. Clearly, as CM is
equicontinuous and closed, it is a nonempty, convex, and compact set when endowed
with the topology of uniform convergence. Then the discounted sum in (2) is
evaluated under E�

s that is an expectation relative to the unique probability measure
(existence and uniqueness of such a measure follows from standard Ionescu-Tulcea
theorem) on histories ht determined by initial state s0 2 S and a strategy profile � .

For given NS 2 RC, S D Œ0; NS�, define a function space:

V WD fv W S ! RC W v is nondecreasing and u.s.c. bounded by u.0/ and u. NS/g:

And let:

V � D fv 2 V W 9MPNE .�t /t2N;

where each �t 2 CM; s.t v.s/ D U..�t /t2N/.s/8s 2 Sg:

In such a case, the stage payoff is

…
.s; c/.v/ WD .1 � ı/u.c/C 

Z

S

v.s0/Q.ds0js � c/;

and operator Bf defined on 2V is given by:

Bf .W / WD
[

w2W

�

v 2 V W .8s 2 S/ v.s/ D …ı.s; a.s//.w/; for some a W S ! S;

s.t. a.s/ 2 arg max
c2Œ0;s�

…ˇı.s; c/.w/ for all s 2 S

�

:
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Balbus and Woźny (2016) prove that the greatest fixed point of Bf characterizes
the set of all MPNE values in V generated with short memory, and they also discuss
how to compute the set of all such equilibrium values.

5.2 Optimal Growth Without Commitment

Similar methods for (nonstationary) Markov perfect equilibrium can be developed
for a class of optimal growth models without commitment between consecutive
generations. As discussed in Sect. 2.2, this is often formalized using a class of
paternalistic bequest games. We now present a detailed application of this class of
models.

For the sake of illustration, consider a simple model of stochastic growth without
commitment where there is an infinite sequence of generations labeled by t 2 N: In
the economy, there is one commodity which may be either consumed or invested.
Every generation lives one period and derives utility u from its own consumption
and utility v from consumption of its immediate descendant. Generation t receives
the endowment st 2 S and chooses consumption level ct 2 A.st / WD Œ0; st �: The
investment of yt WD st � ct determines the endowment of its successor according to
some stochastic transition probability Qt from S to S which depends on yt .

Let P be the set of (bounded by a common bound) Borel measurable functions
p W S 7! RC. A strategy for generation t is a function �t 2 †, where † is a set
of Borel measurable functions such that �.s/ 2 A.s/ for each s 2 S: The expected
utility of generation t is defined as follows:

u.c/C
Z

S

v.�tC1.s
0//Q.ds0js � c; s/; (3)

where u W S 7! RC is a bounded function, whereas v W S 7! RC is bounded and
Borel measurable. We endow P with its weak star topology and order 2P (the set of
all subsets of P ) by set inclusion order.

Then, in section 5 of their paper, Balbus et al. (2012) define an operator Bf on
2P :

Bf .W / D
[

p2W

n
p0 2 P W p0.s/ D v.a�p.s//; where

a�p.s/ 2 arg max
c2A.s/

fu.c/C
Z

S

p.s0/Q.ds0js � c/g
o
:

Clearly, each selection of values fv�t g from the greatest fixed point V � D Bf .V �/

generates a MPNE strategy f��t g, where ��t .s/ 2 arg maxfu.c/C
R
S
v�t .s

0/Q.ds0js�

c/g. Hence, using operator Bf , not only is the existence of MPNE established,
but also a direct computational procedure can be used to compute the entire set
of sustainable MPNE values. Here we note that a similar technique was used by
Bernheim and Ray (1983) to study MPNE of a nonstationary bequest game.
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Another direct application of the strategic dynamic programming presented
above was proposed by Atkeson (1991) to study the problem of international
lending with moral hazard and risk of repudiation. Specifically, using the currently
available income (net of repayment) as a state variable and correspondences of
possible continuation utilities, he characterizes the set of Pareto optimal allocations
constrained to satisfy individual rationality and incentive compatibility (including
no repudiation constraint), using the techniques advocated in Sect. 3.1.

5.3 Optimal Fiscal Policy Without Commitment

As already introduced in Sect. 2.3, in their seminal paper, Kydland and Prescott
(1980) have proposed a recursive method to solve for the optimal tax policy of the
dynamic economy. Their approach resembles APS method for dynamic games, but
is different as it incorporates dual variables as states of the dynamic program. Such
a state variable can be constructed because of the dynamic Stackelberg structure of
the game. That is, equilibrium in the private economy is constructed first, and these
agents are “small” players in the game, and take as given sequences of government
tax policies, and simply optimize. As these problems are convex, standard Euler
equations govern the dynamic equilibrium in this economy. Then, in the approach
of Kydland-Prescott, in the second stage of the game, successive generations of
governments design time-consistent policies by forcing successive generations of
governments to condition optimal choices on the lagged values of Lagrange/KKT
multipliers.

To illustrate how this approach works, consider an infinite horizon economy with
a representative consumer solving:

max
fat g

1X

tD0

ıtu.ct ; nt ; gt /;

where at D .ct ; nt ; ktC1/ is choice of consumption, labor, and next period capital,
subject to the budget constraints ktC1 C ct � kt C .1 � �t /rtkt C .1 � 	t /wt nt
and feasibility constraint at � 0, nt � 1. Here, �t and 	t are the government
tax rates and gt their spendings. Formulating Lagrangian and writing the first-
order conditions, together with standard firm’s profit maximization conditions,
one obtains uc.ct ; nt ; gt / D �t , un.ct ; nt ; gt / D ��t .1 � 	t /wt and ıŒ1 C .1 �

�tC1/fk.ktC1; ntC1/��tC1 D �t .21

Next the government solves:

max
f�t g

1X

tD0

ıtu.ct ; nt ; gt /;

21Phelan and Stacchetti (2001) prove that a sequential equilibrium exists in this economy for each
feasible sequence of tax rates and expenditures.
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where �t D .gt ; 	t ; �t / under the above-given first-order conditions of the consumer
and budget balance constraint: gt � �tfk.kt ; nt /ktC	tfn.kt ; nt /nt . It is well known
that the solution to this problem (on the natural state space kt ) is time inconsistent.
That is, the solution of the problem, e.g., �tCs chosen at time t , is different from the
solution of the same problem at time t C s. Hence, standard dynamic programming
techniques cannot be applied.

Kydland and Prescott (1980) then propose, however, a new method to make
the problem recursive by adding a pseudo-state variable �t�1. Relative to this new
state space, one can then develop a recursive optimization approach to the time-
consistency problem that resembles the strategic dynamic programming methods of
APS. To see this, omitting the time subscripts, Kydland and Prescott (1980) rewrite
the problem of the government recursively by

v.k; ��1/ D max
a;�;�
fu.c; n; g/C ıv.k0; �/g

under the budget balance, the first-order conditions of the consumer, and requiring
that .k0�; ��/ 2 V �. Here V � is the set of such fkt ; �tg, for which there exists an
equilibrium policy fas; �s; �sg1sDt consistent with or supportable by these choices.
This formalizes the constraint needed to impose time-consistent solutions on
government choices. To characterize set V �, Kydland and Prescott (1980) use the
following APS type operator:

B.W / D f.k; ��1/ 2 Œ0; kmax� � Œ�min; �max� W there exists

.a; �; �/satisfying budget balance constraints and consumer FOCs, with

.k0; �/ 2 W g:

They show that V � is the largest fixed point of B and this way characterize the set
of all optimal equilibrium policies. Such are time consistent on the expanded state
space .k; ��1/, but not on the natural state space k.

This approach was later extended and formalized by Phelan and Stacchetti
(2001). They study the Ramsey optimal taxation problem in the symmetric sequen-
tial equilibrium of the underlying economy. They consider a dynamic game and
also use Lagrange multipliers to characterize the continuation values. Moreover,
instead of focusing on optimal Ramsey policies, they study symmetric sequential
equilibrium of the economy and hence incorporate some private state variables.
Specifically, in the direct extension of the strategic dynamic programming technique
with private states, one should consider a distribution of private states (say capital)
and (for each state) a possible continuation value function. But as all the households
are ex ante identical, and sharing the same belief about the future continuations,
they have the same functions characterizing the first-order conditions, although
evaluated at different points, in fact only at the values of the Lagrange multipliers
that keep track of the sequential equilibrium dynamics. In order to characterize the
equilibrium conditions by FOCs, Phelan and Stacchetti (2001) add a public sunspot
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s 2 Œ0; 1� that allows to convexify the equilibrium set under study. The operator B
in their paper is then defined as follows:

B.W /.k/ D cof.�; v/ W there exists .a; �0; v0/ satisfying consumer equilibrium

FOCs, with .�0; v0/ 2 W .k/ and the government deviation

is punished by the minimax (worst) equilibrium valueg:

Here, � is the after tax marginal utility of consumption and v is household
equilibrium value. Notice that, as opposed to the methods in Kydland and Prescott
(1980), these authors integrate the household and government problem into one
operator equation. Phelan and Stacchetti (2001) finish with the characterization of
the best steady states of the symmetric sequential equilibrium.

Finally, this approach was more recently extended by Feng et al. (2014) (and
Santos and Miao (2005) earlier), as a generalization of the strategic dynamic
programming method to characterize all sequential equilibria of the more general
dynamic stochastic general equilibrium economy. They follow the Phelan and
Stacchetti (2001) approach and map the sequential equilibrium values to the space
of continuation Lagrange multipliers values. Specifically, they consider a general
economy with many agents in discrete time, with endogenous choices a 2 A and
countably many exogenous shocks s 2 S , drawn each period from distribution
Q.�js/. Denoting the vector of endogenous variables by y, they assume the model
dynamics is given by a condition .a0; a; y; s/ D 0 specifying the budget and
technological constraints. Next, denoting by � 2 ƒ the marginal values of all the
investments of all the agents, they consider a function � D h.a; y; s/. Finally, the
necessary and sufficient first-order conditions for the household problems are given
by

ˆ.a; y; s;
X

s02S

�0.s0/Q.ds0js// D 0;

where �0 is the next period continuation marginal value as a function on S . Next,
they characterize the correspondence V � mapping A � S to ƒ, as the greatest fixed
point of the correspondence-based operator:

B.W /.a; s/ WD f� W � D h.a; y; s/ for some y; a0; �0 with

ˆ.a; y; s;
X

s02S

�0.s0/Q.ds0js// D 0; .a0; a; y; s/ D 0

and �0.s0/ 2 W .a0; s0/g:

To characterize V �; they operate on the set of all upper hemi-continuous correspon-
dences and under standard continuity conditions show thatB mapsW with compact
graph into correspondence B.W / with compact graph. Using the intersection
theorem, along with a standard measurable selection theorem, they select a policy
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function a0 as function of .a; s; �/ (hence, Markovian on the expanded state space
including Lagrange multipliers �/.22

In order to compute the equilibrium correspondence, they use Beer (1980) algo-
rithm of approximating correspondences by step correspondences on the discretized
domain and co-domain grids as already discussed. Feng et al. (2014) conclude
their paper with applications of the above framework to nonoptimal growth models
with taxes, monetary economies, or asset prices with incomplete markets. See also
Dominguez and Feng (2016b) and Feng (2015) for a recent application of the Feng
et al. (2014) strategic dynamic programing method to a large class of optimal
Ramsey taxation problems with and without constitutional constraints. In these
papers, the authors are able to quantify the value of commitment technologies in
optimal taxation problems (e.g., constitutional constraints) as opposed to imposing
simply time-consistent solutions.

Finally, it is worth mentioning that the Feng et al. (2014) method is also useful
to a class of OLG economies, hence with short-lived agents. See also Sleet (1998)
(chapter 3) for such a model.

5.4 Optimal Monetary Policy Without Commitment

We should briefly mention that an extension of the Kydland and Prescott (1980)
approach in the study of policy games was proposed by Sleet (2001). He ana-
lyzes a game between the private economy and the government or central bank
possessing some private information. Instead of analyzing optimal tax policies like
Kydland and Prescott (1980), he concentrates on optimal, credible, and incentive-
compatible monetary policies. Technically, similar to Kydland and Prescott (1980),
he introduces Lagrange multipliers that, apart from payoffs as state variables, allow
to characterize the equilibrium set. He then applies the computational techniques of
Judd et al. (2003) to compute dynamic equilibrium and then recovers the equilibrium
allocation and prices. This extension of the methods makes it possible to incorporate
private signals, as was later developed by Sleet and Yeltekin (2007).

We should also mention applications of strategic dynamic programming without
states to optimal sustainable monetary policy due to Chang (1998) or Athey et al.
(2005) in their study of optimal discretion of the monetary policy in a more specific
model of monetary policy.

22It bears mentioning that in Phelan and Stacchetti (2001) and Feng et al. (2014) the authors
actually used envelope theorems essentially as the new state variables. But, of course, assuming a
dual representation of the sequential primal problem, this will then be summarized essentially by
the KKT/Lagrange multipliers.
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6 Alternative Techniques

We conclude with a few remarks concerning alternative methods to strategic
dynamic programming for constructing dynamic equilibria in the macroeconomic
models with strategically interacting agents. In particular, we focus on two widely
used approaches that have been proposed in the literature, each providing significant
advantages relative to strategic dynamic programming per characterizing some
dynamic equilibrium (when applicable).

6.1 Incentive-Constrained Dynamic Programming

The first alternative approach to strategic dynamic programming methods are
incentive-constrained dynamic programming methods (and their associated dual
methods, often referred to in the literature as “recursive saddle point” or “recursive
dual” methods). These methods develop recursive representations of sequential
incentive-constrained optimization problems that are used to represent dynamic
equilibria in macroeconomic models that are also dynamic/stochastic games. The
methods are in the spirit of the recursive optimization approaches we discussed
in Sect. 2 (e.g., the recursive optimization approaches to models with dynamically
inconsistent payoffs or limited commitment such as models that are studied as inter-
personal games between successive generations as in models with quasi-hyperbolic
agents or growth models with limited commitment). The seminal early work on
these methods is found in Rustichini (1998a,b) and Marcet and Marimon (1998), but
a wealth of recent work has extended many of their ideas. These methods are used
in models where agents face sequential optimization problems, but have incentives
to change future optimal continuation plans when future states actually arise.
Therefore, incentive-constrained programming methods add further constraints on
sequential optimal decisions that agents face in the form of period-by-period
dynamic incentive and participation constraints. These constraints are imposed to
guarantee optimal decisions are time consistent (or, in some cases, subgame perfect)
along equilibrium paths and therefore further restrict sequential optimal choices
of economic agents. Then, incentive-constrained dynamic programming methods
seek to find recursive primal or dual representations of these sequential incentive-
constrained optimization problems. Such recursive representations help sharpen the
characterization of dynamic equilibria strategies/policies.

Many applications of these incentive-constrained programming methods have
arisen in the macroeconomic literature. For example, in dynamic asset pricing
models with limited commitment and strategic default, where incentive constraints
are used to model endogenous borrowing constraints that restrict current asset-
consumption choices to be consistent with households not defaulting on outstanding
debt obligations in any state the continuation periods (e.g., see Alvarez and Jermann
2000; Hellwig and Lorenzoni 2009; Kehoe and Levine 1993, 2001). Such solvency
constraints force households to make current decisions that are consistent with them
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being able to credibly commit to future repayment schemes, and not to default on
their debt obligations, making repayment schemes self-enforcing and sustainable.
Similar recursive optimization approaches to imposing dynamic incentives for
credible commitment to future actions arise in models of sustainable plans for
the government in models in dynamic optimal taxation. Such problems have been
studied extensively in the literature, including models of complete information and
incomplete information (e.g., see the work of Chari et al. 1991; Chari and Kehoe
1990; Farhi et al. 2012; Sleet and Yeltekin 2006a,b).

Unfortunately, the technical limitations of these methods are substantial. In
particular, the presence of dynamic incentive constraints greatly complicates the
analysis of the resulting incentive-constrained sequential optimization problem (and
hence recursive representation of this sequential incentive-constrained problem).
For example, even in models where the primitive data under perfect commitment
imply the sequential optimization problem generates value functions that are
concave over initial states in models with limited commitment and state variables
(e.g., capital stocks, asset holdings, etc.), the constraint set in such problems is
no longer convex-valued in states. Therefore, as value function in the sequential
problem ends up generally not being concave, it is not in general differentiable,
and so developing useful recursive primal or recursive dual representations of
the optimal incentive-constrained solutions (e.g., Euler inequalities) is challenging
(e.g., see Rustichini (1998a) and Messner et al. (2014) for a discussion). That is,
given this fact, an immediate complication for characterizing incentive-constrained
solutions is that value functions associated with recursive reformulations of these
problems are generally not differentiable (e.g., see Rincón-Zapatero and Santos
(2009) and Morand et al. (2015) for discussion). This implies that standard (smooth)
Euler inequalities, which are always useful for characterizing optimal incentive-
constrained solutions, fail to exist. Further, as the recursive primal/dual is not
concave, even if necessary first-order conditions can be constructed, they are not
sufficient. These facts, together, greatly complicate the development of rigorous
recursive primal methods for construction and characterization of optimal incentive-
constrained sequential solutions (even if conditions for the existence of a value
function in the recursive primal/dual exist). This also implies that even when such
sequential problems can be recursively formulated, they cannot be conjugated with
saddle points using any known recursive dual approach. See Messner et al. (2012,
2014) for a discussion.23

Now, when trying to construct recursive representations of the sequential
incentive-constrained primal problem, new problems emerge. For example, these
problems cannot be solved generally by standard dynamic programming type

23It is worth mentioning that Messner et al. (2012, 2014) often do not have sufficient conditions on
primitives to guarantee that dynamic games studied using their recursive dual approaches have
recursive saddle point solutions for models with state variables. Most interesting applications
of game theory in macroeconomics involve states variable (i.e., they are dynamic or stochastic
games).
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arguments (e.g., standard methods for solving Bellman equations in dynamic
programming). In particular, the resulting operator equation that must be solved
is not, in general, a contraction (e.g., see Rustichini 1998a). Rustichini (1998a)
shows that although the standard dynamic programming tools do not apply to
sequential optimization problems with dynamic incentive constraints, one can
develop a monotone iterative method based on a nonlinear operator (that has the
spirit of a Bellman operator) that computes recursive solutions to the sequential
incentive-constrained optimization problems. When sufficient conditions for a fixed
point for the resulting functional equation in the recursive primal problem can
be given, the recursive primal approach provides an alternative to APS/strategic
dynamic programming methods as some dynamic equilibrium value in the model
can be computed if the Markovian policies can be computed and characterized.
Unfortunately, without a dual method for its implementation, computing the set of
incentive-constrained optimal solutions that achieve this value (i.e., in these models,
dynamic equilibria) is in general very difficult.

One other technical limitation of this method relative to strategic dynamic
programming is often the punishment scheme used to sustain dynamic equilibria
in general is ad hoc. That is, in strategic dynamic programming/APS methods, the
punishment schemes used to construct sequential/subgame values are endogenous;
in the standard version of an incentive-constrained dynamic programming problem,
the punishment schemes are exogenous.

The primal formulation of incentive-constrained dynamic programming has
been applied to many important macroeconomic models. In his original paper,
Rustichini (1998a) shows how by adding period-by-period incentive constraints to
the relevant decision-makers’ problems in some important macroeconomic models
with limited commitment incentive-constrained dynamic programming can be used
to prove the existence of time-consistent or sustainable optimal policies. If the
question is the existence of dynamic equilibria in such models, the primal versions
of these recursive primal methods are very powerful. The problem with these
methods is that it is challenging to compute the incentive-constrained optimal
solutions themselves. Two interesting applications he makes in his paper are to
optimal Ramsey taxation problems under limited commitment and models of
economic growth without commitment. Since the publication of his paper, other
applications of these methods have arisen. For example, they have been applied to
studying optimal solutions to household’s problem in dynamic asset accumulation
models with limited commitment, a government optimal taxation problem with
time inconsistent preferences, sustaining sovereign debt in models of international
finance, and contract enforcement problems in models with human capital. See, for
example, Koeppl (2007), Durdu et al. (2013), and Krebs et al. (2015), among many
others, for a discussion.

To address the question of the computation of incentive-constrained optimal
solutions, an extensive new literature has arisen. This recent work was motivated by
the original paper of Kydland and Prescott (1980), as well as Marcet and Marimon
(1998), where “dual variables” were used as “pseudo-state” variables to construct
time-consistent optimal solutions. Indeed, in these two papers, the authors show
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how to apply recursive dual approaches to a plethora of dynamic macroeconomic
and dynamic contracting problems. In the original paper by Kydland and Prescott
(1980), a recursive method for constructing generalized Markov equilibria was
proposed where by adding the lagged values of Karush-Kuhn-Tucker multipliers
to the set of state variables to optimal taxation rules, which forced the resulting
government policymaker’s taxation policies to respect a “backward-looking” con-
straint, would in turn force the resulting optimal solution to the time-inconsistent
Euler equations (under the additional implied constraints) to be time consistent. See
also Feng et al. (2014) for a significant extension of this method.

In the important paper by Marcet and Marimon (1998), the authors extend the
ideas of Kydland and Prescott (1980) to the setting of a recursive dual optimization
method, where the restrictions implied in the Kydland-Prescott method were
explored more systematically. In the approach of Marcet and Marimon (1998),
this restriction was embedded more formally into an extended dual recursive
optimization approach, where KKT multipliers are added as state variables, and
where in principle sufficient conditions can be developed such that this dual method
will deliver incentive-constrained solutions to the primal recursive optimization
methods ala Rustichini (1998a). The success of this dual approach critically relies on
the existence of a recursive representation of saddle points, and in dynamic models
where their dual recursive saddle point methods remain strictly concave, it can be
proven that the methods of Marcet and Marimon (1998) compute primal incentive-
constrained optimal solutions. The problem with this method is that in very simple
concave problems, serious issues with duality can arise (e.g., see Cole and Kubler
(2012) and Messner and Pavoni (2016) for discussion). The first problem is that in
simple dynamic contracting problems, dual solutions can fail to be primal feasible
(e.g., see the example in Messner and Pavoni 2016). In some cases, this issue can
be resolved by extending the recursive saddle point method to weakly concave
settings by introducing lotteries into the framework. In particular, see Cole and
Kubler (2012). So even when recursive saddle points exist, some technical issues
with the method can arise. Very importantly, Rustichini (1998b) shows even in
concave settings, the dual variables/KKT multipliers can be poorly behaved from
a duality perspective (see also Le Van and Saglam (2004) and Rincón-Zapatero and
Santos (2009) for details).

In a series of recent papers by Messner et al. (2012, 2014), the authors further
develop this recursive dual method. In these papers, they develop sufficient condi-
tions for the equivalence of sequential primal and recursive dual formulations. For
example, similar technical issues arise for recursive dual methods per existence of
value functions that satisfy the functional equation that must be solved to represent
the dual sequential incentive-constrained programming problem with a recursive
dual (e.g., see Messner et al. 2014). Relative to the question of the existence of a
recursive dual version of the recursive primal problem, Messner et al. (2014) provide
the most general conditions under which a recursive dual formulation exists for a
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large class of dynamic models with incentive constraints.24 In this paper, also many
important questions concerning the equivalence of recursive primal and recursive
dual solutions are addressed, as well as the question of sequential and recursive dual
equivalence. In Messner et al. (2012), for example, the authors provide equivalence
in models without backward-looking constraints (e.g., constraints generated by
state variables such as capital in time-consistent optimal taxation problems á
la Kydland and Prescott 1980) and many models with linear forward-looking
incentive constraints (e.g., models with incentive constraints, models with limited
commitment, etc.). In Messner et al. (2014), they give new sufficient conditions
to extend these results to settings with backward-looking states/constraints, as
well as models with general forward-looking constraints (including models with
nonseparabilities across states). In this second paper, they also give new conditions
for the existence of recursive dual value functions using contraction mapping
arguments (in the Thompson metric). This series of papers represents a significant
advancement of the recursive dual approach; yet, many of the results in these papers
still critically hinge upon the existence of recursive saddle point solutions, and
conditions on primitives of the model are not provided for these critical hypotheses.
But critically, in this recursive dual reformulations, the properties of Lagrangians
can be problematic (e.g., see Rustichini 1998b).

6.2 Generalized Euler Equation Methods

A second class of methods that have found use to construct Markov equilibrium
in macroeconomic models that are dynamic games are generalized Euler equation
methods. These methods were pioneered in the important papers by Harris and
Laibson (2001) and Krusell et al. (2002), but have subsequently been used in
a number of other recent papers. In these methods, one develops a so-called
generalized Euler equation that is derived from the local first- and second-order
properties relative to the theory of derivatives of local functions of bounded variation
of an equilibrium value function (or value functions) that govern a recursive
representation of agents’ sequential optimization problem. Then, from these local
representations of the value function, one can construct a generalized first-order
representation of any Markovian equilibrium (i.e., a generalized Euler equation,
which is a natural extension of a standard Euler) using this more general language
of nonsmooth analysis. From this recursive representation of the agents’ sequential
optimization problem, plus this related generalized Euler equation, one can then
construct an approximate solution to the actual pair of functional equations that are
used to characterize a Markov perfect equilibrium, and Markov perfect equilibrium
values and pure strategies can then be computed. The original method based on the

24For example, it is not a contraction in a the “sup” or “weighted sup” metric. It is a contraction (or
a local contraction) under some reasonable conditions in the Thompson metric. See Messner et al.
(2014) for details.
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theory of local functions of bounded variation was proposed in Harris and Laibson
(2001), and this method remains the most general, but some authors have assumed
the Markovian equilibrium being computed is continuously differentiable, which
greatly sharpens the generalized Euler equation method.25

These methods have applied in a large number of papers in the literature.
Relative to the models discussed in Sect. 2, Harris and Laibson (2001), Krusell et al.
(2002), and Maliar and Maliar (2005) (among many others) have used generalized
Euler equation methods to solve dynamic general equilibrium models with a
representative quasi-hyperbolic consumers. In Maliar and Maliar (2006b), a version
of the method is applied to dynamic economies with heterogeneous agents, each
of which has quasi-hyperbolic preferences. In Maliar and Maliar (2006a, 2016),
some important issues with the implementation of generalized Euler equations are
discussed (in particular, they show that there is a continuum of smooth solutions that
arise using these methods for models with quasi-hyperbolic consumers. In Maliar
and Maliar (2016), the authors propose an interesting resolution to this problem by
using the turnpike properties of the dynamic models to pin down the set of dynamic
equilibria being computed.

They have also been applied in the optimal taxation literature.26 For example,
in Klein et al. (2008), the authors study a similar problem to the optimal time-
consistent taxation problem of Kydland and Prescott (1980) and Phelan and
Stacchetti (2001). In their paper, they assume that a differentiable Markov perfect
equilibrium exists, and then proceed to characterize and compute Markov perfect
stationary equilibria using a generalized Euler equation method in the spirit of
Harris and Laibson (2001). Assuming that such smooth Markov perfect equilibria
exist, their characterization of dynamic equilibria is much sharper than those
obtained using the calculus of functions of bounded variation. The methods also
provide a much sharper characterization of dynamic equilibrium than obtained
using strategic dynamic programming. In particular, Markov equilibrium strategies
can be computed and characterized directly. They find that only taxation method
available to the Markovian government is capital income taxation. This appears
in contrast to the findings about optimal time-consistent policies using strategic
dynamic programming methods in Phelan and Stacchetti (2001), as well as the
findings in Klein and Ríos-Rull (2003). In Klein et al. (2005), the results are
extended to two country models with endogenous labor supply and capital mobility.

There are numerous problems with this approach as it has been applied in the
current literature. First and foremost, relative to the work assuming that the Markov
perfect equilibrium is smooth, this assumption seems exceedingly strong as in very

25By “most general”, we mean has the weakest assumptions on the assumed structure of Markov
perfect stationary equilibria. That is, in other implementations of the generalized Euler equation
method, authors often assume smooth Markov perfect stationary equilibria exist. In none of these
cases do the authors actually appear to prove the existence of Markov perfect stationary equilibria
within the class postulated.
26See for example Klein and Ríos-Rull (2003) and Klein et al. (2008).
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few models of dynamic games in the literature, when Markov equilibria are known
to exist, they are smooth. That is, conditions on the primitives of these games that
guarantee such smooth Markov perfect equilibria exist are never verified. Further,
even relative to applications of these methods using local results for functions of
bounded variation, the problem is, although the method can solve the resulting
generalized Euler equation, that solution cannot be tied to any particular value
function in the actual game that generates this solution as satisfying the sufficient
condition for a best reply map in the actual game. So it is not clear how to relate the
solutions using these methods to the actual solutions in the dynamic or stochastic
game.

In Balbus et al. (2015d), the authors develop sufficient conditions on the
underlying stochastic game that a generalized Bellman approach can be applied
to construct Markov perfect stationary equilibria. In their approach, the Markov
perfect equilibria computing in the stochastic game can be directly related to the
recursive optimization approach first advocated in, for example, Strotz (1955) (and
later, Caplin and Leahy 2006). In Balbus et al. (2016), sufficient conditions for the
uniqueness of Markov perfect equilibria are given. In principle, one could study
if these equilibria are smooth (and hence, rigorously apply the generalized Euler
equation method). Further, of course, in some versions of the quasi-hyperbolic
discounting problem, closed-form solutions are available. But even in such cases, as
Maliar and Maliar (2016) note, numerical solutions using some type of generalized
Euler equation method need not converge to the actual closed-form solution.

7 Conclusion

Strategic interactions play a critical role in many dynamic models in macroeco-
nomics. The introduction of such strategic elements into dynamic general equilib-
rium models has expanded greatly since the seminal work of Kydland and Prescott
(1977), as well as early papers by Phelps and Pollak (1968), Peleg and Yaari (1973),
Bernheim and Ray (1983), and Levhari and Mirman (1980). It is now a common
feature of many models in macro, including models of economic fluctuations,
public policy, asset pricing, models of the behavioral aspects of consumption-
savings problems, models of economic growth with limited commitment or strategic
altruism, among others. In this chapter, we have presented a number of canonical
situations, where strategic considerations arise in the study of dynamic equilibria in
macroeconomics. Then, we have discussed how the tools of dynamic and stochastic
game theory can be used to study equilibria in such problems.

The introduction of such strategic dimensions into macroeconomics greatly com-
plicates the analysis of equilibria. Still, rigorous and general methods are available
for constructing, characterizing, and computing them. We have argued that strategic
dynamic programming methods, first pioneered in Abreu et al. (1986, 1990) for
repeated games, when extended to settings with state variables, provide a powerful
systematic set of tools to construct and compute equilibria in such macroeconomic
models. Also, we have mentioned that in some cases, for particular subclasses of
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sequential or subgame perfect equilibria (e.g., Markov perfect equilibria), these
methods can be improved upon using recursive primal/dual methods or generalized
Euler equation methods. Unfortunately, relative to strategic dynamic programming
methods, these methods are known to suffer from serious technical limitations in
some dynamic models with state variables. As the majority of the models studied in
macroeconomics are dynamic, and include states, strategic dynamic programming
offers the most systematic approach to such models; hence, in this chapter, we have
discussed what these methods are and how they can be applied to a number of
interesting models in dynamic macroeconomics.
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Balbus Ł, Woźny Ł (2016) A strategic dynamic programming method for studying short-memory
equilibria of stochastic games with uncountable number of states. Dyn Games Appl 6(2):
187–208

Baldauf M, Judd K, Mollner J, Yeltekin S (2015) Supergames with states. Discussion paper, MS
Banerjee A, Mullainathan S (2010) The shape of temptation: implications for the economics lives

of the poor. Working paper No. 15973, NBER
Barro RJ (1999) Ramsey meets Laibson in the neoclassical growth model. Q J Econ 114(4):

1125–1152
Barro RJ, Gordon DB (1983) Rules, discretion and reputation in a model of monetary policy. J

Monet Econ 12(1):101–121
Beer G (1980) The approximation of upper semicontinuous multifunction by step multifunction.

Pac J Math 87(1):11–19
Benjamin D, Wright MLJ (2009) Recovery before redemption: a theory of delays in sovereign debt

renegotiations. Discussion paper 2009-2015, CAMA working papers
Berg K, Kitti M (2014) Fractal geometry of equilibrium payoffs in discounted supergames.

Fractals 22(4)
Bernheim D, Ray D (1983) Altruistic growth economies. I. Existence of bequest equilibria.

Technical report no. 419, Institute for Mathematical Studies in the Social Sciences
Bernheim D, Ray D (1987) Economic growth with intergenerational altruism. Rev Econ Stud

54:227–242
Bernheim BD, Ray D, Yeltekin S (2015) Poverty and self-control. Econometrica 85(5):1877–1911
Brock W, Mirman L (1972) Optimal economic growth and uncertainty: the discounted case. J Econ

Theory 4:479–513
Broner F, Erce A, Martin A, Ventura J (2014) Sovereign debt markets in turbulent times: creditor

discrimination and crowding-out effects. J Monet Econ 61(C):114–142
Broner F, Martin A, Ventura J (2010) Sovereign risk and secondary markets. Am Econ Rev

100(4):1523–1555
Caplin A, Leahy J (2006) The recursive approach to time inconsistency. J Econ Theory 131(1):

134–156
Cass D (1965) Optimum growth in an aggregative model of capital accumulation. Rev Econ Stud

32:233–240
Chade H, Prokopovych P, Smith L (2008) Repeated games with present-biased preferences. J Econ

Theory 139(1):157–175
Chamley C (1986) Optimal taxation of capital income in general equilibrium with infinite lives.

Econometrica 54(3):607–622
Chang R (1998) Credible monetary policy in an infinite horizon model: recursive approaches. J

Econ Theory 81(2):431–461
Chari V, Christiano L, Kehoe P (1991) Optimal fiscal and monetary policy: some recent results. J

Money Credit Bank 23:519–539
Chari V, Christiano L, Kehoe P (1994) Optimal fiscal policy in a business cycle model. J Polit Econ

102(4):617–652
Chari V, Kehoe P (1990) Sustainable plans. J Polit Econ 98(4):783–802
Cole HL, Kocherlakota N (2001) Dynamic games with hidden actions and hidden states. J Econ

Theory 98(1):114–126



Dynamic Games in Macroeconomics 47

Cole H, Kubler F (2012) Recursive contracts, lotteries and weakly concave Pareto sets. Rev Econ
Dyn 15(4):479–500

Cronshaw MB (1997) Algorithms for finding repeated game equilibria. Comput Econ 10(2):
139–168

Cronshaw MB, Luenberger DG (1994) Strongly symmetric subgame perfect equilibria in infinitely
repeated games with perfect monitoring and discounting. Games Econ Behav 6(2):220–237

Diamond P, Koszegi B (2003) Quasi-hyperbolic discounting and retirement. J Public Econ
87:1839–1872

Dominguez B (2005) Reputation in a model with a limited debt structure. Rev Econ Dyn 8(3):
600–622

Dominguez B, Feng Z (2016a, forthcoming) An evaluation of constitutional constraints on capital
taxation. Macroecon Dyn. doi10.1017/S1365100515000978

Dominguez B, Feng Z (2016b) The time-inconsistency problem of labor taxes and constitutional
constraints. Dyn Games Appl 6(2):225–242

Doraszelski U, Escobar JF (2012) Restricted feedback in long term relationships. J Econ Theory
147(1):142–161

Durdu C, Nunes R, Sapriza H (2013) News and sovereign default risk in small open economies. J
Int Econ 91:1–17

Dutta PK, Sundaram R (1992) Markovian equilibrium in a class of stochastic games: existence
theorems for discounted and undiscounted models. Econ. Theory 2(2):197–214

Ely JC, Hörner J, Olszewski W (2005) Belief-free equilibria in repeated games. Econometrica
73(2):377–415

Farhi E, Sleet C, Werning I, Yeltekin S (2012) Nonlinear capital taxation without commitment.
Rev Econ Stud 79:1469–1493

Feng Z (2015) Time consistent optimal fiscal policy over the business cycle. Quant Econ 6(1):
189–221

Feng Z, Miao J, Peralta-Alva A, Santos MS (2014) Numerical simulation of nonoptimal dynamic
equilibrium models. Int Econ Rev 55(1):83–110

Fesselmeyer E, Mirman LJ, Santugini M (2016) Strategic interactions in a one-sector growth
model. Dyn Games Appl 6(2):209–224

Fischer S (1980a) Dynamic inconsistency, cooperation and the benevolent dissembling govern-
ment. J Econ Dyn Control 2(1):93–107

Fischer S (1980b) On activist monetary policy and rational expectations. In: Fischer S (ed) Rational
expectations and economic policy. University of Chicago Press, Chicago, pp 211–247

Fischer RD, Mirman LJ (1992) Strategic dynamic interaction: fish wars. J Econ Dyn Control
16(2):267–287

Fudenberg D, Levine DK (2006) A dual-self model of impulse control. Am Econ Rev 96(5):
1449–1476

Fudenberg D, Yamamoto Y (2011) The folk theorem for irreducible stochastic games with
imperfect public monitoring. J Econ Theory 146(4):1664–1683

Harris C, Laibson D (2001) Dynamic choices of hyperbolic consumers. Econometrica 69(4):
935–957

Harris C, Laibson D (2013) Instantaneous gratification. Q J Econ 128(1):205–248
Hellwig C, Lorenzoni G (2009) Bubbles and self-enforcing debt. Econometrica 77(4):1137–1164
Hörner J, Sugaya T, Takahashi S, Vieille N (2011) Recursive methods in discounted stochastic

games: an algorithm for ı! 1 and a folk theorem. Econometrica 79(4):1277–1318
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Jaśkiewicz A, Nowak AS (2015) Stochastic games of resource extraction. Automatica 54:310–316
Judd K (1985) Redistributive taxation in a simple perfect foresight model. J Public Econ 28(1):

59–83
Judd K, Cai Y, Yeltekin S (2015) Computing equilibria of dynamic games. Discussion paper, MS
Judd K, Yeltekin S, Conklin J (2003) Computing supergame equilibria. Econometrica 71(4):

1239–1254



48 Ł. Balbus et al.

Kandori M (2002) Introduction to repeated games with private monitoring. J Econ Theory
102(1):1–15

Kehoe TJ, Levine DK (1993) Debt-constrained asset markets. Rev Econ Stud 60(4):865–888
Kehoe TJ, Levine DK (2001) Liquidity constrained markets versus debt constrained markets.

Econometrica 69(3):575–98
Kitti M (2013) Conditional Markov equilibria in discounted dynamic games. Math Meth Oper Res

78(1):77–100
Kitti M (2016) Subgame perfect equilibria in discounted stochastic games. J Math Anal Appl

435(1):253–266
Klein P, Krusell P, Ríos-Rull J-V (2008) Time-consistent public policies. Rev Econ Stud 75:

789–808
Klein P, Quadrini V, Ríos-Rull J-V (2005) Optimal time-consistent taxation with international

mobility of capital. BE J Macroecon 5(1):1–36
Klein P, Ríos-Rull J-V (2003) Time-consistent optimal fiscal policy. Int Econ Rev 44(4):

1217–1245
Koeppl T (2007) Optimal dynamic risk sharing when enforcement is a decision variable. J Econ

Theory 134:34–69
Krebs T, Kuhn M, Wright M (2015) Human capital risk, contract enforcement, and the macroe-

conomy. Am Econ Rev 105:3223–3272
Krusell P, Kurusçu B, Smith A (2002) Equilibrium welfare and government policy with quasi-

geometric discounting. J Econ Theory 105(1):42–72
Krusell P, Kurusçu B, Smith A (2010) Temptation and taxation. Econometrica 78(6):2063–2084
Krusell P, Smith A (2003) Consumption–savings decisions with quasi–geometric discounting.

Econometrica 71(1):365–375
Krusell P, Smith A (2008) Consumption-savings decisions with quasi-geometric discounting: the

case with a discrete domain. MS. Yale University
Kydland F, Prescott E (1977) Rules rather than discretion: the inconsistency of optimal plans. J

Polit Econ 85(3):473–491
Kydland F, Prescott E (1980) Dynamic optimal taxation, rational expectations and optimal control.

J Econ Dyn Control 2(1):79–91
Laibson D (1994) Self-control and savings. PhD thesis, MIT
Laibson D (1997) Golden eggs and hyperbolic discounting. Q J Econ 112(2):443–477
Laitner J (1979a) Household bequest behaviour and the national distribution of wealth. Rev Econ

Stud 46(3):467–83
Laitner J (1979b) Household bequests, perfect expectations, and the national distribution of wealth.

Econometrica 47(5):1175–1193
Laitner J (1980) Intergenerational preference differences and optimal national saving. J Econ

Theory 22(1):56–66
Laitner J (2002) Wealth inequality and altruistic bequests. Am Econ Rev 92(2):270–273
Leininger W (1986) The existence of perfect equilibria in model of growth with altruism between

generations. Rev Econ Stud 53(3):349-368
Le Van C, Saglam H (2004) Optimal growth models and the Lagrange multiplier. J Math Econ

40:393–410
Levhari D, Mirman L (1980) The great fish war: an example using a dynamic Cournot-Nash

solution. Bell J Econ 11(1):322–334
Loury G (1981) Intergenerational transfers and the distributions of earnings. Econometrica 49:

843–867
Maliar L, Maliar S (2005) Solving the neoclassical growth model with quasi-geometric discount-

ing: a grid-based Euler-equation method. Comput Econ 26:163–172
Maliar L, Maliar S (2006a) Indeterminacy in a log-linearized neoclassical growth model with

quasi-geometric discounting. Econ Model 23/3:492–505
Maliar L, Maliar S (2006b) The neoclassical growth model with heterogeneous quasi-geometric

consumers. J Money Credit Bank 38:635–654



Dynamic Games in Macroeconomics 49

Maliar L, Maliar S (2016) Ruling out multiplicity of smooth equilibria in dynamic games: a
hyperbolic discounting example. Dyn Games Appl 6(2):243–261

Marcet A, Marimon R (1998) Recursive contracts. Economics working papers, European Univer-
sity Institute

Marcet A, Marimon R (2011) Recursive contracts. Discussion paper. Barcelona GSE working
paper series working paper no. 552

Mertens J-F, Parthasarathy T (1987) Equilibria for discounted stochastic games. C.O.R.E. discus-
sion paper 8750

Mertens J-F, Parthasarathy T (2003) Equilibria for discounted stochastic games. In: Neyman A,
Sorin S (eds) Stochastic games and applications. NATO advanced science institutes series D:
behavioural and social sciences. Kluwer Academic, Boston

Mertens J-F, Sorin S, Zamir S (2015) Repeated games. Cambridge University Press, New York
Messner M, Pavoni N (2016) On the recursive saddle point method. Dyn Games Appl 6(2):

161–173
Messner M, Pavoni N, Sleet C (2012) Recursive methods for incentive problems. Rev Econ Dyn

15(4):501–525
Messner M, Pavoni N, Sleet C (2014) The dual approach to recursive optimization: theory and

examples. Discussion paper 1267, Society for Economic Dynamics
Mirman L (1979) Dynamic models of fishing: a heuristic approach. In: Liu PT, Sutinen JG (ed)

Control theory in mathematical economics. Decker, New York, pp 39–73
Morand O, Reffett K, Tarafdar S (2015) A nonsmooth approach to envelope theorems. J Math Econ

61(C):157–165
Nowak AS (2006a) A multigenerational dynamic game of resource extraction. Math Soc Sci

51(3):327–336
Nowak AS (2006b) A note on an equilibrium in the great fish war game. Econ Bull 17(2):1–10
Nowak AS (2006c) On perfect equilibria in stochastic models of growth with intergenerational

altruism. Econ Theory 28(1):73–83
Obara I, Park J (2013) Repeated games with general time preference. Paper available at: https://

editorialexpress.com/cgi-bin/conference/download.cgi?db_name=ESWC2015&paper_id=548
O’Donoghue T, Rabin M (1999) Doing it now or later. Am Econ Rev 89(1):103–124
O’Donoghue T, Rabin M (2001) Choice and procrastination. Q J Econ 116(1):121–160
Pearce D, Stacchetti E (1997) Time consistent taxation by a government with redistributive goals.

J Econ Theory 72(2):282–305
Peleg B, Yaari ME (1973) On the existence of a consistent course of action when tastes are

changing. Rev Econ Stud 40(3):391–401
Peralta-Alva A, Santos M (2010) Problems in the numerical simulation of models with heteroge-

neous agents and economic distortions. J Eur Econ Assoc 8:617–625
Phelan C, Stacchetti E (2001) Sequential equilibria in a Ramsey tax model. Econometrica

69(6):1491–1518
Phelps E, Pollak R (1968) On second best national savings and game equilibrium growth. Rev

Econ Stud 35:195–199
Pollak RA (1968) Consistent planning. Rev Econ Stud 35(2):201–208
Ray D (1987) Nonpaternalistic intergenerational altruism. J Econ Theory 41:112–132
Rincón-Zapatero JP, Santos MS (2009) Differentiability of the value function without interiority

assumptions. J Econ Theory 144(5):1948–1964
Rockafellar TR, Wets RJ-B (2009) Variational analysis. Springer, Berlin
Rogoff K (1987) Reputational constraints on monetary policy. Carn-Roch Ser Public Policy

26:141–182
Rustichini A (1998a) Dynamic programming solution of incentive constrained problems. J Econ

Theory 78(2):329–354
Rustichini A (1998b) Lagrange multipliers in incentive-constrained problems. J Math Econ

29(4):365–380
Santos M, Miao J (2005) Numerical solution of dynamic non-optimal economies. Discussion

paper, Society for Economic Dynamics, 2005 meeting papers

https://editorialexpress.com/cgi-bin/conference/download.cgi?db_name=ESWC2015&paper_id=548
https://editorialexpress.com/cgi-bin/conference/download.cgi?db_name=ESWC2015&paper_id=548


50 Ł. Balbus et al.

Sleet C (1998) Recursive models for government policy. PhD thesis, Stanford University
Sleet C (2001) On credible monetary policy and private government information. J Econ Theory

99(1–2):338–376
Sleet C, Yeltekin S (2006a) Credibility and endogenous social discounting. Rev Econ Dyn 9:

410–437
Sleet C, Yeltekin S (2006b) Optimal taxation with endogenously incomplete debt markets. J Econ

Theory 127:36–73
Sleet C, Yeltekin S (2007) Recursive monetary policy games with incomplete information. J Econ

Dyn Control 31(5):1557–1583
Sleet C, Yeltekin S (2016) On the computation of value correspondences. Dyn Games Appl

6(2):174–186
Straub L, Werning I (2014) Positive long run capital taxation: Chamley-Judd revisited. Discussion

paper 20441, National Bureau of Economic Research
Strotz RH (1955) Myopia and inconsistency in dynamic utility maximization. Rev Econ Stud

23(3):165–180
Sundaram RK (1989a) Perfect equilibrium in non-randomized strategies in a class of symmetric

dynamic games. J Econ Theory 47(1):153–177
Sundaram RK (1989b) Perfect equilibrium in non-randomized strategies in a class of symmetric

dynamic games: corrigendu. J Econ Theory 49:358–387
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