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1. Introduction

Beginning with the seminal work of Ramsey (1928) and Samuelson (1937), the question of 
how agents discount future utility streams has been a central question of focus for a large body 
of work in economic research. While Koopmans (1960) axiomatized preferences resulting in 
dynamically consistent choice, Strotz (1956) proposed an alternative theory of dynamically in-
consistent preferences leading to time inconsistent choice. This latter work began a separate and 
long line of research in behavioral economics that studied the implications of dynamic incon-
sistencies on the intertemporal choice. With the subsequent important papers of Laibson (1997)
and Harris and Laibson (2001), models where agents possess dynamically inconsistent prefer-
ences have become key in behavioral studies involving impulse and cue-driven theories of choice, 
temptation-driven preferences, as well as other models of self-control. This work has appeared in 
many fields including mathematical psychology, political science, philosophy, decision theory, 
game theory, and especially economics.

The motivation for much of this work on dynamically inconsistent choice is found in a large 
and growing empirical and experimental literature1 that has documented the importance of “pref-
erence reversals”, when agents are comparing current vs. future utilities. These issues arise in the 
context of many of the canonical models in economics including work studying consumption-
savings, dynastic choice with altruistic or paternalistic preferences, dynamic collective household 
choice, distributive justice and social choice, public policy design, models of social discounting 
in environmental cost-benefit analysis, theories of endogenous preference formation and refer-
ence points including habit-formation, addiction, focus-weighted choice and salience, among 
others.

This literature has also led to a large body of new theoretical work that seeks to (i) provide 
further axiomatic foundations to time inconsistent preferences,2 and (ii) provide needed tools for 
constructing equilibrium theories of coherent dynamic choice in various settings where agents 
have changing intertemporal tastes. The literature providing a equilibrium and/or optimal so-
lutions in the presence of dynamic inconsistent preferences includes the early work of Strotz 
(1956), Phelps and Pollak (1968), Pollak (1968) and Peleg and Yaari (1973), as well as the sub-
sequent work over the last two decades such as found in Laibson (1997) and Harris and Laibson 
(2001), the papers of Krusell and Smith (2003), Krusell et al. (2010), Harris and Laibson (2013), 
Chatterjee and Eyigungor (2016), Balbus et al. (2015b, 2018), Cao and Werning (2018), Jensen 
(2021), Jaśkiewicz and Nowak (2021), and Bäuerle et al. (2021). The focus in this body of work 
has been placed on obtaining sufficient conditions for the existence, characterization, and com-
putation of optimal time consistent plans, i.e. planned dynamic choices that are actually followed 
(not re-optimized) by the agents in the future periods. The literature3 studied both: (i) short 
memory time consistent decision rules (e.g., dynamic choices that are Markov or semi-Markov 
equilibria) and (ii) long-memory solutions (e.g., subgame perfect equilibria as in Bernheim et al. 
(2015) or Balbus and Woźny (2016)).

1 Empirical motivation for the importance of present-bias and dynamic inconsistency in choice can be found e.g. in 
Angeletos et al. (2001), Ameriks et al. (2007), Mcclure et al. (2007), and Cohen et al. (2020).

2 For a recent selection of axiomatic work see e.g. Wakai (2008), Montiel Olea and Strzalecki (2014), Galperti and 
Strulovici (2017), Chambers and Echenique (2018), Drugeon and Ha-Huy (2022), and most recently Chakraborty (2021).

3 For surveys of this body of theoretical work, see the earlier papers of Fishburn and Rubinstein (1982), Frederick et 
al. (2002), and Noor (2009), as well the recent surveys of Ericson and Laibson (2019) and Cohen et al. (2020).
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One important limitation of all this existing theoretical work has been its focus on the case of 
quasi-hyperbolic discounting. Although quasi-hyperbolic discounting is an important case, it is 
also a somewhat special one from a theoretical perspective (as well as an empirical/experimental 
one). In particular, quasi-hyperbolic agents possess a very simple pattern of “1 period forward 
misalignment/bias” in intertemporal preferences. From a theoretical perspective, the interest of 
studying more general biases in dynamic preferences stems from the early work of Loewenstein 
and Prelec (1992, 1993), and Rubinstein (2003). More recently, Chakraborty (2021) has provided 
an axiomatization of present bias that involves a weakening of the stationary axiom of Koopmans 
(1960) or Halevy (2015), and showed this leads to a general formulation of present bias and be-
havioral discounting. A separate line of research considers applying revealed preferences theory 
of identifying violations of time consistent choice in dynamic models with generalized discount-
ing.4 So far, little is known about the optimal/equilibrium predictions in these cases, where agents 
exhibit generalized/behavioral discounting.

The interest in going beyond the case of quasi-hyperbolic discounting is also motivated by 
empirical and experimental work. Here we only mention a small sampling of this literature. For 
example, in Benhabib et al. (2010), the authors find strong support for present-bias, but little 
support of quasi-hyperbolic discounting. Chan (2017) estimates a hyperbolic discounting model, 
where differences in discount factors play a key role in explaining how workers make labor sup-
ply decisions in the context of participation in welfare programs. Similarly, he finds most agents 
make choices exhibiting more general forms of present-bias than just quasi-hyperbolic discount-
ing. In another recent study by Dalton et al. (2020), the authors study the role of discounting and 
myopia in the purchase of Medicare D drug insurance contracts, and find strong support for gen-
eral forms of behavioral discounting. Similarly, Kuchler and Pagel (2021) find strong support for 
general forms of present-bias in the context of credit card paydowns. Present-bias also emerges 
naturally in dynamic collective choice problems.5 Using experimental methods, Jackson and 
Yariv (2014) study a simple model of collective choice in a lab, and find that almost all subjects 
acting as social planners for other decision-makers exhibit some form of dynamic inconsistency, 
with its form varying across subjects; in some cases, the subjects exhibited present-bias, who in 
others, future-bias. In Iverson and Karp (2021), the authors study a Markov perfect equilibria 
in a dynamic collective model (where the decentralized economy determines aggregate savings 
and a planner determines climate policy) of climate with carbon taxes, where generalized be-
havioral discounting is exactly the one defined and studied in our paper. For a particular class 
of preferences and technologies (log-linear), they are able to solve the model in closed-form, 
and characterize the commitment devices as well as determine optimal carbon taxes.6 In gen-
eral, of course, such closed-form/parametric solutions are not possible. Finally, Mahajan et al. 
(2020) and Heidhues and Strack (2021) discuss methodological issues related to the identifica-
tion of present-bias and behavioral discounting in econometric models. Summing up, in all of 
this work, the present-bias that drive time-inconsistent choices appear to be consistent with more 
complicated forms than simple quasi-hyperbolic discounting.

4 For example, see Chakraborty et al. (2017) and Echenique et al. (2020).
5 See Jackson and Yariv (2015), Lizzeri and Yariv (2017) or Ebert et al. (2020) for arguments as to why time-

inconsistency shows up at the social preferences level.
6 The rare cases considering more general behavioral discounting has either focused on models that admit closed-form 

solutions (e.g., Young (2007)), or emphasize numerical approaches to the computation of time consistent equilibrium 
(e.g., Maliar and Maliar (2016) or Jensen (2021)).
3
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An important final aspect that bears mentioning, is work that studies the role that uncertainty 
plays in characterizing the nature of observed behavioral choices. There is a number of recent pa-
pers showing that preferences over time as well as over uncertain (or risky/stochastic) outcomes 
are intertwined. For a discussion of these issues, see the work of Loewenstein and Prelec (1992), 
Saito (2009), Andreoni and Sprenger (2012), Ioannou and Sadeh (2016), and Chakraborty et al. 
(2020), among many others. Indeed, as Halevy (2008) and Baucells and Heukamp (2012) argue: 
delaying a prize in time has the same effect as increasing uncertainty of getting this prize. Inter-
estingly, as we demonstrate in the paper, uncertainty plays a critical role, even when constructing 
results on the existence of time consistent solutions.

With these considerations and motivations in mind, in this paper we study dynamic choice 
models with general forms of behavioral or normative discounting rules. It is well known such 
models generate dynamically inconsistent preferences. The central aim of this paper is to prove 
existence of time consistent equilibrium (e.g., minimal state space stationary Markovian equilib-
rium) in such class of models.

The existing literature, that is most closely related, involves papers on the existence of time 
consistent or stationary Markov perfect equilibrium for quasi-hyperbolic decision makers un-
der deterministic state transition as in Bernheim et al. (2015), Cao and Werning (2018), Richter 
(2020) and Jensen (2021), as well as stochastic state transitions, as in the work of Harris and 
Laibson (2001), Balbus et al. (2015b, 2018), Balbus et al. (2020b) Chatterjee and Eyigungor 
(2016), and Jaśkiewicz and Nowak (2021). Our contribution is to provide a unified methodolog-
ical setup for equilibrium existence verification in all of these cases. Our results can be hence 
treated as a prerequisite of any empirical or numerical analysis of implications of various forms 
of discounting on allocation of scarce economic or environmental resources over current and 
future generations.

Overview of the results Before we proceed to the formalities of the paper, we begin by preview-
ing our main results. Consider a discrete time, infinite horizon, stochastic consumption-saving 
model, where the sequence of time separable lifetime preferences over sequences of consumption 
(cτ )

∞
τ=t is given any date t by:

u(ct ) +Et

∞∑
τ=1

δτ u(ct+τ ). (1)

We shall refer to these preferences as (δt )-behavioral discounting preferences. Notice, at any 
time period t , the consumer uses the sequence of discount factors:

δ0, δ1, δ2, δ3, . . .

to value current and continuation utility streams (where, for convenience, we normalize δ0 = 1). 
A few additional remarks on these preferences are in order. First, many cases in the literature of 
behavioral discounting fit into this general setting. To mention a few, we have: (i) exponential 
discounting when δt = δt , (ii) quasi-hyperbolic discounting when δt = βδt for t ≥ 1, and (iii) 
hyperbolic discounting when δt = 1

1+t
. Second, these preferences are generally dynamically-

inconsistent. That is, the discount rate between utilities in any two time periods τ + 1 and τ is 
given by:

δt+1u(cτ+1)
,

δtu(cτ )

4



JID:YJETH AID:105493 /FLA [m1+; v1.354] P.5 (1-39)
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for each t ∈ {0, . . . , τ }. We say the intertemporal preferences between the consecutive periods 
are misaligned whenever for some t :

δ2
t �= δt−1δt+1.

For the case of exponential discounting, preferences are aligned. For the case of quasi-hyperbolic 
discounting, preferences are misaligned and exhibit “1 period forward misalignment”. For the 
case of hyperbolic discounting, these preferences also misaligned, but for any t . As a result, 
the preferences in (i) are dynamically-consistent, and in both cases (ii) and (iii), dynamically-
inconsistent.

Let us now consider a stochastic dynamic optimization problem, where the dynamics on the 
state variable (e.g. assets, production or capital levels) st induced by sequences of current (con-
sumption) choices is governed by a Markov transition st+1 ∼ q(st |st − ct ), where st − ct denotes 
investment. For a feasible and measurable consumption policy g mapping current state to current 
consumption level we can compute expected value of preferences from tomorrow onwards:

J (g)(st ) =Est

( ∞∑
τ=1

δτ u(g(st+τ ))

)
,

where Est is the conditional expectation operator with respect to date t information. We say a 
measurable consumption policy g∗ is a Stationary7 Markov Perfect Equilibrium (SMPE) or a 
Time Consistent Equilibrium (TCE) in a consumption-savings model with (δt )-behavioral dis-
counting if for any s ∈ S we have:

g∗(s) ∈ arg max
c∈[0,s]

{
u(c) + J (g∗)(s − c)

}
.

For the moment, assume state space S ⊂ R is bounded, and the temporal return function 
u : S 	→ R is continuous, increasing and strictly concave. Moreover, assume q is stochastically 
increasing and stochastically continuous.8

The first main result of the paper concerns TCE in the special case of behavioral discounting 
model where preferences are quasi-hyperbolic with δ ∈ (0, 1) and β ∈ (0, 1]. Let 1A() denote an 
indicator function of a Borel set A ⊆ S. We have the following result:

Proposition 1. There exists a TCE in β − δ quasi-hyperbolic discounting model with deter-
ministic state transition i.e. q(A|i) = 1A(F (i)) for some increasing and continuous production 
function F : S → S.

Proposition 1 generalizes the existing results substantially. The proof of the proposition fol-
lows from a direct application of (Theorem 1) and is presented in Example 1. We leave the 
detailed literature comments until we present our main result.

Our second main result concerns the case of behavioral discounting where the sequence of 
discount factors is given by δt ≤ δ < 1. Here, we allow preferences for consecutive generations 
of selves to be misaligned in a more general way relative to the case of the quasi-hyperbolic 

7 The question of nonstationary MPE is interesting. For the quasi-hyperbolic case, for repeated games, see Chade et al. 
(2008), and for dynamic games, see Balbus and Woźny (2016) and Balbus et al. (2021) for a discussion.

8 Stochastically continuous means the transition q satisfies the Feller property. For a definition of stochastically in-
creasing, see Topkis (1998), section 3.10.
5
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discounting model. For this case, we need some uncertainty in the state transition process to 
obtain TCE existence.9 Our second main result can be stated as follows:

Proposition 2. There exists a TCE in the (δt )-behavioral discounting model with preferences 
given by (1) whenever q is nonatomic.

The above proposition follows from an application of Theorem 2. We verify this is Exam-
ple 5. In fact, the existence and characterization results in this paper are more general than both 
Propositions 1 and 2, as will be made clear in the sequel, but these two propositions basically 
capture the central results of the paper. We make a few remarks initially about these two sets of 
results.

First, in all cases of TCE, we provide a characterization of equilibrium policies. Namely, for 
any TCE with consumption g∗, the associated equilibrium investment is monotone and right-
continuous on S. This implies, as we show in a sequel, in models with present-bias preferences, 
we break all indifferences of the “current-self” in favor of the earlier selves who prefer a higher 
level of investment.10

Second, in the general version of these two propositions (Theorem 1 and Theorem 2), we can 
allow for both S and u to be unbounded above. In the examples, following the main results, we 
compute the appropriate bounds assuring continuation utilities J are well defined.

Third, we are also able to relax the assumption of (δt )-behavioral discounting preferences 
by allowing for time-variant preferences represented by non-additive aggregators with general 
forms of certainty equivalents including risk-sensitive preferences or quasi-linear means.11

Finally, although not following directly from Proposition 2, in the paper, we also present an ex-
istence result regarding the hyperbolic discounting model. Specifically, when characterizing TCE 
in the (δt )-behavioral discounting model, we introduce the notion of a “semi-hyperbolic” model, 
i.e. a model where agents, have “finite” bias/misalignment. We show in what sense the TCE in 
the behavioral discounting model can be generated as limits of TCE in “semi-hyperbolic” mod-
els. Importantly, the hyperbolic discounting model is a special case of a behavioral discounting 
model where our approximation tools work. In the view of possible equilibrium indeterminacy 
results,12 we think that our approximation technique (or “upper semi-continuity” of the equilib-
rium set) offers some stability result relative to a class of time consistent policies.

We should mention that an important technical aspect of our approach is that we introduce a 
new functional equation method that links the existence of TCE to recursive utility models with 
strategic aspects under limited commitment. Our approach extends and integrates separate ideas 
developed in a series of contributions by Balbus et al. (2015b, 2018), Balbus et al. (2020a) and 
Balbus (2020), among others.

In the remainder of the paper, we discuss in more detail Propositions 1 and 2, as well as their 
generalizations. Namely, in section 2, we consider the quasi-hyperbolic discounting model. We 
show existence of TCE by proving an extended version of Proposition 1 (Theorem 1). The key 
ingredient of our argument is the development of what we refer to as a “generalized Bellman 

9 Without such uncertainty, counterexamples to the existence of TCE can be constructed. See discussion in Example 4.
10 This turns out to be a very important fact. For example, Caplin and Leahy (2006) show that TCE must resolve 
preference indifferences in this manner for positive and normative reasons.
11 Our results can be hence of independent interest for equilibrium existence in dynamic/stochastic games with recursive 
payoffs and general discounting (see Obara and Park (2017) for a recent contribution).
12 See Krusell and Smith (2003) and its discussion in Cao and Werning (2018).
6
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operator” defined on time-inconsistency aggregation mapping (TIAM). Then, in section 3, we 
provide the general statement and the existence result extending Proposition 2 (Theorem 2). The 
sufficient assumption and our method of proof, although similar to techniques used for the quasi 
hyperbolic discounting model at some technical level, is different with respect to stochastic state 
transition and the function spaces used to study TCE. In particular, in the second set of results we 
are not requiring the use of generalized Bellman operator. In both sections, however, our models 
involve recursive, time-varying payoffs and, again, general forms of certainty equivalence op-
erators. In section 4, we then develop and analyze the semi-hyperbolic discounting model and 
show that one can view the hyperbolic discounting model as the limiting case of a sequence of 
semi-hyperbolic discounting problems. Finally, in section 5, we show how our results can be ex-
tended to even more general models with behavioral features e.g. backward looking discounting, 
short-lived players or magnitude effects.

2. Quasi-hyperbolic discounting

Consider an infinite horizon, stochastic consumption-savings model with quasi-hyperbolic 
preferences. At each period t , there is one generation,13 who enters the decision problem in-
heriting a capital/asset stock st ∈ S, where S = R+ or S = [0, S̄] ⊂ R+. Generation t selects 
a consumption level ct ∈ [0, st ], with the remaining resources it = st − ct allocated as an in-
vestment for next generation t + 1. In general, the capital stock at t + 1 is random, and drawn 
from the distribution q(·|it ). Importantly, however, the assumptions imposed in this section al-
low q to have a degenerate distribution and hence be deterministic. The temporal utility for each 
generation is u(ct ), where u : S → R is continuous and strictly increasing function.

Then, for any stock-consumption history (st , ct )
∞
t=1, generation t lifetime preferences are 

given by:

Est

(
u(ct ) + βδ

∑
τ=t

u(cτ+1)δ
τ−t

)
,

where 1 ≥ β > 0 and 1 > δ ≥ 0, and expectation operator Est is taken with respect to the realiza-
tion of random variables (sτ )∞τ=t+1.

In what follows, we concentrate on stationary Markovian consumption policies, here denoted 
by functions g : S → S, such that g is measurable and feasible, i.e. g(s) ∈ [0, s]. Suppose then 
each of the following generations uses g but generation t deviates by choosing c ∈ [0, st ]. Then, 
we can define a payoff:

u(c) + βδ

∫
S

J (g)(st+1)q(dst+1|st − c),

where

J (g)(st+1) := Est+1

(∑
τ=t

u(g(sτ+1))δ
τ−t

)
.

13 Here, we interpret the dynamic choice model “dynastically”, i.e., the infinite-horizon decisions are chosen by a 
collection of generations under limited commitment. Alternatively, those “generations” could represent “selves” in a 
model of a single agent with changing tastes as in Phelps and Pollak (1968), Peleg and Yaari (1973), or Hammond 
(1976).
7
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We now have the following definition.

Definition 1. A measurable policy g∗ : S → S is a stationary Markov Perfect equilibrium 
(SMPE), or a Time Consistent Equilibrium (TCE), if for any s ∈ S:

g∗(s) ∈ arg max
c∈[0,s]u(c) + βδ

∫
S

J (g∗)(s′)q(ds′|s − c).

Since in the quasi-hyperbolic discounting model preferences from tomorrow on are stationary, 
finding TCE requires finding a pair (g, U) solving, at any states s ∈ S, a system of functional 
equations:

U(s) = u(g(s)) + δ

∫
S

U(s′)q(ds′|s − g(s)), (2)

g(s) ∈ arg max
c∈[0,s]u(c) + βδ

∫
S

U(s′)q(ds′|s − c). (3)

Equation (2) involves finding the recursive part of preferences, i.e. future value U computed 
for a given candidate policy g. In fact, for any feasible g and under our conditions, function 
J (g) equals U solving (2). Functional equation (3) then assures strategic consistency between 
the consumption policy g and U . It is straightforward to show that if (g, U) solves the system 
(2)-(3), they also solve a generalized Bellman equation:

U(s) = 1

β
max

c∈[0,s]

⎛
⎝u(c) + βδ

∫
S

U(s′)q(ds′|s − c)

⎞
⎠− 1 − β

β
u(g(s)). (4)

Similarly, if (g, U) solve (4), with g being a measurable argmax selection from the maximization 
problem in brackets, then (g, U) solves (2)-(3) and hence g is a TCE.

Equation (4) has an intuitive interpretation. One can think of the last element of this expression 
1−β
β

u(g(s)) as the quasi-hyperbolic dynamic inconsistency adjustment factor. That is, this addi-
tional term depending on β appearing on the right-hand side of the maximand in (4) is “added” 
to a standard Bellman equation to incorporate the fact agents have preferences changing over 
time. For the case of β = 1 (the case of dynamically consistent preferences with exponential dis-
counting), this dynamic inconsistency adjustment factor equals 0, and the generalized Bellman 
operation reduces to the standard (time consistent) Bellman equation.14

This formulation of TCE in the time-separable quasi-hyperbolic case can be extended in a 
number of directions. For example, one can consider both (i) more general ways of evaluating 
certainty equivalents of future utility streams and (ii) allow for a nonlinear aggregation of current 
utilities and the future certainty equivalents. To see that, for i ∈ S by Ei (f ) denote a certainty 
equivalent of an integrable function f with respect to measure q(·|i). Then, consider dynamic 
preferences given by the two recursive aggregators W1 and W2, each mapping S × R → R, 
with the former evaluating the current preferences while the latter evaluating preferences from 
tomorrow onward. Then, the two functional equations (2)-(3) take a following form:

14 Note that the so-called “generalized Euler equation” approach to solving time inconsistent problems is the “first 
order” decomposition of the same idea. See, for example, Harris and Laibson (2001), section 3, equation (8) for first-
order analog of our generalized Bellman equation.
8
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U(s) = W2(g(s),Es−g(s)(U)) and g(s) ∈ arg max
c∈[0,s]W1(c,Es−c(U)). (5)

These two equations in (5) can be mapped into a single one, of a form similar to (4), charac-
terized by an time-inconsistency aggregation mapping (or TIAM, for short) V : S ×S ×R → R:

U(s) = V (g(s), g(s),Es−g(s)(U)) = max
c∈[0,s]V (c, g(s),Es−c(U)), (6)

where the first argument of V is a current consumption, the second element of V is a dynamic 
inconsistency adjustment factor that corrects intertemporal preferences for the evolving structure 
of time-inconsistency, and the third argument is a “recursive” utility term from the next period 
onward. Our existence theorem will be based on this general formulation of the dynamic incon-
sistency problem in (5), i.e. will prove existence of value U and a policy g solving functional 
equation (6).

We present assumptions and our results at this abstract (formulation) level, as when do-
ing so, we can obtain our results for a class of β − δ models with more general aggregators 
and certainty equivalents at once. See Example 2 and Example 3 a.o. It is clear, however, that 
the generalized Bellman equation for the standard, time separable quasi hyperbolic discount-
ing model, with aggregators W1(x, z) = u(x) + βδz W2(x, z) = u(x) + δz, is a special case 
of (6) with TIAM V (x, y, z) := 1

β
(u(x) + βδz) − 1−β

β
u(y). Moreover, under expected utility 

Ei (U) = ∫
S
U(s)q(ds|i).

Assumption 1 (Aggregator). V : S × S × [ϑ, ∞) 	→ [ϑ, ∞), with ϑ ∈ R, is continuous and 
(x, y, z) 	→ V (x, y, z) is increasing in (x, −y, z). Moreover:

(i) The function z → V (x, y, z) is a contraction mapping with a constant δ ∈ (0, 1);
(ii) The function s → ζ(s) := V (s − i1, φ(s), ψ(i1)) − V (s − i1 + (i1 − i2), φ(s), ψ(i2)) has 

Strict Single Crossing Property (SSCP) for any s ≥ i1 > i2 and Borel functions φ and ψ15;
(iii) There is a sequence (ξk)k∈N of elements of S with 0 < ξ1 < ξ2 < . . ., and a sequence 

(ηk)k∈N in R+ such that ϑ < η1 < η2 < . . . with ηk → ∞ where

V (ξk,0, ηk+1) ≤ ηk for all k

and r := sup
k∈N

ηk+1
ηk

∈ (0, 1/δ).

Assumption 2 (Transition). The transition probability q(·|i) satisfies:

(i) i 	→ q(·|i) is stochastically increasing, satisfies a Feller property, and q([0, ξk+1]|s) =
1 for all s ∈ [0, ξk];

(ii) For any s ∈ S, the set of all i such that q({s} |i) > 0 is countable.

We now define a class of Certainty Equivalent Operators (COP for short). Formally, let Ei(f )

return a certainty equivalent of a Borel mapping f with respect to measure q(·|i). Ei (f ) is COP 
if it satisfies two conditions: (i) for any i ∈ S, Ei (·) preserves constants i.e. for any constant 

15 Function ζ satisfies SSCP, whenever ζ(s1) ≥ 0 implies ζ(s2) > 0 for any s2 > s1. Under monotonicity assumptions 
it suffices to verify the SSCP condition for ψ such that ψ(i1) > ψ(i2). Indeed, in the opposite case, i.e. ψ(i2) ≥ ψ(i1)

function ζ is negative so SSCP is satisfied trivially.
9
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α ≥ ϑ , Ei (α) = α and (ii) for any i ∈ S, Ei (·) is nondecreasing, i.e. for any Borel functions f1 :
S 	→ [ϑ, ∞), f2 : S 	→ [ϑ, ∞) such that f1(s) ≤ f2(s) for q(·|i)-almost s ∈ S, it holds Ei (f1) ≤
Ei (f2). To proceed we need the following definition.

Definition 2. The COP obeys Fatou-Serfozo property if the following condition holds. Let 
limn→∞ in → i in S, and let (fn) be a sequence of q(·|in)-essentially bounded functions, each 
mapping S 	→ [ϑ, ∞). Then,

(i) The following inequalities hold

lim sup
n→∞

Ein (fn) ≤ Ei

(
limfn

)
and lim inf

n→∞ Ein (fn) ≥ Ei

(
limfn

)
,

where

limfn(s) := sup
{

lim sup
n→∞

fn(s) : sn → s
}

and

limfn(sn) := inf
{

lim inf
n→∞ fn(sn) : sn → s

}
;

(ii) Assume fn → f continuously q(·|i)-almost everywhere, that is for q(·|i)-almost all s ∈ S, 
fn(sn) → f (s) whenever sn → s. Then lim

n→∞ Ein (fn) = Ei (f ).

Assumption 3 (Certainty Equivalent Operator). COP satisfies:

(i) For any i ∈ S, Ei obeys constant subadditivity, i.e. for any Borel f : S 	→ [ϑ, ∞) and 
α ≥ min(ϑ, 0) it holds Ei (f + α) ≤ Ei (f ) + α;

(ii) Ei obeys the Fatou-Serfozo property;
(iii) If f is a bounded and continuous from the right function, then the function Ei(f ) is contin-

uous from the right in i.

Assumption 1 (i) is standard and together with 3 (i) assures existence of the (recursive) con-
tinuation utility U for any g. Assumption 1 (iii) and 2 (i) assure we can use the local contractions 
argument for the case of unbounded states and/or unbounded above rewards. If the states space 
S is bounded or rewards are (uniformly) bounded then these are automatically satisfied. As-
sumption 1 (ii) assures that (each) best response policy selection is monotone increasing on 
S. Regarding Assumption 2 (ii). Observe, this assumption is satisfied for a deterministic tran-
sition and as well their convex combinations. Moreover, we allow all sets we consider (i.e. 
{i ∈ S : q({s} |i) > 0}) be empty. This is the case, for example, when q is non-atomic. These 
are the two cases mostly considered in the paper. A convex combination of a non-atomic transi-
tion probability and a delta Dirac concentrated at some s0 ∈ S also satisfies Assumption 2 (ii). 
Observe, such a transition probability has an atom in s0.16

Finally we comment on Assumption 3. We start by noting it is satisfied e.g. for the standard 
expectation

Ei (f ) =
∫
S

f (s)q(ds|i).

16 See Balbus et al. (2020a) remark 6.
10
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Noting that q obeys Assumption 2, the condition 3 (ii) follows from Fatou’s extension lemma.17

The extensive literature provides other classes of COPs, e.g. taking the quasilinear mean form:

Ei (f ) = φ−1

⎛
⎝∫

S

φ(f (s))q(ds|i)
⎞
⎠ ,

where φ : [ϑ, ∞) 	→ [ϑ, ∞). Our Lemma 15 in the Appendix of the paper assures that any quasi-
linear mean with continuous and strictly monotone φ obeys Fatou-Serfozo Property. Regarding 
constant subadditivity, a precise characterization is provided by Theorem 12 in Marinacci and 
Montrucchio (2010) for the case of ϑ = 0. Here, we only recall that a quasilinear mean is con-
stant subadditive if and only if, φ is twice continuously differentiable and strictly monotone with 
φ′(x) �= 0 (x > 0), and φ is characterized by an increasing absolute risk aversion (i.e. −φ′′(x)

φ′(x)
is 

increasing).
Examples satisfying our Assumption 3 include the so called entropic risk measure (see Weil 

(1993)) with φ(s) = e−γ s where γ �= 0 as well as φ(s) = sα for some α > 1 and ϑ ≥ 0 due to 
Kreps and Porteus (1978). Another example is

Ei (f ) = −
∫
R

1

γ
ln

⎛
⎝∫

S

e−γf (s)q(ds|i)
⎞
⎠π(dγ ),

where π is a Borel probability measure on an open subset of R \ {0} (see Mu et al., 2021).
We now define the set of candidate TCE investment functions18:

H := {h : S 	→ S : h(s) ∈ [0, s] : h is increasing and right continuous} .

Under these conditions, we now have a result on the existence of TCE g∗, as well as provide 
a characterization of the corresponding investment h∗, where h∗(s) := s − g∗(s).

Theorem 1. Assume 1, 2 and 3. There exists a g∗ : S 	→ S with a corresponding investment 
h∗ ∈ H and U∗ : S 	→ R such that for any s ∈ S

U∗(s) = V (g∗(s), g∗(s),Es−g∗(s)(U
∗)) = max

c∈[0,s]V (c, g∗(s),Es−c(U
∗)).

We now provide few examples of the quasi-hyperbolic discounting model that satisfy all of 
assumptions of Theorem 1 (and hence, have TCE). We start with a standard deterministic β − δ

model. Notice, in Example 1 below, we concentrate on deriving the appropriate bounds to cover 
utility functions unbounded above for some typical cases considered in the literature. Exam-
ple 1C covers Proposition 1 as a special case and also proves it, by verifying that the assumptions 
of Theorem 1 are satisfied.

Example 1. (Deterministic quasi-hyperbolic discounting) Consider a standard time-separable 
quasi-hyperbolic discounting model with δ ∈ (0, 1), β ∈ (0, 1]. Assume u : R+ → R is contin-
uous, increasing and strictly concave. Suppose the capital transition is deterministic and given 
by kt+1 = F(kt ) − ct for some increasing and continuous production function F : R+ → R+. 

17 See Lemma 3.2. in Serfozo (1982) e.g.
18 Recall, such space was used previously in Ray (1987) or Dong (2020), more recently.
11
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Introducing st := F(kt ) we have q(A|i) = 1A(F (i)), where 1A() is a indicator function of a 
Borel set A ⊆ S. Assumption 2 is hence satisfied. For illustration, we now verify the conditions 
of Assumption 1 for this special case. This problem is a special case of our model with TIAM 
V (x, y, z) = 1

β
u(x) +δz− 1−β

β
u(y). Assumption 1 (i) is hence satisfied. The following boundary 

conditions suffice to assure existence of TCE for any COP satisfying Assumption 3, e.g. expected 
utility. Recall, whenever S is bounded or rewards are (uniformly) bounded then these boundary 
conditions are automatically satisfied. This is the case of Proposition 1.

Example 1A (Isoelastic utility and linear technology). Consider u(c) = c1−σ

1−σ
with F(k) = Rk

for some fixed interest rate R > 1. See also Cao and Werning (2018) who analyze this model. 
Clearly, as u is strictly concave for σ > 0, the period return to savings given by (i, s) → u(s − i)

has strictly increasing differences (and, hence V satisfies SSCP in Assumption 1 (ii)). We now 
verify the bounds in 1 (iii). For σ ∈ (0, 1) we take ϑ = 0. Let ξk = ξ0R

k−1 with arbitrary initial 
value ξ0. We construct ηk . We assume that δR1−σ < 1. Let

ηk := 1

β

∞∑
t=1

u(ξkR
t−1)δt−1 = 1

β

ξ1−σ
k

1 − σ

∞∑
t=1

(
δR1−σ

)t−1 = ξ1−σ
k

β(1 − σ)
(
1 − δR1−σ

) .
Then we have V (ξk, 0, ηk+1) = 1

β(1−σ)
ξ1−σ
k + δηk+1. By definition of ξk and ηk we assure

1

β(1 − σ)
ξ1−σ
k + δηk+1 ≤ ηk.

Clearly ηk+1
ηk

= R1−σ ∈ (0, 1
δ

)
as required by Assumption 1 (iii).

Example 1B (Strictly concave utility and linear technology). We now relax assumption that u is 
isoelastic and require only that u is strictly concave (and hence, we satisfy the SSCP in Assump-
tion 1(ii)). Then, the required boundedness condition for Assumption 1(iii) takes the following 
form:

ζ(k) := 1

β

∞∑
t=1

u(kRt−1)δt−1 < ∞ for any k > 0.

For initial ξ0 > 0 we define ξk = ξ0R
k−1 and ηk := ζ(ξk). Then we have to verify the following 

condition

sup
k∈N

ηk+1

ηk

<
1

δ
. (7)

Observe that

ηk+1 = 1

β

∞∑
t=1

u(ξkR
t )δt−1 = 1

β

∞∑
t=1

u(ξkR
t )

u(ξkRt−1)
u(ξkR

t−1)δt−1 ≤ ωηk,

where ω := sup
k>0

u
(
ξ0R

k+1)
u
(
ξ0R

k
) . Hence (7) is satisfied if ω < 1

δ
.

Example 1C (Strictly concave utility and monotone technology). Suppose now F is continuous, 
strictly increasing production function. Utility function is strictly concave as above. For the spe-
cial case of bounded S this is the case covered by Proposition 1 in the introductory section. For 
12
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unbounded S the construction of bounds in Assumption 1(iii) is almost identical as in 1B. The 
only difference is the function ζ which is generalized to

ζ(k) = 1

β

∞∑
t=1

u(F t−1(k))δt−1 < ∞ for any k > 0,

where F 0 is the identity function, and the constant ω

ω := sup
k>0

u
(
Fk+1(ξ0)

)
u
(
Fk(ξ0)

) <
1

δ
.

To the best of our knowledge, our equilibrium existence result for the quasi-hyperbolic dis-
counting model is one of the most general in the literature. Recall, in theorem 6 of Bernheim et al. 
(2015), the authors prove existence of TCE in a deterministic model with CIES utility and linear 
technology. In Theorem 5 in Cao and Werning (2018), the authors extend this existence result to 
more general utility functions, but under strictly positive lower bound of the asset holding and a 
linear technology with small gross interest rate (i.e. R < 1 + 1−δ

βδ
).19

Theorem 1 also generalizes existing results on the stochastic versions of the quasi-hyperbolic 
model. For example, in Harris and Laibson (2001) the authors prove existence of the time consis-
tent equilibrium in a smooth model with bounded intertemporal elasticity of substitution. Along 
that lines Balbus et al. (2018) proved equilibrium existence and uniqueness under some restrictive 
assumption on the stochastic transition function. Recently Balbus et al. (2020b) have also shown 
existence in the general model but required non-atomic transition. We should also mention the 
work of Chatterjee and Eyigungor (2016), who prove existence of time consistent equilibrium 
but in randomized strategies/lotteries. See also Jaśkiewicz and Nowak (2021) for recent progress 
in establishing existence of TCE in randomized strategies. Our theorem generalizes all the above 
listed results and provides a unified methodological setup for equilibrium existence verification.

Along these lines, we continue with some additional examples. In Example 2, we consider 
more general aggregators and show how to verify Assumption 1.

Example 2 (Epstein-Zin utility). Following Kreps and Porteus (1978) and Epstein and Zin (1989)
we now consider a more general aggregator:

W2(x, z) = (u(x) + δzρ)
1
ρ

for ρ > 1. Here u is some increasing and strictly concave utility function. In case of β −δ version 
of this model with

W1(x, z) = (u(x) + βδzρ)
1
ρ

we derive TIAM:

V (x, y, z) = [ 1

β
W

ρ
1 (x, z) − 1 − β

β
u(y)] 1

ρ .

It is straightforward to verify Assumption 1 for this case. Indeed, V is a contraction in z with 
modulus δ (see Epstein and Zin (1989) A.3 or Marinacci and Montrucchio (2010)). Moreover, 
W

ρ
1 (s − i, z) has strictly increasing differences in (i, s) and hence V (s − i, y, x) has SSCP in 

19 See also Jensen (2021) for a discussion of a novel approach to verify TCE using “Ego Loss minimization problem”.
13
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(i, s). Finally, we construct the appropriate bounds. Let ξ0 be given. Then construct a sequence 
(ξk)k by taking ξk+1 such that q([0, ξk+1]|ξk) = 1 for given ξk . By Assumption 2 this can be 
done for a deterministic or non-atomic transition. For given (ξk) we need to find (ηk) to satisfy 

V (ξk, 0, ηk+1) ≤ ηk for each k ∈ N . Let ηk := αMk and assume M ∈
(

0, 1

δ
1
ρ

)
and suppose 

sup
t∈N

u(ξt )
Mtρ < ∞. We have then

u(ξk)

η
ρ
k

+ δ

(
ηk+1

ηk

)ρ

≤ 1. (8)

Substitute ηk = αMk into (8) and observe u(ξk)

αρMkρ + δMρ ≤ 1. To finish, we can take any α such 

that αρ ≥
u(ξk)

Mkρ

1−δMρ for each k.

Our final example provides an application to the case of risk sensitive preferences.

Example 3 (Risk-sensitive preferences). Consider now generalization involving the exponential 
certainty equivalent as defined by Weil (1993) (see also Bäuerle and Jaśkiewicz (2018) for a 
motivation). In such case the risk-sensitive preferences are given by

u(c) − βδ

γ
ln
∫
S

e−γU(s′)q(ds′|s − c),

where U(s) = u(g(s)) − δ
γ

ln
∫
S
e−γU(s′)q(ds′|s − g(s)) and γ > 0. The time aggregator is: 

W2(x, z) := u(x) + δz and TIAM takes the same form as in the Example 1. Finally, COP given 
by − 1

γ
ln
∫
S
e−γf (s′)q(ds′|s − c) satisfies our conditions as argued in the discussion following 

Assumption 3. The bounds to check our assumptions hold here can be found in a similar manner 
to the above examples (as COP does not change the range of U).

We now proceed with some preliminary definitions and constructions necessary to prove The-
orem 1. Let S be endowed with the Euclidean topology and the set H with the weak-star topology 
(i.e. the topology with the following notion of convergence hn →w h iff hn(s) → h(s) when-
ever h is continuous at s). By the arguments similar to Lemma 1 in Balbus et al. (2020a) H is 
weakly compact. Recall, H can be viewed as embedded into a topological vector space of signed 
measures with locally bounded variation (see Jaśkiewicz and Nowak (2022) for details). Endow 
S ×H with its product topology. Next define the following set:

E := {(s, h) ∈ S ×H : h is continuous at s} .

It is clear the evaluation function e(s, h) = h(s) has a continuous restriction to E . Since h ∈ H
is increasing, the section Eh := {s ∈ S : (s, h) ∈ E} has a countable complement. Next, define the 
space V to be the set of real valued functions on S ×H such that each f ∈ V:

• is bounded on any Sk ×H, where Sk := [0, ξk];
• is continuous from the right on S;
• for any h ∈H, f is continuous at (s, h) for all but countably many s ∈ S.20

20 That is obeys the following condition: for any h ∈ H, there is a countable set Sf,h ⊂ S such that if s /∈ Sf,h then f
is continuous at (s, h).
14
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Clearly V is a vector space. Endow it with the topology induced by the semi-norms:

||f ||k = sup
s∈Sk×H

|f (s,h)|.

Further define the following:

V :=
{

f ∈ V :
∞∑

k=1

||f ||k
rkηk

< ∞
}

with a norm ||f || =
∞∑

k=1

||f ||k
rkηk

.

Finally, Vusc := {f ∈ V : f is upper semicontinuous at any (s, h) ∈ S ×H}, and U := {f ∈ Vusc :
ϑ ≤ f (s, h) ≤ ηk, k ∈ N, s ∈ Sk}. Lemma 2 in the Appendix shows that U is a closed subset of a 
Banach space (V, || · ||). We are now ready to present the key steps in the proof of main theorem 
of this section.

Proof of Theorem 1. Our proof is build on a two-step fixed point procedure, where first for a 
given candidate h ∈H we construct recursive part of preferences (from tomorrow onward) using 
V and later show existence of a fixed point of a best response mapping, again defined on V but 
using recursive preferences constructed in step 1. We start by defining an operator T on U as 
follows:

T (f )(s, h) := max
i∈[0,s]V (s − i, s − h(s),Eif (h)),

where f (h) := f (·, h). For a given candidate policy h, and candidate value f the operator T
returns the updated value of the continuation value using TIAM. Lemma 3 shows that T is a self 
map on U , while Lemma 5 claims that T is a contraction mapping and thus has a unique fixed 
point, say f ∗ ∈ U . That is, for any candidate policy h, we obtain a unique value f ∗(h) solving 
the first requirement of the generalized Bellman equation defined on TIAM (see (6)), namely:

f ∗(s, h) = max
i∈[0,s]V (s − i, s − h(s),Eif

∗(h)).

Next, since we consider time-inconsistent decision problems for which principle of optimality 
is not satisfied, we need to additionally assure that the candidate policy h is consistent with the 
argmax of the right hand side of the generalized Bellman equation. Define the following mapping 
that characterizes the best reply correspondence

BI (h)(s) = arg max
i∈[0,s]V (s − i, s − h(s),Eif

∗(h)),

Since f ∗ ∈ U we know in particular that f ∗(·, h) is upper-semicontinuous on S for any h ∈ H. 
This assures that BI (h) is well defined. Now, we take the greatest investment selection from 
BI (h) namely:

bi(h)(s) := maxBI (h)(s).

Lemma 1 shows that any selection of s 	→ BI (h)(s) is increasing in s. Hence bi(h) is increasing, 
and moreover it is right continuous. This is a key step in assuring that bi is a continuous map 
(see our key Lemma 7) on a compact H. Then immediately, by Schauder-Tychonoff Theorem, 
we obtain the existence of a fixed point h∗ of bi, i.e.

f ∗(s, h∗) = V (s − h∗(s), s − h∗(s),Eif
∗(h∗)) = max

i∈[0,s]V (s − i, s − h∗(s),Eif
∗(h∗)).

Letting g∗(s) := s − h∗(s), we obtain a TCE g∗ with U∗ := f ∗(h∗) a corresponding value of 
using policy g∗ from tomorrow onwards. �
15
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We now remark on a selection from the argmax correspondence used in the proof of Theo-
rem 1 and optimal TCE. Our construction of TCE in Theorem 1 uses the greatest investment 
selection from the argmax correspondence. This selection procedure guarantees in models with 
present biased preferences (i.e. β < 1), all indifferences of the current self are arbitrarily re-
solved in favor of the earlier selves who prefer higher investment. In an important paper, Caplin 
and Leahy (2006) argue that optimal time consistent solutions should resolve all indifference in 
such a manner (for not only positive reasons, but for normative interpretations of time consistent 
solutions). Technically, this is also critical for our existence result. Such investment selection 
rules were also used in Bernheim et al. (2015), Cao and Werning (2018), and most recently in 
Jensen (2021).

As stressed, whenever investment is upper semicontinuous, its associated consumption is 
lower semicontinuous, which assures the upper semicontinuity of the continuation f ∗(·, h) for 
any h ∈H. Such upper semicontinuity is critical for proving non-emptiness of the argmax corre-
spondence. Indeed, it is not clear how the general existence for a deterministic quasi-hyperbolic 
discounting model with β < 1 can be extended using the least investment selection.21 Clearly, 
for the future biased preferences (e.g. quasi-hyperbolic discounting with β > 1) our method re-
quires the least investment selection which again corresponds with the argument of Caplin and 
Leahy (2006). See also Jensen (2021) for a similar finding.

We finish this section by considering a generalization of a quasi-hyperbolic discounting model 
with more than one period ahead misaligned preferences and showing why the general construc-
tion in Theorem 1 fails in such case when one allows for a deterministic transition.

Example 4 (β1 − β2 − δ semi-hyperbolic discounting). Consider a special case of preferences in 
(1) where the sequence of discount factors at any date t is specified as follows:

1, β1β2δ, β1β
2
2δ2, β1β

2
2δ3, β2β

2
2δ4, . . .

We shall refer to this model as the β1 − β2 − δ semi-hyperbolic discounting. Notice, in this 
model, from period t + 3 on, the discount factor becomes exponential. However, unlike in β − δ

model, in the case of β1 − β2 − δ semi-hyperbolic discounting, preferences are misaligned for 
more than just one date forward. Indeed, we have the following:

(β1β2δ)
2 �= β1β

2
2δ2,

whenever β1 �= 1; as well as

(β1β
2
2δ2)2 �= (β1β2δ)(β1β

2
2δ3),

whenever β2 �= 1.
The appropriate “decomposition” approach, similar to the one we developed in Section 2, 

involves three functional equations, namely:

U3(s) = u(g(s)) + δ

∫
S

U3(s
′)q(ds′|s − g(s)),

U2(s) = u(g(s)) + β2δ

∫
S

U3(s
′)q(ds′|s − g(s)),

21 Recent contributions on equilibrium existence in related classes of stochastic games use the least investment selection 
(see Balbus et al. (2015a, 2020a) e.g.).
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Ł. Balbus, K. Reffett and Ł. Woźny Journal of Economic Theory ••• (••••) ••••••
U1(s) = u(g(s)) + β1β2δ

∫
S

U2(s
′)q(ds′|s − g(s))

= max
c∈[0,s]u(c) + β1β2δ

∫
S

U2(s
′)q(ds′|s − c). (9)

The generalized Bellman equation approach can be easily extended to cover this semi-
hyperbolic discounting problem: Indeed, (U1, U2, U3) and g solve system of equations (9) if 
and only if U3 and g (a selection from the argmax correspondence of the right hand side) solve 
the following functional equation defined on TIAM:

U3(s) = 1

β1β
2
2

max
c∈[0,s]

{u(c) + β1β2δ

×
∫
S

[u(g(s′)) + β2δ

∫
S

U3(s
′′)q(ds′′|s′ − g(s′))]q(ds′|s − c)

⎫⎬
⎭

− [ 1

β1β
2
2

− 1]u(g(s)) − [ 1

β2
− 1]δ

∫
S

u(g(s′))q(s′|s − g(s)).

Notice, TIAM above involve two corrective factors. For β2 = 1, the second corrective fac-
tor disappears, and the problem reduces to β − δ discounting model. Similarly, for β1 = 1
the problem reduces to a version of quasi-hyperbolic model, where the additional impatience 
shows up between third and the second period. As is clear from the above formulation, how-
ever, in the deterministic version of the semi-hyperbolic problem, the argmax on the right 
hand side need not be necessarily well-defined (i.e. the argmax may be empty) in the space 
of investments H. Indeed, in the deterministic transition case, the objective function: i 	→
u(s − i) + β1β2δ[u(g(i)) + β2δU3(i − g(i)) may fail to be upper-semicontinuous, unless U3
is and both g and s 	→ s − g(s) are usc. For this reason our general existence approach based on 
the fixed point of TIAM may fail.22

We resolve the problem raised by the above example by considering a non-atomic state tran-
sitions on S. Under this specified assumption, we can extend our existence result in a number of 
important directions. In fact, this assumption suffices to prove existence in a more general model 
that we discuss in the next section.

3. Behavioral discounting

In this section, we extend our methods and results to more abstract formulations of recursive, 
dynamically-inconsistent preferences. This includes models of consecutive generations having 
general forms of preference misalignment. Following the reasoning developed for a general 
quasi-hyperbolic discounting model in section 2, assume the existence of a sequence of abstract 
recursive aggregators Wt : S ×R → R:

Wt(c,Es−c(Ut+1)).

22 See also (counter)example 2 in Balbus et al. (2015a).
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Observe, we allow the recursive aggregators to be time-variant. Here, c again denotes consump-
tion of the current self, and Es−c(Ut+1) is the certainty equivalent of the continuation utility 
given by Ut+1. Then, g∗ is a TCE if and only if

g∗(s) ∈ arg max
c∈[0,s]W1(c,Es−c(U

∗
2 )),

where the sequence of recursive utilities (U∗
t )t solves for any t :

U∗
t (s) := Wt(g

∗(s),Es−g∗(s)(U
∗
t+1)).

We now state our second existence theorem.

Theorem 2. Suppose

(i) each Wt is a continuous, monotone aggregator such that z 	→ Wt(x, z) is a contraction 
mapping with modulus δ < 1;

(ii) W1(s − i1, ψ(i1)) − W1(s − i2, ψ(i2)) has a SSCP for s ≥ i1 > i2 and any Borel function 
ψ ;

(iii) There is a sequence (ξk)k of elements of S, 0 < ξ1 < ξ2 < . . ., and a sequence ηk of R+ such 
that ϑ < η1 < η2 < . . . with ηk → ∞, for which each of Wt : S × [ϑ, ∞) 	→ [ϑ, ∞) obeys

Wt(ξk, ηk+1) ≤ ηk,

Moreover, r := sup
k∈N

ηk+1
ηk

∈ (0, 1/δ).

Then, under Assumption 2 (i) with non-atomic q and Assumption 3, there exists a TCE g∗ with 
a corresponding monotone investment h∗ ∈H.

This is our central existence result for the case of general, behavioral discounting model. Some 
aspects of its proof follow the lines developed for the quasi-hyperbolic discounting model, but 
there are critical differences between the two constructions. The key difference is in our argu-
ments concerning the continuity of value functions and the function spaces we work in. That is, 
in the case of quasi-hyperbolic discounting, we could work in the space of upper semicontinuous 
value functions. Therefore we could allow for deterministic transition functions. In the case of 
general behavioral discounting, our arguments needed to guarantee the existence of non-empty 
best reply maps cannot proceed without the imposition of nonatomic noise in the state transitions 
(see Example 4). As a result, the arguments used in the proof of this existence theorem can be 
constructed in a more direct manner, and do not need to involve our TIAM mapping.23

To present the proof of Theorem 2, we need to define certain new objects. Let V0 be the space 
of real valued functions on N × S ×H in which f ∈ V0 if and only if

• for any t, k ∈N , f is bounded on any (t, s, h) ∈N × Sk ×H,
• for any h ∈H and t ∈N , the function f (t, ·, h) is continuous as s for all but countably many 

s ∈ S.

23 We thank both Referees for suggesting the possibility of a more direct approach relative to our TIAM approach in 
the case of stochastic transition.
18
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Clearly V0 is a vector space. Endow it with a family of semi-norms:

||f ||k := sup
t∈N,k∈N,s∈Sk

|f (t, s, h)|.

Next define:

V0 :=
{

f ∈ V0 :
∞∑

k=1

||f ||k
rkηk

< ∞
}

with a norm ||f || :=
∞∑

k=1

||f ||∞k
rkηk

.

Define

U∞
0 :=

{
f ∈ V0 : ϑ ≤ ft (s, h) ≤ ηk, (k, t) ∈ N2, (s, h) ∈ Sk ×H

}
.

In Lemma 8 we show (V0, || · ||) is a Banach space and U0 is a closed subset of (V0, || · ||) (hence 
a complete metric space).

Proof of Theorem 2. For f ∈ V0 let

T (f )(t, s, h) = Wt(s − h(s),Eh(s)(ft+1(h))),

where ft+1(h)(·) := f (t, s, h). Lemma 9 shows that T is a contraction mapping on U0 and has a 
unique fixed point: f ∗(t, s, h). Define

BI (h)(t, s) = arg max
i∈[0,s]W1(s − i,Ei (f

∗
2 (h))),

and bi(h)(s) := maxBI (h)(s). Similarly as before (i.e. in Theorem 1), Lemma 12 shows that 
the operator bi maps H into itself and it is a continuous operator. This suffices to prove existence 
of a fixed point on convex and compact space H. �

We finish this section with an example restating result of Proposition 2.

Example 5. Consider a behavioral discounting model introduced in (1). Recall u : S → R is 
continuous, strictly increasing and strictly concave function. Clearly:

Wt(c,Es−c(Ut+1)) = u(c) + δtEs−c(Ut+1)

Assume there exists δ < 1 such that δt ≤ δ for each t . This suffices to assure assumption (i) in 
Theorem 2 is satisfied. Again, as verified in Example 1, strict concavity of u suffices for assump-
tion (ii). Proposition 2 presents a special case of bounded S, in which case (iii) is automatically 
satisfied. For unbounded S, sequences in assumption (iii) can be constructed in a manner similar 
to that in Example 1.

4. Approximations and hyperbolic discounting

In this section, we develop a general form of “semi-hyperbolic” discounting models in the 
spirit of Example 4 that has the flavor of the quasi-hyperbolic model, but allows for more general 
pattern of present-bias.24 We start with a description of a finite-bias semi-hyperbolic model, and 
we then study its limit version in subsection 4.2. After doing this, in section 4.3, we extend the 

24 See also Montiel Olea and Strzalecki (2014) section IV for an introduction related models and their motivation.
19
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results on TCE to the class of (δt )-behavioral discounting. In doing so, we develop an approxi-
mation approach that allows us to relate the set of TCE in the (δt)-behavioral discounting model 
to the set of TCE in limiting collections of semi-hyperbolic discounting models. In particular, 
in section 4.4, we show how TCE choice in the standard hyperbolic discounting model can be 
viewed as a limiting equilibrium behavior of a collection of semi-hyperbolic discounting mod-
els. More generally, approximation method we describe allows one to construct TCE in models 
with preferences as in (1) by finding an approximating sequence of semi-hyperbolic discount-
ing models with an appropriate sequence of discount factors (βt)t=1. The corresponding TCE in 
the limiting semi-hyperbolic case can be used to build representations of TCE for the original 
problem parameterized by the discount factors (δt )t=1.

For the sake of exposition, and to keep things simple in this section, we assume a standard 
time-separable aggregators with u : S → R a continuous, increasing and strictly concave utility 
function. This assures point (ii) of assumptions in Theorem 2 is satisfied. Next, we assume the 
transition q is nonatomic and satisfies Assumption 2(i), and we also assume that COP is given 
by a standard expected utility (and hence Assumption 3 is satisfied as well).

4.1. Semi-hyperbolic discounting

Consider a version of a semi-hyperbolic discounting model characterized by the following 
sequence of discount factors:

1, β1β2 . . . βT ,β1(β2 . . . βT )2, β1β
2
2 (β3 . . . βT )3, . . . , β1β

2
2 . . . βk−1

k−1 (

T∏
s=k

βs)
k, . . . ,

T∏
τ=1

βτ
τ ,

while for any t > T it is:

T∏
τ=1

βτ
τ βt−T

T ,

Assume βT < 1. The intuition for this formulation is that each decision maker/generation at date 
t is impatient up to T periods ahead and then from period T on the problem becomes stationary 
with exponential discounting at rate βT . Observe that when additionally all βt ≤ 1 the decision 
maker has a growing patience.

Remark 1. We have the following special cases: for T = 1, we have a standard exponential 
discounting; for T = 2, it is a quasi-hyperbolic β1 −β2 discounting model; for T = 3, we have an 
“order two” quasi-hyperbolic β1 − β2 − β3 model, etc. Per notation, in section 2 and Example 4, 
we used δ = βT . Now, we substitute for βT to keep the notation concise.

The functional equation representation of the consumption-savings problem for this class of 
semi-hyperbolic preferences takes the following form:

UT (s) = u(g(s)) + βT

∫
S

UT (s′)q(ds′|s − g(s)),

and g(s) ∈ arg max
c∈[0,s]{u(c) +

T∏
τ=1

βτ

∫
U2(s

′)q(ds′|s − c)},

S

20
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where each Ut(s) = u(g(s)) +
T∏

τ=t

βτ

∫
S

Ut+1(s
′)q(ds′|s − g(s)).

It is easy to observe that semi-hyperbolic model can be obtained as a special case of the model 
analyzed in section 3 taking the following aggregator:

Wt(x, z) =
⎧⎨
⎩ u(x) + z

T∏
τ=t

βτ if t < T

u(x) + zβT if t ≥ T

.

Notice, any of Wt has a common Lipschitz constant δ ∈ (0, 1) which can be taken as δ =
max

(
βT ,

T∏
τ=t

βτ

)
. What remains to be verified in order to apply Theorem 2 is to check the con-

ditions on the state space and utility bounds. Let ξ0 be given. Then, construct the sequence (ξk)k
by taking ξk+1 such that q([0, ξk+1]|ξk) = 1 for each given ξt . The final assumption requires 
there exists a number M ∈ (0, 1

δ

)
such that sup

t∈N
u(ξt )
Mt < ∞. This suffices to assure existence of a 

sequence (ηt )t such that for any t, k ∈ N we have Wt(ξk, ηk+1) ≤ ηk , as required by assumption 
(iii) in Theorem 2. Indeed, we can construct a sequence ηt in a form ηt = αMt , for some α > 0. 
The sequence ηt must satisfy

u(ξk) + ηk+1

T∏
τ=t

βτ ≤ ηk and u(ξk) + ηk+1βT ≤ ηk

for any t, k ∈N , or equivalently

u(ξk)

ηk

+ ηk+1

ηk

T∏
τ=t

βτ ≤ 1 and
u(ξk)

ηk

+ ηk+1

ηk

βT ≤ 1.

Hence u(ξk)
ηk

+ ηk+1
ηk

δ ≤ 1. Substituting αMt above into ηt we have then

sup
t∈N

u(ξt )

Mt
≤ α(1 − δM).

To conclude, it suffices to pick any α >

sup
t∈N

u(ξt )

Mt

1−δM
. Applying Theorem 2, we can conclude there 

exists a TCE of the T -period bias semi-hyperbolic discounting model, with investment policy in 
H.

4.2. Limiting semi-hyperbolic discounting

We begin this section by discussing the limiting case of semi-hyperbolic discounting (i.e., the 
limiting semi-hyperbolic discounting model studies the T -period bias as T gets arbitrarily large). 
For given T , denote the effective discount factors by:

T δ1 :=β1β2 . . . βT ,

T δ2 :=β1(β2 . . . βT )2 = T δ1

T∏
βτ ,
τ=2

21
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T δk :=β1β
2
2 . . . βk−1

k−1 (

T∏
s=k

βs)
k = T δk−1

T∏
τ=k

βτ .

For k ≤ T , we then have the following recursive formulation:

T δk = T δk−1

T∏
τ=k

βτ . (10)

We now seek existence of TCE in the sequence of these semi-hyperbolic models as T → ∞.
Suppose that T δ1 has a limit. Then, any of T δk has a limit with T → ∞. We will denote this 

limit by δk . Therefore, the recursive formula for the evolution of the successive discount factor 
δk takes the following form for any k:

δk = δk−1

∞∏
τ=k

βτ . (11)

We then have a new result per existence of TCE in the limiting semi-hyperbolic model relative 
to the (δt )-behavioral discounting model:

Theorem 3. Suppose there exists a sequence (bt)t such that:

∀t and ∀T we have T δtηt ≤ bt (12)

and that series (bt )t is convergent. Consider a model with generation t preferences given by:

Es

(
u(ct ) +

∞∑
τ=1

T δτ u(ct+τ )

)
(13)

with T δt satisfying the above recursive formulation in (10). Then,

(i) for any T , there is a TCE gT such that hT ∈ H, with hT (s) := s − gT (s);
(ii) any limit point of the sequence (gT )∞T =1 in the corresponding weak-star topology, say g∗, is 

also a TCE in the model with period t preferences given by:

Es

(
u(ct ) +

∞∑
τ=1

δτ u(ct+τ )

)
(14)

where the sequence δt satisfies the recursive formulation in (11).

Proof. The results in (i) follow from Theorem 2. We only prove (ii). Let t be the current gener-
ation whose state is s0. By Lemma 14 there is a probability space (�, F, P) and Markov chain 
(ξT

τ )∞τ=1 with the transition s 	→ q(·|s − gT (s)) and the current state s0 ∈ S, and another Markov 
chain (ξτ )

∞
τ=1 with the transition s 	→ q(·|s −g∗(s)) and the current state s0 as well, such that for 

any τ and ω, ξT
τ (ω) → ξτ (ω) as T → ∞. Because q is a nonatomic transition, we may assume 

without loss of generality that any of g∗ is continuous at ξτ (ω) for any ω ∈ �. Hence for any 
ω ∈ �:

lim
T →∞gT (ξT

τ (ω)) = g∗(ξτ (ω)). (15)
22
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Ł. Balbus, K. Reffett and Ł. Woźny Journal of Economic Theory ••• (••••) ••••••
Suppose generation t deviates and selects c ∈ [0, s0]. In the first step, assume s0 is a continuity 
point of gT . We have then gT (s0) → g∗(s0) as T → ∞ and

Es0

(
u(g∗(s0)) +

∞∑
τ=1

δτ u(g∗(sτ ))
)

= u(g∗(s0)) +
∫
�

( ∞∑
τ=1

δτ u(g∗(ξ∗
τ (ω)))

)
P(dω)

= lim
T →∞

⎛
⎝u(gT (s0)) +

∫
�

( ∞∑
τ=1

T δτ u(gT (ξT
τ (ω)))

)
P(dω)

⎞
⎠ (16)

= lim
T →∞Es0

(
u(gT (s0)) +

∞∑
τ=1

T δτ u(gT (sτ ))

)

= lim
T →∞Es0

(
u(gT (s0)) +Es0−gT (s0)

( ∞∑
τ=1

T δτ u(cT (sτ ))

))

≥ lim
T →∞

(
u(c) +Es0−c

( ∞∑
τ=1

T δτ u(gT (sτ ))

))

= u(c) +Es0−c

( ∞∑
τ=1

δτ u(g∗(sτ ))
)

(17)

where (16) and (17) follows by Dominated Convergence Theorem whose application is pos-
sible as the corresponding components of the sum are bounded by bt defined in (12). Hence 
h∗(s) = s − g∗(s) coincides with bi(h∗)(s) at any continuity point of g∗, where bi(·) is adapted 
to objective in (14). By nonatomicity of q we easily conclude that (bi ◦ bi)(h∗)(s) and bi(h∗)(s)
coincide for any s ∈ S. Hence bi(h∗) is a fixed point of bi. As a result, hT ⇒ bi(h∗) as T → ∞. 
By previous assumption, hT ⇒ h∗, hence bi(h∗) = h∗. �

This result allows us to approximate (in the weak topology) general behavioral discounting 
models with preferences such as (1). The key technical contribution in Theorem 3 is based on 
the upper semicontinuity of the set of TCE with respect to T for T at ∞. The new condition (i.e. 
that the series (bt ) is convergent) is required so that the resulting limiting model is well-defined.

4.3. Approximating general behavioral discounting models

With this result in place, we are now able to explore further the relationship between limit-
ing semi-hyperbolic models and (δt )-behavioral discounting models. Suppose we have a (δt )-
behavioral discounting model. We now ask the following question: can we construct a sequence 
of (βt )t=1 such that the TCE of the corresponding semi-hyperbolic discounting model can ap-
proximate TCE of the (δt )-behavioral discounting model? The following result answers this 
question.

Proposition 3. Let a sequence (δt )t be given. Define

βt :=
⎧⎨
⎩

δ2
1

δ2
if t = 1

δ2
t if t ≥ 2.

(18)

δt+1δt−1

23



JID:YJETH AID:105493 /FLA [m1+; v1.354] P.24 (1-39)
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then a TCE of the semi-hyperbolic β1 − β2 − . . . discounting model is a TCE of the behavioral 
discounting model with (δt )t=1 provided R := limt→∞ δt+1

δt
= 1.

Proof. To see that observe:

δt+1

δt

=
∞∏

τ=t+1

βτ

and hence

βt := δ2
t

δt+1δt−1

for t > 1. Further we have limt→∞ δt+1
δt

= limt→∞
∏∞

τ=t+1 βτ , that by assumptions is equal to 1. 
To recover β1 proceed as follows:

δ1 = β1

∞∏
t=2

βt = β1

∞∏
t=2

δ2
t

δt+1δt−1
= β1 lim

T →∞

T∏
t=1

δ2
t+1

δt+2δt

= β1 lim
T →∞

(
T +1∏
t=2

δt

)2

T∏
t=1

δt

T +2∏
t=3

δt

= β1
δ2

δ1
lim

T →∞
δT +1

δT +2
= β1

δ2

δ1
.

Hence β1 = δ2
1

δ2
. �

4.4. The hyperbolic discounting case

We can now use the results in the previous section to discuss formally how the TCE in the 
hyperbolic discounting model can be approximated by TCE in limiting versions of our semi-
hyperbolic discounting models. To see how such approximations can be constructed, let for any 
date t , the discount factor for the (δt )-discounting model take a specific hyperbolic form

δt =
(

1

1 + t

)β

,

for some parameter β > 1 guaranteeing convergence of the series. Notice, this implies that the 
discount factor between any two time periods t + 1 and t is:

( 1
t+2 )β

( 1
t+1 )β

=
(

t + 1

t + 2

)β

.

Then, applying our approximating formula in (18) in Proposition 3, we obtain the following 
expression:

βt+1 =
(

(t + 1)(t + 3)

(t + 2)2

)β

where β1 = ( 3
4

)β
. Hence, for this simple case, a TCE of the hyperbolic discounting model can 

be expressed as a limit of a TCE of semi-hyperbolic models.
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Observe in addition that the same argument applies to a more general form of hyperbolic 
discounting (e.g., the model studied in Loewenstein and Prelec (1992)). Specifically, just let 

δt = (1 +αt)−
β
α . Indeed, in such case, we have βt :=

(
(1+αt+α)(1+αt−α)

1+αt

) β
α

, β1 := ( 1+2α
1+α

)
β
α with 

R = 1.

5. Additional examples

We now provide some additional applications of our results. Throughout this section we will 
assume that transition q satisfies Assumption 2(i) and is nonatomic. Moreover, the continuous 
utility u is increasing and strictly concave while COP satisfies Assumption 3. All existence results 
in this section follow from our Theorem 2.

Let us begin with the case of generalized quasi-geometric discounting.

Example 6 (Generalized quasi-geometric discounting). Young (2007) considers a dynamic opti-
mization model with the following sequence of discount factors:

1, β̃1δ, β̃1β̃2δ
2, β̃1β̃2β̃3δ

3, . . .

Therefore, between any two consecutive dates (say t + 1 and t ), the discount rate is β̃t δ. Suppose 
limt→∞ β̃t ∈ (0, 1] exists and each β̃t δ < 1. Then, if we seek TCE in the resulting model, we 
have:

g∗(s) ∈ arg max
c∈[0,s]u(c) + β̃1δEs−c(U

∗
2 ),

where for t ≥ 2, we also have:

U∗
t (s) = u(g∗(s)) + β̃t δEs−g∗(s)(U

∗
t+1).

Here, we can take

Wt(c,Es−c(U)) = u(c) + β̃t δEs−c(U).

It is straightforward to see that this aggregator satisfies our assumptions, and therefore, TCE 
exists. Indeed, each Wt is a contraction with a uniform modulus δ < 1. The appropriate bounds 
(ηk)k can be computed analogously to the examples in section 3 (see page 21). In this model R �=
1 (generally) and hence our approximation via sequence of semi-hyperbolic equilibria cannot be 
applied.

We next consider the “backward discounting” model, introduced to the literature in a recent 
paper by Ray et al. (2021).

Example 7 (Backward discounting). Following Ray et al. (2021) we consider an individual 
whose current utility is derived from evaluating both present and past consumption streams. 
Each of these streams is discounted, the former forward in the usual way, the latter backward. 
Specifically, assume an individual at date t evaluates consumption according to a weighted av-
erage of his own felicity (as perceived at date t ) and that of a “future self” as perceived from 
date T > t . Therefore for a generation born in τ = 0 and taking the backward looking date to be 
T (τ) := T + τ for some T > 0, her preferences are:
25
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E0

T∑
t=0

δtu(ct )[α + (1 − α)δT −2t ] + δT ET +1

∞∑
t=T +1

δt−T u(ct )[α + (1 − α)δ−T ],

where α (resp. (1 −α)) is the forward (resp. backward) looking weight. Observe that from t ≥ T

the preferences become stationary with exponential discounting δ. So put

UT +1(sT +1) =ET +1

∞∑
t=T +1

δt−T u(g(st ))[α + (1 − α)δ−T ]

to denote the value for this stationary part (for some candidate stationary policy g). That is, for 
t ≥ T , we can take the aggregators:

Wt(c,Es−c(U)) := u(c)[α + (1 − α)δ−T ] + δEs−c(U).

Observe, this implies the problem resembles a finite-bias discounting model discussed in sec-
tion 4. For t < T , we need to, however, construct our preferences recursively (backwards) using 
our aggregators Wt :

Wt(c,Es−c(U)) := u(c)[α + (1 − α)δT −2t ] + δEs−c(U)

with UT (sT ) = u(g(sT ))[α + (1 − α)δ−T ] + δT EsT +1−g(sT +1)(UT +1).
Then, in this case, we seek the existence of TCE that are solutions of the following functional 

equation:

g∗(s) ∈ arg max
c∈[0,s]u(c)[α + (1 − α)δT ] + δEs−c(U

∗
1 ),

with U∗
t (s) = Wt(g

∗(s), Es−g∗(s)(U∗
t+1)). Again, with δ < 1 the above aggregators (Wt) satisfy 

assumption of Theorem 2 with time-variant utility ut(c) := u(c)[α + (1 − α)δT −2t ] whenever 
t ≤ T and ut (c) := u(c)[α + (1 − α)δ−T ] for t ≥ T . The appropriate continuation utility bounds 
can be constructed similarly to the construction on page 21 for semi-hyperbolic discounting 
model.

So far, in the paper, we have focused on models where this decision maker is infinitely-lived. It 
happens, our approach is also useful when attempting to understand cases where agents are short-
lived. Important problems in economics have the latter form with examples including dynamic 
sustainable resource models with public policy, economic models of the transmission of human 
capital and endogenous preferences across generations, models of endogenous fertility, as well 
as related models of sustainable dynastic choice with intergenerational altruism and paternalism. 
One particularly relevant case is that of bequest games. We now show how our results can be 
applied in these models.

Example 8 (Finitely-lived dynastic discounting and bequest games). Consider a sequence of 
discount factors 1, δ1, δ2, . . . , δT , 0, 0, . . . for some T ≥ 1. This, therefore, is a class of T -period 
paternalistic bequest games with changing discount factors. To apply our results to this model, 
simply take:

Wt(c,Es−c(U)) = u(c) + δtEs−c(U).

Then again, we are able to verify TCE exists. As δT +1 = 0 we observe that the problem re-
sembles a finite-bias discounting model discussed in section 4. Also, for this reason any sum of 
continuation utilities is finite and we do not need to verify bounds in condition (iii) of Theorem 2.
26
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Finally, we go back to the quasi-hyperbolic discounting model but now allow for a present 
bias discount factor to be investment dependent, to account for magnitude effects in discounting 
e.g. (see Epstein and Hynes (1983) or Noor (2009) for a motivation and Jaśkiewicz et al. (2014)
for recent developments in optimal growth models).

Example 9 (Magnitude effects). Suppose the present bias discount factor β is a function of in-
vestment, i.e. β : S → [0, 1] that is continuous and increasing. Then the aggregator takes the 
form:

W1(c,β(s − c)Es−c(U2)) = max
c∈[0,s] (u(c) + β(s − c)δEs−c(U2))

where:

U2(s) = W2(g(s),Es−g(s)(U2)) = u(g(s)) + δEs−g(s)(U2).

Clearly both W1 and W2 are δ-contractions. The appropriate continuation utility bounds can be 
easily constructed as on page 21.

6. Concluding remarks

This paper proposes a collection of functional equation methods for proving the existence of 
(pure strategy) TCE in a general class of dynamic models with “behavioral” discounting with 
recursive payoffs and bounded or unbounded state space. Characterizing TCE policies in such 
family of models, aside from the properties we obtain in this paper, is an open question. In par-
ticular, it would be interesting to examine theoretically if one could obtain the dissaving/savings 
characterizations of TCE that Cao and Werning (2018) construct for the quasi-hyperbolic model 
for more general cases of present bias and behavioral discounting. Finally, we think our gen-
eral existence methods developed in section 3 can be extended to show the existence of TCE in 
more general models of altruism with recursive payoffs as recently axiomatized by Galperti and 
Strulovici (2017). We leave these questions for further research.
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Ł. Balbus, K. Reffett and Ł. Woźny Journal of Economic Theory ••• (••••) ••••••
Appendix A. Omitted proofs

A.1. Quasi-hyperbolic discounting

We now state and prove a number of preliminary results.

Lemma 1. Let h ∈H and let f ∈ U . Then, any selection of

s 	→ B(f,h)(s) := arg max
i∈[0,s]V (s − i, s − h(s),Ei (f (h)))

is increasing in s.

Proof. Suppose that it is not the case: there are s1 > s2 and i1 < i2 such that i1 ∈ B(f, h)(s1)

and i2 ∈ B(f, h)(s2). Then

0 ≤ V (s2 − i2, s2 − h(s2),Ei2f (h)) − V (s2 − i2 − (i2 − i1), s2 − h(s2),Ei1f (h)).

But then from Assumption 1 (ii) we have

V (s1 − i2, s1 − h(s1),Ei2f (h)) − V (s1 − i2 − (i2 − i1), s1 − h(s1),Ei1f (h)) > 0

which contradicts i1 ∈ B(f, h)(s1). �
Now we examine the structure of the space (V, || · ||), and its subset U ⊂V .

Lemma 2. (V, || · ||) is a Banach space and U ⊂ V is its closed set.

Proof. Let (Vk, || · ||k) be the set of functions from V restricted to Sk ×H. Clearly it is a subspace 
of Banach space of bounded functions on Sk ×H, hence we only need to show Vk is closed. The 
convergence in norm || · ||k is equivalent to the uniform convergence on Sk ×H. Suppose fn ⇒ f

as n → ∞ in || · ||k and any of fn ∈ Vk . We show f ∈ Vk . Obviously f is bounded on Sk × H. 
We check further desired properties.

• We show f is right continuous on s for any fixed h.
Let ε > 0 be given. Let sn ↓ s0 and let N be such that ||fN − f ||k < ε

2 . We have

|f (sn,h) − f (s0, h)| ≤ |f (sn,h) − fN(sn,h)| + |fN(sn,h) − fN(s0, h)|
+ |fN(s0, h) − f (s0, h)|
≤ 2||f − fN ||k + |fN(sn,h) − fN(s0, h)|.

Since fN is right continuous at s0, hence taking a limit with n →∞ we have lim sup
n→∞

|f (sn, h)

− f (s0, h)| < ε. Since ε is arbitrary, hence f (sn, h) → f (s0, h). Hence f (·, h) is right 
continuous.

• We show for any h ∈ H there is a countable S̃ ⊂ S such that f is continuous at any (s, h) ∈
S × H, such that s /∈ S̃. For any h ∈ H, and any n ∈ N , let S̃n ⊂ S be a countable set such 

that fn is continuous at any (s, h) with s /∈ S̃n. Let S̃ :=
∞⋃

n=1
S̃n. Observe S̃ is countable and 

any of fn is continuous at (s, h) whenever s /∈ S̃. Since f is the uniform limit of fn on the 
set Sk ×H, hence f is continuous at (s, h).
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Consequently f ∈ Vk and (Vk, || · ||k) is a Banach space. Pick any f k ∈ Vk such that f k+1(s, h) =
f k(s, h) for any (s, h) ∈ Sk × H. Define f (s, h) = f k(s, h) whenever s ∈ Sk . Observe that 
f (·, h) is right continuous. Moreover, for any h ∈H, f may be discontinuous at (s, h) ∈ S ×H, 
where s is chosen from at most countable set. Indeed, since f k ∈ Vk , then f k is discontinuous 

only in a countable set S̃k ⊂ Sk . We can take S̃ =
∞⋃

k=1
S̃k which is countable to conclude that f is 

continuous at (s, h) for s /∈ S̃. Hence f ∈ V . By Lemma 1 in Matkowski and Nowak (2011), we 
conclude (V, || · ||) is a Banach space. We shall see, U is a complete metric space with the metric 
induced by || · || since it is a closed subset of V . Assume fn → f as n → ∞ in V , and any of fn

belong to U . We only show f is upper semicontinuous.
Let (sn, hn) → (s0, h0) and suppose sn ∈ Sk for any natural k. As before ε > 0 is given and 

N is such that ||f − fN ||k < ε
2 , Hence

f (s0, h0) − f (sn,hn) =
f (s0, h0) − fN(s0, h0) + fN(s0, h0) − fN(sn,hn) + fN(sn,hn) − f (sn,hn) ≥
−ε + fN(s0, h0) − fN(sn,hn).

Since fN is upper semicontinuous

lim inf
n→∞ (f (s0, h0) − f (sn,hn)) ≥ −ε.

Since ε > 0 is arbitrary, hence f is upper semicontinuous. �
Lemma 3. T maps U into itself.

Proof. Let f ∈ U . Let (s, h) ∈ Sk ×H. Then by definition of U we have ϑ ≤ f (s, h) ≤ ηk . Hence 
if i ≤ s then by Assumption 2 we conclude f (s′, h) ≤ ηk+1 for q(·|i)-a.a. s′ ∈ S. Therefore, by 
definition of COP

ϑ ≤ Eif (h) ≤ ηk+1.

By Assumption 1 we have

ϑ ≤ V (s − i, h(s),Eif (h)) ≤ V (ξk,0, ηk+1) ≤ ηk.

Hence ϑ ≤ T (f )(s, h) ≤ ηk for (s, h) ∈ Sk × H. We are going to show T (f ) it is upper semi-
continuous. Let (sn, hn) → (s0, h0) in the corresponding topology. Pick

in ∈ arg max
i∈[0,sn]V (sn − i, sn − hn(sn),Eif (hn)) (A.1)

and without loss of generality suppose in → i0. By Assumption 2, q(·|in) → q(·|i0) weakly. 
Since f is upper semicontinuous, the sequence f (hn) satisfies

limf (hn)(s
′) = sup

{
lim sup
n→∞

f (sn,hn) : sn → s′
}

≤ f (s′, h0) = f (h0).

By Assumption 3 we have then

lim sup
n→∞

Einf (hn) ≤ Ei0(limf (hn)) ≤ Ei0f (h0). (A.2)

Observe
29
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lim inf
n→∞ (sn − hn(sn)) ≥ s0 − lim sup

n→∞
hn(sn) ≥ s0 − h0(s0). (A.3)

Combining (A.2), (A.3) and Assumption 1 we have

lim sup
n→∞

V (sn − in, sn − hn(sn),Einf (hn)) ≤ T (f )(s0, h0). (A.4)

Hence T (f ) is upper semicontinuous. We show that for any h ∈ H, T (f ) is continuous at any 
(s, h) ∈ E for all but countably many s ∈ S. We construct a countable subset of S such that a 
continuity of f (·, h) fails. We can take

S̃ := {s ∈ S : q({s′ ∈ S : f is continuous at (s′, h)}|s) < 1} ∪
(
S \ Eh0

)
,

and clearly S̃ is countable. Now assume (sn, hn) → (s0, h0) and s0 /∈ S̃. Pick in as in (A.1) and 
assume in → i0. Pick arbitrary i ∈ [0, s0) \ S̃. Since s0 ∈ Eh0

, hn(sn) → h0(s0). By definition 
of S̃ it follows that f (s′, hn) → f (s′, h0) for q(·|i) almost all s′ ∈ S. Then the sequence de-
fined as fn(s

′) := f (s′, hn) tends to f (s′, h0) continuously q(·|i) almost everywhere. Hence by 
Assumption 3 and noting the continuity of V we have

lim
n→∞V (sn − i, sn − hn(sn),Eif (hn)) = V (s0 − i, s0 − h0(s0),Eif (h0)). (A.5)

Again by Assumption 3, upper semicontinuity of f and consequently (A.2), we have then

V (s0 − i0, s0 − h(s0),Ei0f (h)) ≥ lim sup
n→∞

V (sn − in, sn − hn(sn),Einf (hn))

≥ lim inf
n→∞ V (sn − i, sn − hn(sn),Eif (hn))

= V (s0 − i, s0 − h0(s0),Eif (h0)). (A.6)

By Assumption 3, the right hand in (A.6) side is right continuous. Since S \ S̃ is dense in S, 
hence this equality holds for any i ∈ [0, s0). Indeed, we can take ĩm ↓ i as m → ∞ such that 
ĩm /∈ S̃, substitute i by ĩm above, and take a limit m → ∞. To finish this proof, we only prove 
this inequality at i = s0. Now take ĩm ↑ s0 as m → ∞ and suppose any ĩm /∈ S̃. Since f (h)(·) is 
continuous at s′ for q(·|s0)-almost all s′ ∈ S, hence the constant sequence f (s, h) converges to 
itself q(·|i) continuously in s ∈ S. As a result, Eĩm

f (h0) → Es0f (h0) as m → ∞. Consequently 
this inequality holds for i = s0 as well. Combining it with (A.6) we have

T (f )(s0, h0) = V (s0 − i0, s0 − h0(s0),Ei0f (h0)) = lim
n→∞T (f )(sn, hn).

Finally we show T (f )(s, h) is continuous from the right in s. Now assume sn ↓ s0 as n → ∞ and 
pick in as in (A.1) and i0 as the limit of in. Then h(sn) → h(s0) as n → ∞. By Lemma 1 in ↓ i0, 
and hence by Assumption 3, Ein (f (h)) → Ei0(f (h)) as n → ∞. Let i ∈ [0, s0] be arbitrary. By 
Assumption 1 concerning the continuity of V we have

lim
n→∞T (f )(sn, h) = lim

n→∞V (sn − in, sn − h(sn),

Einf (h)) ≥ V (s0 − i, s0 − h(s0),Eif (h)).
(A.7)

Taking the supremum in (A.7) over i ∈ [0, s0] we have

lim
n→∞T (f )(sn, h) = T (f )(s0, h).

This assures the right continuity of T (f )(s, h) at s0 ∈ S. �
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Lemma 4. Let k ∈N and i ∈ Sk . Let f, g be Borel and bounded on Sk+1. Then:

|Ei (f ) − Ei (g)| ≤ ||f − g||k+1. (A.8)

Proof. Indeed, by Assumption 2, q(Sk+1|i) = 1 and hence for q(·|i)− all s ∈ S it holds f (s) ≤
g(s) + ||f − g||k+1. As a result, under assumption Assumption 3, using monotonicity and the 
constant subadditivity of Ei we have

Ei (f ) ≤ Ei (g + ||f − g||k+1) ≤ Ei (g) + ||f − g||k+1.

Substituting f by g and vice-versa we have (A.8). �
Lemma 5. T is a contraction mapping on U , and therefore has a unique fixed point in U .

Proof. Let k ∈ N and s ∈ Sk and let f, g ∈ U . Then h(s) ∈ Sk . Pick ĩ1 ∈ B(g, h)(s), and ĩ2 ∈
B(f, h)(s). Both belong to Sk . Then

T (f )(s, h) − T (g)(s, h) ≤ V (s − ĩ1, s − h(s),E
ĩ1(s)

(f )) − V (s − ĩ1, s − h(s),E
ĩ1
(g))

≤ δ

∣∣∣Eĩ1
(f ) − E

ĩ1
(g)

∣∣∣ ,
where the last inequality follows from Assumption 1. Furthermore, by above and Lemma 4 we 
have

T (f )(s, h) − T (g)(s, h) ≤ ||f − g||k+1. (A.9)

On the other hand we have

T (f )(s, h) − T (g)(s, h) ≥ V (s − ĩ2, s − h(s),E
ĩ2(s)

(f )) − V (s − ĩ2, s − h(s),E
ĩ2
(g))

≥ −δ

∣∣∣Eĩ2
(f ) − E

ĩ2
(g)

∣∣∣ ,
where the last inequality follows from Assumption 1. Furthermore, by above and Lemma 4 we 
have

T (f )(s, h) − T (g)(s, h) ≥ −||f − g||k+1. (A.10)

Combining (A.9) and (A.10) we have

|T (f )(s, h) − T (g)(s, h)| ≤ ||f − g||k+1.

Taking the supremum over s ∈ Sk and h ∈H we have

||T (f ) − T (g)||k ≤ ||f − g||k+1.

Hence T is 1-local contraction. By Theorem 2 in Rincon-Zapatero and Rodriguez-Palmero 
(2009), T is a contraction mapping on U . By Lemma 2 and Banach Contraction Principle T
has a unique fixed point. �
Lemma 6. Let h ∈H. If bi(h) is continuous at s, then BI (h)(s) is a singleton.

Proof. Suppose that bi(h) is continuous at s and pick y0 ∈ BI (h)(s). By Lemma 1, noting that 
BI (h) = B(f ∗, h) we have bi(h)(s − δ) ≤ y0 ≤ bi(h)(s + δ). Since bi(h) is continuous, hence 
y0 = bi(h)(s), and consequently BI (h) is singleton. �
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Lemma 7. The operator bi maps H into itself and is continuous.

Proof. By Lemma 1 it follows that bi(h)(·) is increasing. We show it is right continuous. Let 
sn ↓ s0. We show in := bi(h)(sn) → bi(h)(s0). By Lemma 1, in ↓ i0 for some i0 ∈ [0, s0]. Since 
h is right continuous h(sn) ↓ h(s0) as n → ∞. Put

�(s, i) := V (s − i, s − h(s),Ei (f
∗(h))).

Since h and i 	→ Ei (f
∗(h)) are both right continuous, hence we have

�(s0, i0) = lim
n→∞�(sn, in) ≥ �(s0, i)

for all i ∈ [0, s0]. Hence i0 ∈ BI (h)(s0). Take another i ∈ BI (h)(s0). Again by Lemma 1 it 
follows i ≤ bi(h)(sn) = in for any n ∈ N . Taking a limit n → ∞, i ≤ i0. Consequently i0 =
bi(h)(s0). We now show the continuity of bi on H. Suppose hn →w h0 in H such that s0 is a 
continuity point of bi(h0)(·). By Lemma 6 it follows that BI (h0)(s0) is a singleton in this case. 
Hence we are going to show in := bi(hn)(s

0) → i0 for some i0 ∈ BI (h0)(s0). Let

Sf ∗,h0 :=
{
s ∈ S : q

(
{s ∈ S : f ∗ is continuous at (s, h0)}

)
< 1

}
∪ (S \ Eh0

).

By Assumption 2 the complement of Sf ∗,h0
is at most countable. First, let us focus attention to 

s0 /∈ Sf ∗,h0
. By definition of Sf ∗,h0

it follows that f (·, hn) tends to f (·, h0) continuously q(·|i)
almost everywhere for any i /∈ Sf ∗,h0

. Hence by Assumption 3, for any such i we have

Eif
∗(hn) → Eif

∗(h0)

as n → ∞. Moreover, hn(s
0) → h(s0) and since in → i0, then by Assumption 3

lim
n→∞ Einf

∗(hn)) = Ei0f
∗(h0)).

Hence for any i /∈ Sf ∗,h0
:

V (s0 − i0, s0 − h0(s0),Ei0f
∗(h0)) = lim

n→∞V (s0 − in, s
0 − hn(s

0),Einf
∗(hn))

≥ lim
n→∞V (s0 − i, s0 − hn(s

0),Eif
∗(hn)))

= V (s0 − i, s0 − h0(s0),Eif
∗(h0))). (A.11)

Then combining the inequality above with (A.11) we have i0 ∈ BI (h0)(s0), consequently i0 =
bi(h0)(s0). Hence we have proven, bi(hn)(s

0) → bi(h)(s0) as n → ∞ whenever s0 /∈ Sf ∗,h and 
s0 is a continuity point of bi(h). To finish the proof, we need to show that this convergence holds 
on Sf ∗,h as well. If s0 ∈ Sf ∗,h is a continuity point of bi(h0), we may find δ1 > 0 and δ2 > 0
such that bi(h0) is both continuous at s0 − δ1, s0 + δ2 but s0 − δ1 /∈ Sf ∗,h in s0 + δ2 /∈ Sf ∗,h. By 
Assumption 2, δ1 and δ2 can be sufficiently small. Then, by the previous part of the proof

bi(s0 − δ1) = lim
n→∞bi(hn)(s

0 − δ1) ≤ lim inf
n→∞ bi(hn)(s

0)

≤ lim sup
n→∞

bi(hn)(s
0) ≤ lim

n→∞bi(hn)(s
0 + δ2) = bi(h0)(s0 + δ2).

Taking a limit δ1 → 0 and δ2 → 0 we have bi(hn)(s
0) → bi(h0)(s0) as n → ∞. �
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A.2. Behavioral discounting

Lemma 8. (V0, || · ||) is a Banach space, and U0 is a closed subset of V0.

Proof. Consider 
(
V0,k, || · ||k

)
, the space of restrictions of f to N × Sk × H. Obviously it is 

a subspace of a Banach space of bounded functions on N × Sk × H. We show it is a Banach 
space by proving that V0,k is a closed set. Let fn be a sequence of V0,k and suppose fn → f

in the norm. It is easy to see f (t, s, h) is bounded on N × Sk × H. Since fn ∈ V0,k hence for 
any (t, h), there is a countable S̃n ⊂ Sk , such that fn(t, ·, h) is continuous at s for any s ∈ Sk . 

Then S =
∞⋃

k=1
Sk is countable and any of fn(t, ·, h) is continuous at s /∈ S . Since f is a uniform 

limit of fn, hence is continuous at any s /∈ S . Now consider the sequence f k ∈ V0,k such that 
for any k ∈ N , f k+1(t, s, h) = f k(t, s, h) for any s ∈ Sk . Then we can well define f (t, s, h) :=
f k(t, s, h) whenever s ∈ Sk . Obviously f is bounded on any N×Sk ×H. Since f k ∈ V0,k , hence 
for any t ∈ N and h ∈ H, there is a countable set Sk

0 ⊂ Sk such that f k(t, ·, h) is continuous at 

any s /∈ Sk
0 . Then f is continuous at any s ∈ S =

∞⋃
k=1

Sk . Clearly S is countable. By Lemma 1 

in Matkowski and Nowak (2011), we conclude (V0, || · ||) is a Banach space. Obviously U0 is a 
closed subset of V0. �
Lemma 9. T is a contraction mapping on U∞

0 and has a unique fixed point.

Proof. We show T maps U0 into itself. Let f ∈ U0. Then for any k ∈ N , s′ ∈ Sk+1, h ∈ H and 
t ∈N we have ϑ ≤ f (t + 1, s ′, h) ≤ ηk+1. By Assumption 2 and 3 for any s ∈ Sk we have

ϑ ≤ Eh(s)ft+1(h) ≤ ηk+1.

Hence

ϑ ≤ Wt(s − h(s),Eh(s)ft+1(h)) ≤ Wt(ξk, ηk+1) ≤ ηk.

Now let S ⊂ S be a countable set such that f (t, s, h) is continuous at any s /∈ S . Let s ∈ Eh. 
Observe that S \ Eh is countable. Suppose sn is a sequence tending to s as n → ∞. Then 
h(sn) → h(s) as n → ∞. Furthermore, since the transition q ranges over the nonatomic mea-
sures, it follows that q (S|h(s)) = 0. Then for q(·|h(s))-almost all s′ ∈ S, constant of func-
tions f (t + 1, s′

n, h) → f (t + 1, s′, h) as n → ∞. In other words, the constant sequence of 
functions fn(·) = f (t + 1, ·, h) tends to itself continuously at s′. By Assumptions 3 and 2, 
Eh(sn)ft+1(h) → Eh(s)ft+1(h) as n → ∞. Hence

Wt(sn − h(sn),Eh(sn)ft+1(h)) → Wt(s − h(s),Eh(s)ft+1(h)) as n → ∞.

Hence T (f )(t, ·, h) is continuous at any s ∈ Eh. Since S \ Eh is countable, T (f ) ∈ U0. Now 
we show a local contraction property. Pick f, g ∈ U0. By Assumption 2, for any natural k and 
s ∈ Sk we have q(Sk+1|h(s)) = 1. Hence by Assumption 3, and consequently the non-expansive 
property of Eh(s)(·) in Lemma 4 we have∣∣Eh(s)ft+1(h) − Eh(s)gt+1(h)

∣∣≤ ||f − g||k+1. (A.12)

Since Wt has a Lipschitz constant with δ, we have then
33
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∣∣Wt(s − h(s),Eh(s)ft+1(h)) − Wt(s − h(s),Eh(s)gt+1(h))
∣∣

≤ ∣∣Eh(s)ft+1(h) − Eh(s)gt+1(h)
∣∣ .

Taking a limit above with (t, s, h) ∈N × Sk ×H, and combining with (A.12) we have

||T (f ) −T (f )||k ≤ δ||f − g||k+1.

Since k is arbitrary, hence T is a 1-local contraction. By Theorem 2 in Rincon-Zapatero and 
Rodriguez-Palmero (2009), T is a contraction mapping on U∞

0 . By Lemma 2 and Banach Con-
traction Principle T has a unique fixed point. �
Lemma 10. Let h ∈ H. Then, BI(h) is nonempty valued correspondence with the greatest and 
the least selection. Moreover, any selection of BI(h) is increasing in s.

Proof. First we show BI (h)(s) is indeed nonempty valued correspondence with the greatest and 
the least element. Let f ∗ be a unique fixed point of T and f ∗

2 be the coordinate needed to define 
BI (i.e. f ∗

2 (s, h) := f ∗(2, s, h). For any h ∈ H let S∗,h be a countable subset of S such that f ∗
2

is continuous at any (s, h) ∈ S × H such that s /∈ S∗. Since q(·|i) is nonatomic for any i ∈ S, 
hence q(S∗,h|i) = 1. Hence the constant sequence fn(s) = f ∗

2 (s, h) tends to itself continuously. 
Therefore, by Assumption 3 it follows that Ei (f

∗
2 (h)) is continuous in i ∈ S. Hence

i ∈ S 	→ W1
(
s − i,Ei (f

∗
2 (h))

)
is continuous. Hence BI (h)(s) �= ∅ and has the greatest and the least element. By Lemma 1 it 
follows that any selection of BI (h) is increasing. �

By Lemma 10 we can repeat the same argument as in Lemma 6 to obtain:

Lemma 11. Let h ∈ H and suppose h is continuous at s. Then, if s 	→ bi(h)(s) is continuous at 
s then BI (h)(s) is a singleton.

Combining Lemmas 10 and 11 we have the following:

Lemma 12. The operator bi maps H into itself and it is a continuous operator.

Its proof in analogous to the proof of Lemma 7. It is enough to substitute V with W1 and 
recall from Lemma 10 that i ∈ S 	→ W1

(
s − i,Ei (f

∗
2 (h))

)
is continuous.

A.3. Approximating general behavioral discounting models

Lemma 13. 
∞∏

k=1
βk exists and is nonzero if and only if lim

t→∞
∞∏
k=t

βk = 1.

Proof. Define r :=
∞∏

k=1
βk , and suppose r > 0. Then −ln(r) =

∞∑
k=1

− ln(βk). Since − ln(βk) > 0, 

hence the series above are convergent and

lim
t→∞

∞∑
− ln(βk) = 0. (A.13)
k=t
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Moreover,

lim
t→∞

∞∑
k=t

− ln(βk) = − lim
t→∞ ln

( ∞∏
k=t

βk

)
= − ln

(
lim

t→∞

∞∏
k=t

βk

)
. (A.14)

Combining (A.13) with (A.14) we have the thesis. Now let r = 0. Then the right hand side in 

(A.13) yields ∞. Furthermore, by (A.14) we have lim
t→∞

∞∏
k=t

βk = 0 �

For any T , let XT
t be a S−valued Markov chain with a deterministic initial value x and a 

transition probability s ∈ S 	→ q(·|hT (s)) where hT ∈ H. We denote X∗
t as a S− Markov chain 

whose initial value x and a transition probability s ∈ S 	→ q(·|h(s)) where h ∈H. Let QT
s0

be the 
joint distribution of (XT

t )∞t=1 and let Qs0 be the joint distribution of (X∗
t )

∞
t=1 with fixed initial 

distribution s0.

Lemma 14. For any s0 ∈ S, QT
s0

⇒ Q∗
s0

. As a result, there exists a probability space (�, F, P)

and S−valued sequences (ξT
t (ω))∞ and (ξ∗

t (ω))∞t=1 whose join distribution are QT and respec-
tively Q∗ such that lim

T →∞ ξT
t (ω) = ξ∗

t (ω) for any ω ∈ � and t ∈N .

Proof. We show that for any integer k, s ∈ S and any bounded and continuous f k : Sk 	→ R it 
holds

lim
T →∞

∫
S∞

f (s1, s2, . . . , sk)Q
T
s (ds∞) =

∫
S∞

f (s1, s2, . . . , sk)Q
∗
s (ds∞). (A.15)

We prove this thesis by induction with respect to k. For k = 1 it follows directly by Assump-
tion 2. Suppose that (A.15) holds for some k. Put

f̃ (s1, s2, . . . , sk) :=
∫

S∞
f (s1, s2, . . . , sk, sk+1)q(dsk+1|hT (sk)).

Observe that by nonatomicity of q any of gT is continuous for QT
s and Qs a.a. s∞ ∈ S∞. As 

a result, by Lemma 15 letting φ be an identity mapping, f̃ is a continuous function on Sk for 
QT

s and Qs - a.a. s∞ ∈ S∞. Hence substituting f̃ by f into (A.15) and applying Lemma 15.4 in 
Aliprantis and Border (2006) we obtain exactly (A.15) with k + 1. For the second part we apply 
again Skorohod’s Representation Theorem (Theorem 6.7. in Billingsley (1999)). �
A.4. Auxiliary results

Lemma 15. Suppose μn → μ weakly on S, and all μn are concentrated on a common bounded 
interval S0 ⊂ S. Let fn, be a sequence of Borel functions all commonly bounded on S0. Further-
more, let φ be a strictly monotone and continuous real valued function whose domain is included 
in the range of any fn. Then

lim sup
n→∞

φ−1

⎛
⎝∫

S

φ(fn(s
′))μn(ds′)

⎞
⎠≤ φ−1

⎛
⎝∫

S

φ(lim sup
n→∞

fn(s
′))μ(ds′)

⎞
⎠ . (A.16)
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and

lim inf
n→∞ φ−1

⎛
⎝∫

S

φ(fn(s
′))μn(ds′)

⎞
⎠≥ φ−1

⎛
⎝∫

S

φ(lim inf
n→∞ fn(s

′, h))μ(ds′)

⎞
⎠ . (A.17)

Suppose that μ is concentrated on the set of the points in which fn → f continuously. Then

lim
n→∞φ−1

⎛
⎝∫

S

φ(fn(s
′))μn(ds′)

⎞
⎠= φ−1

⎛
⎝∫

S

φ(f (s′))μ(ds′)

⎞
⎠ . (A.18)

Proof. For instance we prove (A.16) and (A.18) and we prove this fact for decreasing φ. The 
proof of (A.17) is similar, and the same in case of increasing φ. Since μn → μ, hence by the 
Skorohod’s Representation Theorem (Theorem 6.7. in Billingsley (1999)) we find a probability 
space (�, F, P), a sequence of random variables Xn and a random variable X on � whose 
distribution is μn and respectively μ such that Xn(ω) → X(ω) pointwise in ω ∈ �. We have 
then

lim inf
n→∞

∫
S

φ(fn(s))μn(ds) = lim inf
n→∞

∫
S

φ(fn(Xn(ω)))P (dω)

≥
∫
S

lim inf
n→∞ φ(fn(Xn(ω)))P (dω) (A.19)

≥
∫
S

φ(lim sup
n→∞

fn(Xn(ω)))P (dω) (A.20)

≥
∫
S

φ(limfn(X(ω)))P (dω) (A.21)

=
∫
S

φ(limfn(s))μ(ds),

where the inequality in (A.19) follows from the standard Fatous Lemma, the inequality in (A.20)
occurs since φ is decreasing and continuous, and the inequality (A.21) follows from definition of 
limfn. Noting that φ−1 is continuous and decreasing we obtain

lim sup
n→∞

φ−1

⎛
⎝∫

S

φ(fn(s))μn(ds)

⎞
⎠≤ φ−1

⎛
⎝lim inf

n→∞

∫
S

φ(fn(s))μn(ds)

⎞
⎠

≤ φ−1

⎛
⎝∫

S

φ(limfn(s))μ(ds)

⎞
⎠ .

Now suppose that fn → f continuously μ-almost everywhere. Then

fn(Xn(ω)) → f (X(ω)) (A.22)

for any ω ∈ �. Then we repeat the above lines substituting inequalities ≥ with =, and substituting 
lim sup and lim inf with lim. Then the counterpart of (A.19) follows from the standard Dominated 
36
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Convergence Theorem and the counterpart of (A.20) and (A.21) follow from the continuity of φ
and respectively from (A.22). As a result we have (A.18). �
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