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Abstract We study a class of infinite horizon stochastic games with uncountable number of
states. We first characterize the set of all (nonstationary) short-term (Markovian) equilibrium
values by developing a new (Abreu et al. in Econometrica 58(5):1041–1063, 1990)-type
procedure operating in function spaces. This (among others) proves Markov perfect Nash
equilibrium (MPNE) existence. Moreover, we present techniques ofMPNE value set approx-
imation by a sequence of sets of discretized functions iterated on our approximated APS-type
operator. This method is new and has some advantages as compared to Judd et al. (Econo-
metrica 71(4):1239–1254, 2003), Feng et al. (Int Econ Rev 55(1):83–110, 2014), or Sleet
and Yeltekin (Dyn Games Appl doi:10.1007/s13235-015-0139-1, 2015). We show applica-
tions of our approach to hyperbolic discounting games and dynamic games with strategic
complementarities.
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1 Introduction and Related Literature

The existence of equilibrium in the class of discounted, infinite horizon stochastic games is an
important question since the work of Shapley [50] and includes many seminal contributions
(see e.g., [40] or [47]). Recently, however, economists focused on equilibrium existence
in the class of short-memory strategies, especially over uncountable number of states. The
importance of short-memory equilibria lays in (i) its simplicity, (ii) potential computational
tractability, (iii) possibility of developingmethods for studying comparative statics or dynam-
ics, and as a result, (iv) applicability to many economic problems at hand, among others. This
literature has many recent contributions, including work of Duggan [28], who proves equilib-
rium existence in a class of noisy stochastic games, of Barelli andDuggan [16] and Jaśkiewicz
and Nowak [33], who focus on semi- or almost-Markov equilibria, or of Balbus et al. [9]
with few general stationary equilibrium existence results, or of Levy and McLennan [39],
who show nonexistence of stationary equilibrium in a class of continuous stochastic games,
among others.

Further, in recent times, stochastic games have become a fundamental tool for studying
dynamic economic models, where agents possess some form of limited commitment includ-
ing works in (i) dynamic political economy, (ii) equilibrium models of stochastic growth
without commitment, (iii) models of savings and asset prices with hyperbolic discounting,
(iv) international lending and sovereign debt, (v) optimal Ramsey taxation, (vi) dynamic
negotiations with status quo, or (vii) dynamic oligopoly models, for example. The applica-
tions of repeated, dynamic or stochastic games toolkit to analyze these phenomena results,
among others, from the richness of behavior supported by a subgame perfect or sequen-
tial equilibrium (see celebrated folk theorem and its analytical tractability using recursive
characterization of public equilibria of pathbreaking APS [2] contribution).

Additionally, in the literature pertaining to economic applications of stochastic games, the
central concerns have been broader than the mere question of weakening conditions for the
existence of subgame perfect or Markovian equilibrium. Rather, researchers have become
more concerned with characterizing the properties of computational implementations, so
they can study the quantitative (as well as qualitative) properties of particular subclasses
of perfect equilibrium. Unfortunately, for uncountable number of states, there are only few
papers and results that offer a set of rigorous tools to compute, approximate or characterize
the equilibrium strategies. See [12–14] for some recent contributions.

The aim of this paper is to address the question of short-memory equilibrium existence,
characterization and computation using constructive monotone method, where our notion of
monotonicity is defined using set inclusion order over spaces of value functions. Specifically,
we study existence and approximation, relative to the set of MPNE for two important classes
of stochastic games, namely: (i) hyperbolic discounting games1 and (ii) supermodular games
with strategic (within period) complementarities and positive externalities,2 although appli-
cations in other classes of games are possible (see [11], for an early example applied to OLG
economies).

From this perspective, the contributionof our paper is as follows.Wefirst prove existenceof
aMarkovian NE via strategic dynamic programming methods similar to that proposed in the
seminal work of Mertens and Parthasarathy [40]3 and APS [2] (henceforth, MP/APS). We
refer to this as a “indirect” method, as these methods focus exclusively on equilibrium values

1 As analyzed in [8,10,31,32,46] or [15], for example.
2 As analyzed in [5,26,45] or [14], for example.
3 See also [41] or [42], pages 397–398.
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(rather than, characterizing the set of strategies that implement those equilibrium values). To
mention, our method differs from those of the traditional MP/APS literature in at least two
directions. Perhaps most importantly, we study the existence of short-memory or Markovian
equilibria, as opposed to broad classes of sequential or subgame perfect equilibria.4 Addi-
tionally, our strategic dynamic programming method works directly in function spaces (as
opposed to spaces of correspondences), by which we can avoid some of the technical prob-
lems associated with measurability and numerical implementations using set-approximation
techniques.5

Next, we propose a procedure for MPNE value set approximation. This differs from
the approach taken by Judd et al. [34] and Feng et al. [30] (henceforth, FMPS) or Sleet and
Yeltekin [51] as: (i) our theoretical numerical method operates directly in function spaces, (ii)
we allow to analyze equilibria that are time/state dependent only (but are not continuation
dependent), and moreover, (iii) equilibria we study are defined on a minimal state space,
which greatly simplifies the approximation of the set of policies that implement particular
values in the equilibrium value set.

The rest of the paper is organized as follows. We start in Sect. 2 by presenting and
discussing our method. Then, in Sect. 3, we present application to a class of quasi-hyperbolic
discounting model. Next, our results on Markov equilibrium existence and its value set
approximation for a class of stochastic supermodular games can be found in Sect. 4. Section 5
concludes.

2 The Method

The approach we take in this paper to prove existence of MPNE and approximate its value
set, is the strategic dynamic programming approach based on the seminal work of Mertens
and Parthasarathy [40]. See also [1,2] per similar method adapted for repeated games. In
the original strategic dynamic programming approach, dynamic incentive constraints are
handled using correspondence-based arguments. For each state s ∈ S, one shall envision
agents playing a one-shot stage game with the continuation structure parameterized by a
measurable correspondence of continuation values, say w ∈ V , where V is the space of
nonempty, bounded, upper semicontinuous correspondences (for example). Imposing incen-
tive constraints on deviations of the stage game under some continuation promised utility w,
an operator B, that is monotone under the set inclusion order, can be defined that transforms
V . By iterating on B from the greatest element of V , the operator is shown to map down, and
then, by appealing to standard “self-generation” arguments, it can be shown a descending
subchain of subsets can be constructed, whose pointwise limit in the Hausdorff topology is
the greatest fixed point of B. This fixed point turns out to be the set of sustainable values
in the game, with a subgame perfect/sequential equilibrium being any measurable mapping
supporting measurable selections from this limiting correspondence of values.

4 It bears mentioning, we focus on short-memory Markovian equilibrium because this class of equilibrium
has been the focus of a great deal of applied work. We should also mention very interesting papers by Cole
and Kocherlakota [24] and Doraszelski and Escobar [27] that also pursue a similar idea of trying to develop
MP/APS-type procedure in function spaces for Markovian equilibrium (i.e., methods where continuation
structures are parameterized by functions) but for finite/countable number of states. See also [18] for a related
argument used to prove existence of equilibrium in a bequest game.
5 In our accompanied papers (see [11,14,15]), we propose an alternative direct method for stationaryMarkov
equilibriumexistence and computation.Weview results of both, direct and indirect,methods as complementary
and discuss them in the paper.
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In this paper, we propose a new procedure for constructing all measurable (possibly non-
stationary) Markov Nash equilibria for a class of infinite horizon stochastic games. Our
approach6 is novel, as we operate directly in function spaces,7 i.e., a set of bounded measur-
able functions on S valued in R.

To see this, consider an auxiliary strategic form gameGs
w parameterized by a continuation

w and state s ∈ S. By T (w)(s) denote a set of all Nash equilibriumpayoffs ofGs
w , measurable

in s. Then, we define an operator B : V → V , where V := 2V for some compact set V , a
subset of a class of bounded, measurable functions. We let:

B(W ) = ∪w∈W {v ∈ V : ∀s ∈ S v(s) = T (w)(s)} .

Operator B is nondecreasing on V , when endowed with the set inclusion order. By V ∗ ⊂ V ,
we denote a set of all values in V for some MPNE. In the next sections, we derive conditions
under which the following result holds: ∩t Bt (V ) = V ∗ 	= ∅ (t-th composition). We also
provide a method of V ∗ approximation in the Hausdorff distance. Before proceeding, we
discuss some important properties of our method and discuss its relation to the literature.

First, let us address the differences between the traditional correspondence-basedMP/APS
procedure and our’s. Let V ∗

APS be the correspondence of sequential equilibria satisfying
BAPS(V ∗

APS) = V ∗
APS . From the definition of MP/APS operator, we know the following:

(∀s ∈ S)
(∀ vector v ∈ V ∗

APS(s)
) (∃ measurable function w ∈ V ∗

APS s.t. v = T (w)(s)
)
.

Specifically, observe that continuation function w can depend on v and s, hence we shall
denote it by wv,s . Now, consider our operator B and its fixed point V ∗ ⊂ V . We have the
following property:

(∀ function v ∈ V ∗)
(∃ measurable function w ∈ V ∗ s.t. (∀s ∈ S) v(s) = T (w)(s)

)
.

In our method, continuation w depends on v only; hence, we can denote it by wv .
Observe that in both methods, the profile of equilibrium decision rules: NE(w, s) is

generalized Markov, as it is enough to know state s and continuation function w to make an
optimal choice. In our technique, however, the dependence of v on the current state is direct:
s → NE(s, wv). Sowe can verifywhether the generalizedMarkov policy is, e.g., continuous,
monotone in s easily. In the MS/APS approach, one has the following: s → NE(s, wv,s), so
even if NE is continuous in both variables, there is no way (generally) to control continuity
of s → wv,s . The best example of such discontinuous continuation selection is, perhaps,
the time-consistency model (see [21]). These problems are also the main motivation for
developing a computational technique that uses specific properties of (the profile) of the
equilibrium decision rules with respect to s (important especially, when the state space is
uncountable).

On a related matter, the set of Markov perfect Nash equilibrium values is a subset of the
MP/APS (subgame perfect/sequential) equilibrium value set.

This framework used to prove existence of the MPNE can be also used to define a piece-
wise constant approximation of the equilibrium set V ∗. Our theoretical numerical method is
directly linked to the proof of equilibrium existence, hence heavily relies on our theoretical
result, i.e., it uses the fact that (i) our method operates directly in function spaces, (ii) allows

6 It bears mentioning that for dynamic games with more restrictive shocks spaces (e.g., discrete or count-
able), MP/APS procedure has been used extensively in economics in recent years: see e.g., [18] for altruistic
economies, [7,37,48,49] for policy games or FMPS for recursive competitive equilibrium of a dynamic econ-
omy.
7 For example, see Phelan and Stacchetti, who discuss such possibility in function spaces.
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to analyze equilibria that are time/state dependent only and (iii) studies equilibria defined on
a minimal state space. All of these greatly simplify the approximation of the set of policies
that implement particular values in the equilibrium value set. The details are presented for
the two examples we study in the next sections.

3 A Class of Quasi-hyperbolic Discounting Games

Our environment is a stochastic version of a β − δ quasi-hyperbolic discounting model that
has been studied extensively in the literature8 (see [31] or [15]). We envision an agent to be
a sequence of “selves” indexed in discrete time t ∈ T = {0, 1, . . .}. A “current self” or “self
t” enters the period in given state st ∈ S , where for some S̄ ∈ R+, S := [0, S̄], and chooses
an action denoted by ct ∈ [0, st ]. This choice determines a stochastic transition probability
on the next period state st+1 given by Q(dst+1|st − ct ). The within-period utility is given
by (bounded) utility function u. Discount factor from today (t) to tomorrow (t + 1) is βδ,
but equals δ between any two future dates t + s and t + s + 1 for s > 0. Thus, preferences
(discount factor) depend on date s.

We now define preferences and a MPNE for the quasi-hyperbolic consumer:

Definition 1 h := (ht )t∈N is a MPNE, if there is a sequence (vt )t∈N, where each vt is
integrable, such that for each t ∈ N and s ∈ S

ht (s) ∈ arg max
c∈[0,s]

{
(1 − β)u(c) + βδ

∫

S
vt+1(s

′)Q(ds′|s − c)

}
.

and

vt (s) = (1 − β)u (ht (s)) + δ

∫

S
vt+1(s

′)Q(ds′|s − ht (s)).

Here, for uniformly bounded vt , we have

vt (s) = J
(
(hτ )

∞
τ=t

)
(s) := (1 − β)Eh,t

s

(∑∞
τ=1

δτ−1u(ht+τ−1)
)

,

where Eh,t
s is an expectation operator with respect to the unique probability measure on the

set of all histories induced by integrable h and state s at stage t . Intuitively, a current self best
responds to the value vt+1 discounted by βδ that summarizes payoffs from future ”selfs”
strategies (hτ )

∞
τ=t+1, and such best response ht is used to update vt+1 discounted by δ to vt .

3.1 Existence and Characterization

For given S̄ ∈ R+, S = [0, S̄] define a function space:
V := {

v : S → R+ : v is nondecreasing and u.s.c. bounded by u(0) and u(S̄)
}
.

endowed with the weak topology. See e.g., [29] for a formal definition of this topology. Here
we only note that V endowed with the weak topology is a compact set. Also, weak topology
restricted to V is metrizable. We say that a set is weakly compact, if it is compact in the weak
topology. In this section, ⇒ denotes weak convergence, →u means uniform convergence,
while → means pointwise convergence.

8 See also [22], who use APS technique to analyze equilibria of a n-player quasi-hyperbolic discounting game
with imperfect monitoring.
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Let CM be a set of nondecreasing, Lipschitz continuous (with modulus 1) functions
h : S → S, such that ∀s ∈ S h(s) ∈ [0, s]. Clearly, CM is a compact set, when endowed
with the topology of uniform convergence. Let:

V ∗ = {v ∈ V : ∃ MPNE (ht )t∈N,where each ht ∈ CM, s.t v(s) = J ((ht )t∈N)(s)∀s ∈ S} .

Assumption 1 Assume that:

• u : S → R is continuous, increasing and strictly concave,
• for each v ∈ V , function i → ∫

S v(s′)Q(ds′|i) is continuous, increasing and concave,
• for each i ∈ S, Q(·|i) is a nonatomic measure.

An example9 of transition Q that satisfies Assumption 1 is

Q(·|i) = g(i)λ2(·) + (1 − g(i))λ1(·),
with probability measure λ2 first-order stochastically dominating probability measure λ1 for
some continuous, increasing and concave g : S → [0, 1]. Put:

�κ(c, s, v) := (1 − β)u(c) + κ

∫

S

v(s′)Q(ds′|s − c)

for κ ∈ [0, 1], and define an operator B on 2V by:

B(W ) :=
⋃

w∈W

{
v ∈ V : (∀s ∈ S) v(s) = �δ(h(s), s, w), for some h : S → S,

s.t. h(s) ∈ arg max
c∈[0,s] �

βδ(c, s, w) for all s ∈ S

}
.

We start by few lemmas.

Lemma 1 Suppose h ∈ CM and κ ∈ [0, 1]. Define Aκ
h as follows

Aκ
h(v)(s) = �κ(h(s), s, v).

Then, Aκ
h : V → V .

Proof of lemma 1 Let v ∈ V and h ∈ CM . Then, both h(s) and s−h(s) are nondecreasing in
s. By Assumption 1, Aκ

h(v)(·) is nondecreasing. Since v ∈ V and h is continuous, Ah(v)κ(·)
is continuous. Therefore, Aκ

h is a self-map on V . ��

Lemma 2 Let (vn)n∈N, where each vn ∈ V and (hn)n∈N, where each hn ∈ CM.

(i) Suppose vn ⇒ v and hn →u h as n → ∞. Then,

�κ(hn(s), s, vn) → �κ(h(s), s, v), (1)

pointwise in s ∈ S.
(ii) If vn →u v and hn →u h, then convergence in (1) is uniform.

9 See also [4] or [44] for related assumptions on the transition probability.
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Proof of lemma 2 Proof of (i). First assume vn ⇒ v. By Theorem 5.5 in [20], we have:
∫

S
vn(s

′)Q(ds′|s − hn(s)) →
∫

S
v(s′)Q(ds′|s − h(s)). (2)

The remaining part of the proof of (i) follows immediately from Assumption 1.
Proof of (ii). Suppose vn →u v and hn →u h, then by Assumption 1, and Theorem 5.5

in [20], we have convergence in (2) for all s ∈ S. We now show that this is the uniform
convergence. Put qv(·) := ∫

S v(s′)Q(ds′|·). Let ε > 0 be given and choose ε0 > 0 a
real value such that |qv(i1) − qv(i2)| < ε

2 whenever |i1 − i2| < ε0. Choose n0 ∈ N s.t.
||vn − v||∞ < ε

2 and ||hn − h||∞ < ε0 for all n ≥ n0, where || · ||∞ is the sup norm. Then,
for such n, we have

∣
∣
∣
∣

∫

S
vn(s

′)Q(ds′|s − hn(s)) −
∫

S
v(s′)Q(ds′|s − h(s))

∣
∣
∣
∣

≤
∫

S
|vn(s′) − v(s′)|Q(ds′|s − hn(s)) + |qv(s − hn(s)) − qv(s − h(s))|

≤ ε

2
+ ε

2
= ε,

for each s ∈ S. Hence, a convergence in (2) and (1) is uniform. ��
Lemma 3 Let v ∈ V and κ ∈ [0, 1]. Then,

cκ
v (s) := arg max

c∈[0,s] �
κ(c, s, v) (3)

is a well-defined function. Moreover, cκ
v ∈ CM.

Proof of lemma 3 Let v ∈ V and κ ∈ [0, 1]. Obviously A(s) = [0, s] is Veinott strong
set order increasing. Observe that by Assumption 1 function (c, s) → (1 − β)u(c) +
κ

∫
S v(s′)Q(ds′|s − c) has increasing differences. Moreover: (i, s) → (1 − β)u(s − i) +

κ
∫

S
v(ds′)Q(ds′|i) has also increasing differences, and the correspondence in (3) is well

defined. Hence, by Theorem 6.2 in [54], cκ
v is well defined and cκ

v ∈ CM . ��
Lemma 4 Let κ ∈ [0, 1] be arbitrary. Let (vn)n∈N, where each vn ∈ V . Then, if vn ⇒ v,
then

cκ
vn

→u cκ
v . (4)

Proof of lemma 4 Suppose vn ⇒ v on V . By Lemma 3, (cκ
vn

)n∈N, where each cκ
vn

∈ CM .
We only need to show convergence in (4) pointwise in s. Since CM is compact, we may
suppose cκ

vn
→u c∗. Take an arbitrary c ∈ [0, s]. Since

�κ(cκ
vn

(s), s, vn) ≥ �κ(c, s, vn),

hence, by Lemma 2, we have

�κ(c∗(s), s, v) ≥ �κ(c, s, v).

Therefore, by Lemma 3, c∗(s) = cκ
v (s) = lim

n→∞ cκ
vn

(s). ��
Lemma 5 We can express operator B as follows:

B(W ) =
⋃

w∈W

{
v ∈ V, (∀s ∈ S) v(s) = �δ(cβδ

w (s), s, w)
}
. (5)
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Proof of lemma 5 Equation (5) follows immediately from definition of B and Lemma 3. ��
Lemma 6 If W is compact (in the topology of uniform convergence), then B(W ) is compact
(in the topology of uniform convergence).

Proof of lemma 6 Let (vn)n∈N, where each vn ∈ B(W ). From Lemma 5, B satisfies (5).
Then, for each n ∈ N, there is wn ∈ W s.t.

vn(s) = �δ
(
cβδ
wn

(s), s, wn
)

(6)

for each s ∈ S. Since W is compact, without loss of generality suppose wn →u w (as
n → ∞) for some w ∈ W . From Lemma 4 cβδ

wn →u cβδ
w . Hence, by Lemma 2:

vn(s) = �δ(cβδ
wn

(s), s, wn) →u �δ(cβδ
w (s), s, w) := v(s).

Therefore, vn →u v. Since w ∈ W , hence v ∈ B(W ). ��
Lemma 7 If W ⊂ B(W ), then W ⊂ V ∗.

Proof of lemma 7 By Lemma 5, B satisfies (5). Let v ∈ W . Then, v ∈ B(W ), and there

is w1 ∈ W such that v(s) = �δ
(
cβδ
w1 , s, w1

)
for each s ∈ S. Consequently w1 ∈ W

implies w1 ∈ B(W ), and hence w1(s) = �δ
(
cβδ
w2(s), s, w2

)
for all s ∈ S and for some

w2 ∈ W . We continue this procedure and receive (wn)n∈N, where each wn ∈ W such that

wn(s) = �δ
(
cβδ
wn+1(s), s, wn+1

)
for all n ∈ N and v(s) = �δ(cβδ

w1 , s, w1). By definition of

�δ , cβδ
w1 and V ∗ we have v ∈ V ∗. Hence, W ⊂ V ∗. ��

Lemma 8 B(V ) is compact (in the topology of uniform convergence).

Proof of lemma 8 We show that B(V ) is equicontinuous. Let (sn1 )n∈N, and (sn2 )n∈N, where
each sn1 ∈ S and sn2 ∈ S, be chosen s.t. |sn1 − sn2 | → 0 as n → ∞. By (5), we need to show
that

sup
w∈V

∣∣�δ
(
cβδ
w (sn1 ), sn1 , w)

) − �δ
(
cβδ
w (sn2 ), sn2 , w)

)∣∣ → 0 (n → ∞). (7)

Choose arbitrary ε > 0. Let (wn)n∈N, where each wn ∈ V be such that 	(wn)(sn1 , sn2 ) >

	(sn1 , sn2 ) − ε, where

	(w)(s1, s2) := |�δ
(
cβδ
w (s1), s1, w)

) − �δ
(
cβδ
w (s2), s2, w)

) |
and 	(s1, s2) = sup

w∈V
	(w)(s1, s2) for each s1, s2 ∈ S. Since V includes increasing, u.s.c.

functions and commonly bounded from above, hence we may assume thatwn ⇒ w for some
w ∈ V . Observe that by Theorem 5.5 in [20]:

∫

S
wn(s

′)Q(ds′|sn1 − cβδ
wn

(sn1 )) −
∫

S
wn(s

′)Q(ds′|sn2 − cβδ
wn

(sn2 )) → 0 (as n → ∞). (8)

We also have |u(cβδ
wn (s

n
1 ))− u(cβδ

wn (s
n
2 ))| → 0, whenever n → ∞. Hence, 	(wn)(sn1 , sn2 ) →

0. As a result, lim sup
n→∞

	(sn1 , sn2 ) < ε. Since ε > 0 is arbitrary, hence (7) holds. As a result,

B(V ) is equicontinuous in the topology of uniform convergence and includes functions
bounded by some common value. Hence, by Arzela–Ascoli theorem, it is a compact set in
the topology of uniform convergence. ��
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Theorem 1 Assume 1. Then:

(i)
∞⋂
t=1

Bt (V ) 	= ∅,

(ii)
∞⋂
t=1

Bt (V ) is the greatest fixed point of B,

(iii)
∞⋂
t=1

Bt (V ) = V ∗.

Proof of theorem 1 We show (i). By Lemma 8, B(V ) is a compact set, and hence, by
Lemma 6, for all t ∈ N Bt (V ) is compact and nonempty set. As a result,

⋂

t∈N
Bt (V ) 	= ∅.

To show (ii) observe that as V is a complete lattice, B is nondecreasing, and by Tarski The-
orem, B has the greatest fixed point, say W ∗. Moreover, as B is nondecreasing, {Wt }∞t=0,
where Wt = Bt (V ), is a descending sequence (under set inclusion). We need to show that
∞⋂
t=1

Wt = W ∗. Clearly,
∞⋂
t=1

Wt ⊂ Wt for all t ∈ N; hence:

B

( ∞⋂

t=1

Wt

)

⊂
∞⋂

t=1

B(Wt ) =
∞⋂

t=1

Wt+1 =
∞⋂

t=1

Wt .

To show equality, it suffices to show
∞⋂
t=1

Wt ⊂ B(
∞⋂
t=1

Wt ). Let w ∈
∞⋂
t=1

Wt . Then, w ∈ Wt

for all t . By the definition ofWt and B, we obtain existence of the sequence vt ∈ Wt and best
response ht ∈ CM such that w(s) = �δ(ht , s, vt ) for all s and t . Since B(V ) is compact,

without loss of generality, assume vt converges uniformly to v∗.Moreover, v∗ ∈
∞⋂
t=1

Wt , since

Wt is a descending set of compact sets. By Lemma 4, h∗ = cβδ
v∗ . Without loss of generality,

let ht → h∗. Hence, we obtain w∗ ∈ B(
∞⋂
t=1

Wt ). Hence,
∞⋂
t=1

Wt is a fixed point of B, and, by

definition
∞⋂
t=1

Wt ⊂ W ∗. To finish the proof, we simply need to show W ∗ ⊂
∞⋂
t=1

Wt . Since

W ∗ ⊂ V , W ∗ = B(W ∗) ⊂ B(V ) = W1. By induction, we have W ∗ ⊂ Wt for all t ; hence,

W ∗ ⊂
∞⋂
t=1

Wt . Therefore, W ∗ =
∞⋂
t=1

Wt .

Now, we show (iii). We show that the right-hand side in (iii) is self-generating. Let v ∈⋂

t∈N
Bt (V ). Then, for each t ∈ N, there is wt ∈ Bt (V ) such that v(s) = �δ(cβδ

wt , s, wt ).

Without loss of generality, suppose wt →u w for some w ∈ V . By Lemma 4, cβδ
wt →u cβδ

w .
By Lemma 2, we have

v(s) = �δ(cβδ
wt

, s, wt ) → �δ(cβδ
w , s, w)

for each s ∈ S. In fact, v(s) = �δ(cβδ
w , s, w). Since

(
Bt (V )

)
t∈N is a nonincreasing sequence,

wt ∈ Bt (V ) for all t ∈ N, wt →u w, and hence w ∈ ⋂

t∈N
Bt (V ). Consequently, v ∈

B

(
⋂

t∈N
Bt (V )

)
. Hence, the right side in (iii) is self-generating. Therefore, by Lemma 7:

⋂

t∈N
Bt (V ) ⊂ V ∗.
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Now, we show the reverse inclusion. Let v∗ ∈ V ∗. Then, v∗(s) = �δ
(
cβδ
w1(s), s, wt

)
,

where wt (s) = �δ
(
cβδ
wt+1(s), s, wt+1

)
for all s ∈ S and t ∈ N. Hence, v∗ ∈ Bt (V ) for each

t ∈ N, and v∗ ∈ ⋂

t∈N
Bt (V ). Equation in (iii) is hence satisfied. ��

3.2 The Numerical Method

We now define our numerical method in details. We define R
S as a set of all real-valued

functions with domain S.

Definition 2 A set of functionsF ⊂ R
S is sequentially compact if for any sequence ( fn)n∈N,

where each fn ∈ F , we find a subsequence fnk of fn and a function f ∈ F such that
f (s) = lim

k→∞ fnk (s) for all s ∈ S.

For each s ∈ S, we define πs : RS → R as follows πs( f ) := f (s). By dH (A, B), we
define a Hausdorff distance between bounded subsets A, B ⊂ R. Moreover, we have:

Lemma 9 Let Assumption 1 be satisfied. Then, each Wt (t ≥ 1) is a sequentially compact
subset of RS. For each t ∈ N and s ∈ S put Wt (s) := πs(Wt ). Then, ∀s ∈ S:

V ∗(s) :=
∞⋂

t=1

Wt (s). (9)

Proof of lemma 9 By Lemma 16 in the Appendix, V is a sequentially compact set, and then
by Lemmas 8 and 6, Wt is a compact set; hence, it is sequentially compact. As a result, for
each t ∈ N and s ∈ S the setsWt (s) are compact in a natural Euclidean topology on S, hence
⋂

t∈N
Wt (s) 	= ∅. We now show that (9) is satisfied. By Theorem 1, we have V ∗ =

∞⋂
t=1

Wt .

Hence, ∀s ∈ S:

V ∗(s) ⊂
∞⋂

t=1

Wt (s).

We need to show the converse inclusion. Let s ∈ S be given and suppose x ∈ V ∗(s). Then,
for each t ∈ N, we find a function ft ∈ Wt such that x = ft (s). Since eachWt is sequentially
compact, without loss of generality, we may assume ft → f . We claim that f ∈ V ∗. Take
arbitrary k ∈ N. Then, ft ∈ Wk for all t ≥ k. Since Wk is sequentially compact, f ∈ Wk .
Since k is arbitrary, f ∈ V ∗. Obviously x = f (s). Therefore, x = πs( f ) ∈ πs(V ∗). ��

We consider an approximation of V ∗(s) related to [17]. Since S is an interval in R, we
can define a piecewise constant multifunction in the following way: If S = [ξ, η], then we
divide [ξ, η] into 2 j subintervals with equal length. Let C j be a block partition set. For each
block partition C ∈ C j , we define θC as follows:

θC (s) =
{ ⋃

s′∈C
V ∗(s′) if s ∈ C,

∅ otherwise.
(10)

Define V̂ j (s) = ⋃

C∈C j

θC (s). Similarly, we approximate any other correspondence from S to

R.
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Theorem 2 Under Assumption 1, we have ∀s ∈ S:

(i) V ∗(s) ⊂ . . . ⊂ V̂ j+1(s) ⊂ V̂ j (s) ⊂ . . . ⊂ V̂1(s),
(ii) lim

j→∞ dH (V̂ j (s), V ∗(s)) = 0,

(iii) let Ŵt, j (·) be a j-th piecewise constant approximation of Wt (·). Then,
(∀s ∈ S) lim

t, j→∞ dH
(
Ŵt, j (s), V

∗(s)
)

= 0. (11)

Proof of theorem 2 Proof of (i) is obvious. Proof of (ii): We use Theorem 1 in [17] to show
that V̂ j (s) → V ∗(s) in the Hausdorff distance. We need to show that V ∗(·) is u.s.c. and
compact valued correspondence. By the closed graph theorem (e.g., Theorem 17.11 in [3]),
we only need to show that V ∗ has a closed graph.

Let sn → s, xn → x (n → ∞) and xn ∈ V ∗(sn). Then, by Lemma 5, for all n ∈ N, we
have wn ∈ V ∗ such that xn = �δ(cβδ

wn (sn), sn, wn). Take arbitrary t ∈ N. Since (wn)n∈N,
where each wn ∈ Wt , by Lemma 9, (w.l.o.g.) suppose we find w ∈ Wt such that wn → w.
By Lemma 3, cβδ

wn (sn) → cβδ
w (s) (n → ∞). Hence, by Assumption 1,

x = lim
n

xn = lim
n

�δ
(
cβδ
wn

(sn), sn, wn
) = �δ

(
cβδ
w (s), s, w

)
.

Therefore, x ∈ Wt (s) for all t ∈ N. From Lemma 9 x ∈ V ∗(s).
Proof of (iii) By Theorem 1, point (i), Theorem 1 in [17] and Lemma 9, we have:

V ∗(s) =
∞⋂

t=1

∞⋂

j=1

Ŵt, j (s). (12)

Applying Theorem 1 in [17], we obtain that each Ŵt, j (s) is a compact set. Let s ∈ S
be given. Let (Jt )t∈N be some sequence satisfying the following conditions: If inclusion
Wt+1(s) ⊂ Wt (s) is strict, then Jt is chosen in such a way that:

Wt+1(s) ⊂ Ŵt+1,Jt (s) ⊂ Wt (s).

If Wt (s) = Wt+1(s), then Jt = Jt−1. Hence, V ∗(s) =
∞⋂
t=1

Ŵt+1,Jt (s). By (12) we have

V ∗(s) =
∞⋂
t=1

Ŵt+1,Jt (s). Hence, we have V
∗(s) = lim

t→∞ Ŵt+1,Jt (s) in the Hausdorff metric

sense. As a result, for an arbitrary closed set G containing V ∗(s) we have Ŵt,Jt (s) ⊂ G.
Let t0 be a number such that this inclusion is satisfied for all t > t0. Since j → Ŵt, j (s) is a
descending family of sets, hence Ŵt, j (s) ⊂ G, whenever t > t0, and j > Jt0 . ��
3.3 Discussion and Applications

Since it was introduced in [53], the problem of dynamic consistency has played an important
role in many fields in economics. In particular, the problem of β−δ discounting has appeared
in recent papers in such diverse topics as the theory of optimal consumption/savings [31], the
role of liquidity constraints or commitment devices in dynamic models of self-control [38],
design of dynamic, time-consistent environmental policies [35], temptation implications on
the optimal taxation [36] or poverty traps [19].

Recently, in the accompanied paper, Balbus et al. [15] prove existence of the Markov-
stationary NE of the quasi-hyperbolic discounting game in a class of bounded, Borel
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measurable functions and present a method to compute it. As compared to their paper, our
assumptions and results differ among many dimensions. Firstly, they assume stronger condi-
tions on a transition probability requiring a specific mixing form and an absorbing state. This
allows them to weaken other conditions, most importantly dimensionality of the state space
and work with the value functions that are not necessarily monotone. Their results offer a
method to compute the extremal MSNE in a class of bounded, Borel measurable functions
via a simple iterative scheme. This contrasts with the result presented in the current paper.
First, here in Theorem 1, we prove existence of the MPNE in a class of monotone, Lipschitz
continuous strategies that is not necessarily stationary, and second, Theorem 2 allows to
compute the whole set of value functions generated by some Markovian NE in this class.

4 A Class of Stochastic Supermodular Games

In this section, we consider an N -player, discounted, infinite horizon, stochastic game in dis-

crete time. The primitives of the class of games are given by the tuple
{
S, (Ai , Ãi , βi , ui )Ni=1,

Q, s0}, where S is the state space, Ai ⊂ R
ki player i action space with A = ×i Ai , Ãi (s)

the set of actions feasible for player i in state s, βi is the discount factor for player i ,
ui : S × A → R is the one-period payoff function, Q denotes a transition function that
specifies for any current state s ∈ S and current action a ∈ A, a probability distribution over
the realizations of the next period state s′ ∈ S, and finally s0 ∈ S is the initial state of the
game. We assume that S = [0, S̄] ⊂ R and that Ãi (s) is a compact Euclidean interval in R

ki

for each s, i .
Using this notation, a formal definition of a (Markov, stationary) strategy, payoff and a

Nash equilibrium can be stated as follows. A set of all possible histories of player i till period
t is denoted by Ht

i . An element hti ∈ Ht
i is of the form hti = (s0, a0, s1, a1, . . . , at−1, st ).

A strategy for a player i is denoted by �i = (γ 1
i , γ 2

i , . . .), where γ t
i : Ht

i → Ai is a
measurable mapping specifying an action to be taken at stage t as a function of history, such
that γ t

i (h
t
i ) ∈ Ãi (st ). If a strategy depends on a partition of histories limited to the current

state st , then the resulting strategy is referred to as Markov. If for all stages t, we have a
Markov strategy given as γ t

i = γi , then strategy �i for player i is called aMarkov-stationary
strategy, and denoted simply by γi . For a strategy profile � = (�1, �2, . . . , �N ), and initial
state s0 ∈ S, the expected payoff for player i can be denoted by:

Ui (�, s0) = (1 − βi )

∞∑

t=0

β t
i

∫
ui (st , at )dm

t
i (�, s0),

where mt
i is the stage t marginal on Ai of the unique probability distribution (given by

Ionescu–Tulcea’s Theorem) induced on the space of all histories for �. A strategy profile
�∗ = (�∗

i , �
∗−i ) is a Nash equilibrium if and only if �∗ is feasible, and for any i , and all

feasible �i , we have
Ui (�

∗
i , �

∗−i , s0) ≥ Ui (�i , �
∗−i , s0).

4.1 Existence and Characterization

For our arguments in this section, we shall require the following assumptions.10

Assumption 2 We let:

10 The assumption we impose here are very similar as those in the work of Amir [6] for S ⊂ R.
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• ui be continuous on S × A, and let ui be bounded by 0 and ū,
• ui be supermodular in ai (for any s, a−i ), and have increasing differences in (ai ; a−i , s),

and be increasing in (s, a−i ), (for each ai ),
• for all s ∈ S, the sets Ãi (s) be compact intervals and multifunction Ãi (·) be upper

hemicontinuous and ascending under both (i) set inclusion, i.e., if s1 ≤ s2, then Ãi (s1) ⊆
Ãi (s2), and (ii) Veinott’s strong set order ≤v (i.e., Ãi (s1) ≤v Ãi (s2) if for all a1i ∈
Ãi (s1), a2i ∈ Ãi (s2), a1i ∧ a2i ∈ Ãi (s1) and a1i ∨ a2i ∈ Ãi (s2)),

• Q have a Feller property11 on S × A,
• Q(s′|s, a) be stochastically supermodular in ai (for any s, a−i ), have stochastically

increasing differences in (ai ; a−i , s), and be stochastically increasing with a, s,
• Q(·|s, a) be a nonatomic measure for all s ∈ S, a ∈ A,

We now state some assumptions. Let V be the space of vectors of bounded, nondecreasing,
u.s.c. value functions on S with values in R:

V :={v : S→R
N+ , such that each vi is nondecreasing, u.s.c. and each vi is bouded by 0 and ū}.

Endow V with the weak topology. See [29] for a proof that is a compact and metriz-
able topology on V . Define an auxiliary (or, super) one-period N -player game Gs

w =
({1, . . . , N }, { Ãi (s),�i }Ni=1), where payoffs depend on a weighted average of (i) the current
within-period payoffs, and (ii) a vector of expected continuation valuesw ∈ V , with weights
given by a discount factor:

�i (wi , s, a) := (1 − βi )ui (s, a) + βi

∫

S
wi (s

′)Q(ds′|s, a),

where w = (w1, w2, . . . , wN ), � = (�1,�2, . . . , �N ), and the state s ∈ S. From now
on by wi , we will denote a typical element of w (similarly for vi and v). As w ∈ V is
a vector of nondecreasing functions, under our assumptions, Gs

w is a supermodular game.
Therefore, Gs

w has a nonempty complete lattice of pure strategy Nash equilibria (e.g., see
[55]). By NE(w, s) denote the set of Nash equilibria of gameGs

w restricted to nondecreasing
functions on S (so hence measurable).

By V denote the set of all subsets of V partially ordered by the set inclusion. Having that,
for any subset of functions W ∈ V , define an operator B to be:

B(W ) =
⋃

w∈W

{
v ∈ V : (∀s ∈ S) v(s) = �(w, s, a∗(s)),

for some a∗ s.t. a∗(s) ∈ NE(w, s)
}
.

Wedenote byV ∗ ∈ V the set of equilibriumvalues corresponding to allmonotone,Markovian
equilibria of our stochastic game.

Lemma 10 Assume 2 and let vn ∈ V, an(s) ∈ A(s) for all n ∈ N and s ∈ S. If vn → v∗
and an → a∗ pointwise in s, then �(vn, s, an) → �(v∗, s, a∗).

Proof of lemma 10 By Assumption 2, ui is continuous in a. Observe that

(vi , a) →
∫

S

vi (s
′)Q(ds′|s, a)

is continuous by Theorem 5.5. in [20]. Thus, � is continuous in (v, a). ��
11 That is

∫

S
f (s′)Q(ds′|·, ·) is continuous, whenever f is continuous and bounded.
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Lemma 11 Assume 2 and let (vn)n∈N, where each vn ∈ V and v∗ ∈ V . Let vn(·) → v∗(·)
pointwise and an(s) ∈ NE(vn, s) for all s ∈ S. Then, if an → a∗ pointwise, then a∗(s) ∈
NE(v∗, s) for all s ∈ S.

Proof of lemma 11 ByAssumption 2, we have continuity of ui in a; hence, for all ai ∈ Ai (s),
and s ∈ S it holds that:

�i (v
n, s, an(s)) ≥ �i (v

n, s, an−i (s), ai ).

Taking a limit with n → ∞, by Lemma 10, we obtain this inequality for a∗ and v∗, hence
a∗(s) ∈ NE(v∗, s). ��
Lemma 12 Assume 2, then B maps V into itself. Moreover, B(W ) 	= ∅, whenever W 	= ∅.
Proof of lemma 12 Assume that W 	= ∅. Let v ∈ W . Then, v is (componentwise order)
nondecreasing, and hence by Assumption 2, Gs

v is a supermodular game with parameter s.
Hence, and by Milgrom and Roberts [43], there exist the greatest and the least selections and
both are (componentwise order) nondecreasing in s. Again by Assumption 2, the extremal
equilibria payoffs are both (componentwise order) nondecreasing in s. Let w,w be (vectors)
of such (extremal equilibrium payoff) functions. Thus, w ∈ B(W ) and w ∈ B(W ). ��
Lemma 13 Assume 2 and let W be a sequentially compact subset of V . Then, B(W ) is
sequentially compact as well.

Proof of lemma 13 Since B(W ) ∈ V and, by Lemma 16 in the Appendix V , is sequentially
compact set in the product topologywhich isHausdorff,we just need to show B(W ) is sequen-
tially compact. Let (wn)n∈N, where each wn ∈ B(W ) and suppose wn → w pointwise. Let
(vn)n∈Nwhere each vn ∈ W and (an(·))n∈N be a sequence such thatwn(s) = �(vn, s, an(s)).
By Lemma 16 in the Appendix, without loss of generality suppose vn → v pointwise. Since
W is sequentially compact, hence v ∈ W . Put Dw as a set of discontinuity points of w.
Clearly Dw is at most countable. As Q is nonatomic, by Lemma 11, for each s ∈ S there
exists a∗(s) ∈ NE(v, s) such that w(s) = �(v, s, a∗(s)). Hence, w ∈ B(W ). ��
Lemma 14 Assume 2. If W ⊂ B(W ), then B(W ) ⊂ V ∗.

Proof of lemma 14 Let w ∈ B(W ). Then, we have v0(·) := w(·) where w(s) =
�(v1, s, γ 1(s)) for some v1 ∈ W , Nash equilibrium γ 1(s) ∈ NE(v1, s) and all s ∈ S.

Then, since v1 ∈ W by the assumption, v1 ∈ B(W ). Consequently, for vt ∈ W ⊂
B(W ) (t ≥ 1) we can choose vt+1 ∈ W such that vt (·) = �(vt+1, ·, γ t+1(·)) and
γ t (·) ∈ NE(vt+1, ·). Clearly, the Markovian strategy γ generates payoff vector w. We
next need to show this is a Nash equilibrium in the stochastic game for s ∈ S. Sup-
pose that only player i uses some other strategy γ̃i . Then, for all t and s ∈ Dt , we have
vit (s) = �i (vt+1, s, γ t (s)) ≥ �i (vt+1, s, γ

t+1
−i (s), γ̃ t+1

i ). If we take a T -th truncation
γ T,∞ = ((

γ̃ 1
i , γ 1−i

)
, . . . ,

(
γ̃ T
i , γ T−i

)
, γ T+1, γ T+2, . . .

)
, this strategy12 cannot improve a

payoff for player i . Indeed:

Ui (γ, s) ≥ Ui (γ−i , γ
T,∞
i , s) → Ui (γ−i , γ̃i , s)

as T → ∞. This convergence has been obtained as ui is bounded, and the residuum of the
sum Ui (γ−i , γ

T,∞
i , s) depending on

(
γ T+1, γ T+2, . . .

)
can be obtained as an expression

bounded by ū, multiplied by βT
i . Hence, w(s) is a Nash equilibrium payoff for s ∈ S. Thus

B(W ) ⊂ V ∗ ��
12 That is, player i uses strategy γ̃ up to period T and γ after that. Other players use γ .
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We are now ready to summarize these results in the next theorem.

Theorem 3 Assume 2. Then:

(i)
∞⋂
t=1

Bt (V ) 	= ∅,

(ii)
∞⋂
t=1

Bt (V ) is the greatest fixed point of B,

(iii)
∞⋂
t=1

Bt (V ) = V ∗.

Proof of theorem 3 We prove (i) and (ii). As V is a complete lattice, B is nondecreasing, by
Tarski Theorem, B has the greatest fixed point, say W ∗. Moreover, as B is nondecreasing,
{Wt }∞t=0, where Wt = Bt (V ), is a descending sequence (under set inclusion). We need to

show that
∞⋂
t=1

Wt = W ∗. Clearly,
∞⋂
t=1

Wt ⊂ Wk for all k ∈ N; hence

B

( ∞⋂

t=1

Wt

)

⊂
∞⋂

t=1

B(Wt ) =
∞⋂

t=1

Wt+1 =
∞⋂

t=1

Wt .

To show equality, it suffices to show
∞⋂
t=1

Wt ⊂ B(
∞⋂
t=1

Wt ). Let w ∈
∞⋂
t=1

Wt . Then, w ∈ Wt

for all t . By the definition of Wt and B, we obtain existence of the sequence vt ∈ Wt and
Nash equilibria at such that

w(s) = �
(
vt , s, at (s)

)
.

for all t and s ∈ S.
Since V is sequentially compact, without loss of generality, assume vt converges to v∗.

Moreover, v∗ ∈
∞⋂
t=1

Wt , since Wt is a descending family of sequentially compact sets in the

product topology. Fix arbitrary s ∈ S. Without loss of generality, let at → a∗, where a∗ is
some point from A. By Lemma 11, a∗ is a Nash equilibrium in the static game �(v∗, s).

We obtainw ∈ B(
∞⋂
t=1

Wt ). Hence,
∞⋂
t=1

Wt is a fixed point of B, and, by definition
∞⋂
t=1

Wt ⊂
W ∗.

To finish the proof, we simply need to show W ∗ ⊂
∞⋂
t=1

Wt . Since W ∗ ⊂ V , W ∗ =

B(W ∗) ⊂ B(V ) = W1. By induction, we have W ∗ ⊂ Wt for all t ; hence, W ∗ ⊂
∞⋂
t=1

Wt .

Therefore, W ∗ =
∞⋂
t=1

Wt .

We prove (iii). First show that V ∗ is a fixed point of operator B. Clearly B(V ∗) ⊂ V ∗.
So we just need to show the reverse inclusion. Let v ∈ V ∗ and γ = (γ1, γ2, . . .) be a profile
supporting v. By Assumption 2, γ2,∞ = (γ2, γ3, . . .) must be a Nash equilibrium almost
everywhere (i.e., a set of initial states S0 fir which γ2,∞ is not a Markov equilibrium must
have a measure zero. Define a new profile γ̃ (s) = γ2,∞ for s /∈ S0 and γ̃ (s) = γ if s ∈ S0.
Let ṽ be an equilibrium payoff generated by γ̃ . Clearly, ṽ ∈ V ∗ is measurable and also
v(s) = �(ṽ, s, γ1). Thus v ∈ B(V ∗) and hence V ∗ ⊂ B(V ∗). As a result, B(V ∗) = V ∗.

Finally, by definition (the greatest fixed point) of W ∗, we conclude that V ∗ ⊂ W ∗. To
obtain the reverse inclusion, we apply Lemma 14. Indeed, W ∗ ⊂ B(W ∗), and, therefore,
W ∗ ⊂ V ∗ and we obtain that V ∗ = W ∗.
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Finally, observe that by the previous steps V ∗ =
∞⋂
t=1

Wt and Wt is the set inclusion

descending sequence, and by Lemma 13, all sets Wt are sequentially compact. Hence, by
Lemma 17 in the Appendix, V ∗ 	= ∅. ��
4.2 The Numerical Technique

Similarly, as in case of hyperbolic discounting model, we propose an approximation of V ∗
by a piecewise constant correspondence Ŵt, j .

Theorem 4 Under Assumption 2 for each s ∈ S, we have:

(i) V ∗(s) ⊂ ... ⊂ V̂ j+1(s) ⊂ V̂ j (s) ⊂ . . . ⊂ V̂1(s),
(ii) lim

j→∞ dH (V̂ j (s), V ∗(s)) = 0,

(iii) Let Ŵt, j (·) be a j-th piecewise approximation of Wt (·). Then,
lim

t, j→∞ dH
(
Ŵt, j (s), V

∗(s)
)

= 0. (13)

Proof of theorem 4 Proof of (i) is obvious. Proof of (ii): We apply Theorem 1 in [17]. To
finish, we need to show that V ∗(s) has a closed graph.

Let sn → s (n → ∞), xn ∈ V ∗(sn) for all n and xn → x . By Theorem 3 and Lemma 9,
xn ∈ Wt (sn) for all t ∈ N. Then, there exists a sequence (vnt )n∈N, such that xn = vnt (sn)
with vnt ∈ Wt . Consequently, there exists (vnτ )t−1

τ=1 ∈ ∏t−1
τ=1 Wτ such that (∀s∈S) vnτ (s) =

�(vnτ−1, s, a
n
τ ) for some anτ (s) ∈ NE(vnτ−1, s). Without loss of generality, (using Lemma 16

from the Appendix) suppose, if we take a limit n → ∞, then we obtain vnτ → vτ pointwise in
s for all τ ≤ t . Using Lemmas 16 and 13 in the Appendix, we obtain sequential compactness
of all Wτ and vτ ∈ Wτ . By Lemmas 10 and 11, we have (∀s∈S) vτ (s) = �(vτ−1, s, aτ (s))
for some selection aτ (s) ∈ NE(vτ−1, s). Applying again Lemma 11, we have then x =
limn xn = �(vt−1, s, at (s)) for some selection at (s) ∈ NE(vt−1, s). Hence, x ∈ Wt (s).
Since t ∈ N is arbitrary, hence and by Lemma 9, x ∈ V ∗(s).

Proof of (iii). Observe that allWt are sequentially compact. Hence, allWt (s) are compact
sets for all s. The remainder of this proof is similar to the proof of part (iii) of Theorem 2. ��
4.3 Discussion and Example

Theorem 3 establishes among others that the stochastic game has a (possibly nonstationary)
Markov Nash Equilibrium in monotone strategies on the minimal state space of current state
variables. Observe that conditions to establish that fact are weaker than the one imposed in
[26]. Specifically, we do not require smoothness of the primitives nor any diagonal dominance
conditions that assure that the auxiliary game has a unique Nash equilibrium, that is moreover
continuous with the continuation value. Also the transition Q does not need to take a specific
form like the one imposed in [14] with an absorbing state at 0. On the other hand, in [14] the
authors do not require assumptions implying that the game has an nondecreasing equilibrium
strategy and nondecreasing equilibrium value as imposed in this paper.

Moreover, Theorem3 togetherwithTheorem4offers a constructivemethod to characterize
equilibrium value set and compute it in the Hausdorff distance using rigorous numerical
technique.

In the accompanied paper [14], under some mixing assumptions on the stochastic tran-
sition, the authors are able to exploit the complementarity structure of this class of games
and develop results for iterative procedures on the best response operator T to compute both
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values and pure strategies. This brings few interesting points. First, under assumptions of
both papers (and this can be done indeed), one is able to show how to compute both the
greatest and the least stationary MPNE values w∗ and v∗, as well as the associated extremal
pure strategy equilibrium. Of course, they are also Markov NE and w∗, v∗ ∈ V ∗ = B(V ∗).
Next, we can do such approximation for every iteration of our operators: Wt ⊆ [vt , wt ]. So
in such case, our iterations from the other paper provide interval bounds on the iterations on
our strategic dynamic programming operator. Further, we conclude that V ∗ ⊆ [v∗, w∗]. That
is, the set of value functions that are associated with MPNE belongs to an ordered interval
between least and greatest MSNE. So although we cannot show thatWt (for t ≥ 2) or V ∗ are
ordered intervals of functions, we can use their iterative methods to calculate the two bounds
using direct techniques of the accompanied paper.

This observation leads us to an important point linking our direct methods with MP/APS
approach. Namely, in [2], they show that under certain assumption any value from V ∗(s)
can be obtained in a bang-bang equilibrium of a repeated game with imperfect monitoring,
i.e., one using extremal values from V ∗(s). Direct and constructive methods of Balbus et
al. [14] can be hence used to compute two of such extremal values that support equilibrium
punishment schemes that actually implement MPNE. This greatly sharpens the method by
which we support all MPNE in our collection of dynamic games.

The stochastic, supermodular game can be applied to study price competition with durable
goods, dynamic search with learning or symmetric equilibria in public goods games, among
others. We finish this subsection with an example showing, how the proposed method can be
used to study MPNE of the time-consistent public policy.

Consider a time-consistent policy game as analyzed in [52], for example. A (stochastic)
game is played between a large number of identical households and the government.We study
equilibria that treat each household identically. For any capital level k ∈ S households choose
consumption c and investment i treating level of the government spending G as given. The
only way to consume tomorrow is to invest in the stochastic technology Q. The within-period
preferences for the households are given by u(c) (i.e., household does not obtain utility from
public spending G). The government raises revenue by levying flat tax τ ∈ [0, 1] on capital
income, to finance its public spendingG. Each period the government budget is balanced, and
its within-period preferences are given by: u(c) + J (G). The consumption good production
technology is given by constant return to scale function f (k)with f (0) = 0 and −k f ′′(k)

f ′(k) ≤ 1.
The timing of the game in each period is that the government and household choose their
actions simultaneously.

We first assume that households and the government take price R = f ′(k) and profits π =
f (k)− f ′(k)k as given. Assume that u, J, f are increasing, concave and twice continuously
differentiable and Q satisfies Assumption 2. Each of the households then chooses investment
i to solve:

max
i∈[0,(1−τ)Rk](1 − β)u((1 − τ)Rk + π − i) + β

∫

S
vH (s)Q(ds|i).

By standard arguments, we see that the objective for the households is supermodular in i
and has increasing differences in (i; t, z), where t = 1 − τ and z = (1 − τ)Rk + π =
(1 − τ) f ′(k)k + f (k) − f ′(k)k (noting −u′′(·) ≥ 0). Moreover, the objective is increasing
in t = 1 − τ by monotonicity assumptions on u.

The government chooses t to solve:

max
t∈[γ,1](1 − β)u(t Rk + π − i) + (1 − β)J (Rk(1 − t)) + β

∫

S
(vH (s) + vG(s))Q(ds|i).
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That is, the government maximizes the household utility as well as the additional utility that
it obtains from public spending J, and its continuation vG . Again, objective is supermodular
in 1 − τ and has increasing differences in (t = 1 − τ, i) (as −u′′(·) ≥ 0) and is monotone
in (equilibrium) k. Moreover observe, although the objective is not nondecreasing in i, it
is nondecreasing along extremal Nash equilibrium of the auxiliary game by the envelope
theorem. To see that, by (i∗, t∗)(vH ) denote an NE of the auxiliary game and observe that:

∂

∂i

[
(1 − β)u(t∗(vH )Rk + π − i) + (1 − β)J

(
Rk(1 − t∗(vH ))

)

+β

∫

S
(vH (s) + vG(s))Q(s|i)

]

i=i∗(vH )

=
[

−(1 − β)u′ (t∗(vH )Rk + π − i∗(vH )
) + ∂

∂i

[
β

∫

S
vH (s)Q(s|i)

]

i=i∗(vH )

]

+ ∂

∂i

[
β

∫

S
vG(s)Q(s|i)

]

i=i∗(vH )

= ∂

∂i

[
β

∫

S
vG(s)Q(s|i)

]

i=i∗(vH )

≥ 0.

Finally, γ ∈ [0, 1] is a parameter such that after tax income (1−τ(k)) f ′(k)k+ f (k)− f ′(k)k
is monotone in k. Clearly, such number always exists. So, interestingly, themethod developed
in the paper can be extended and allows to study time-consistent public policies. That is, we
are able to use our results to prove existence of MPNE, as well as compute the set of all
MPNE values.

5 Concluding Remarks

In this paper, undermild conditions,we develop the strategic dynamic programming approach
to a class of stochastic games and provide numerical method for computing the equilibrium
value set that is associated with MPNE in the game. Few comments are now in order.

Observe that our procedure does not imply that the (Bellman type) equation B(V ∗) = V ∗ is
satisfied for a particular value function v∗; rather, only by a set of value functions V ∗. Hence,
generally existence of a stationary Markov Nash equilibrium cannot be deduced using these
arguments. Also, our method is in contrast to the original MP/APS method, where for any
w(s), one finds a continuation v; hence, the construction for that method becomes pointwise,
as for any state s ∈ S, one can select a different continuation function v.

Our construction is related to the Cole and Kocherlakota [24] study of Markov-private
information equilibria by the MP/APS-type procedure in function spaces. As compared to
their study, ours treats different class of games (with general payoff functions, public signals
and uncountable number of states) though. Also, recently and independently of our results,
Doraszelski and Escobar [27] established a MP/APS-type procedure in function spaces for
Markovian equilibria in repeated games with imperfect monitoring. Again their construction
differs from ours as they require a finite number of actions, countable number of states and
payoff irrelevant shocks.

Similarly, approximation results presented in this paper require few comments. Recall,
our method approximates the set of equilibrium values on uncountable number of states. This
is in contrast with all related papers that will be discussed in the moment.

In comparison with [34,51] method of MP/APS set approximation, our does not rely
on convexification of the set of continuation values. Such step usually involves introduc-
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ing sunspots or correlation devices into the game. Our method does not need any of this
convexification or correlation.13

The argument presented in this paper share some properties of Chang [23] proposal of dis-
cretization technique for equilibrium value set approximation. This has been formalized by
FMPA, who use Beer [17] result on approximation of correspondences by a step correspon-
dence. Our approach is different aswe approximate the set of functions, not a correspondence.
Of course any set of function on a common domain can be represented as a correspondence,
but doing such a step we loose important characterization of selections from this correspon-
dence, however. In our approach, we select functions at the moment of defining an operator
or every step of its approximation. This helps in computation of equilibrium strategies.

6 Appendix: auxiliary results

On the set of nondecreasing, real-valued functions in V let us introduce an equivalence
relation:

�v� = {w ∈ V, such that v(s) 	= w(s) on at most countable set} .

We state few lemmas.

Lemma 15 In each equivalence class �v�, there is exactly one u.s.c. function.
Proof of lemma 15 First we show that each class possess at least one u.s.c. function. Let v be
an arbitrary, nondecreasing function. Then, there are at most countably many discountinuity
points S0 := {s1, s2, . . . , ...}. We define ṽ(s) := v(s) if s ∈ S\S0 and ṽ(s j ) = lim sup

s→s j
v(s)

if s j ∈ S0. Clearly, ṽ is a u.s.c. function and differs with v on at most countable set.
On the other hand, suppose there are two nondecreasing and u.s.c. functions w and v that

differ on countable sets. Let s0 be arbitrary point in which w(s0) 	= v(s0). Then:

v(s0) = lim sup
s→s0

v(s) = lim
n→∞ v(sn),

for some sequence14 sn → s0 and sn > s0. Without loss of generality, we can assume
v(sn) = w(sn) as the set of points in which v and w match is dense in S. Thus:

v(s0) = lim
n→∞ v(sn) = lim

n→∞ w(sn) = w(s0),

which contradicts v(s0) 	= w(s0). ��
Lemma 16 Every sequence of nondecreasing, real-valued functions (vt )t on S and bounded
by a common value has a pointwise convergent subsequence.

Proof of lemma 16 Let vt : S → R, and (vt )t be a sequence of nondecreasing functions
bounded by some common value. By Lemma 15, there exist a sequence of functions (ṽt )t
such that each element is u.s.c. and differs from vt on at most countable set, say Dt . Then
(noting that the set V includes functions bounded by the common value), we can choose a

13 Also Cronshaw [25] proposes a Newton method for equilibrium value set approximation but cannot prove
that his procedure converges to the greatest fixed point of our interest.
14 To avoid technical difficulties with defining the values of v at S̄, we should extend the domain [0, S̄] to
some [0, S̄′] with S̄′ > S̄. See [29] for a formal argument.
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weakly convergent subsequence to some u.s.c. function ṽ. Define D :=
∞⋃
t=1

Dt . Clearly, it is a

countable set, and for S\D, we have ṽt (s) = vt (s). On the other hand, the set of discontinuity
points of v, say Dv , is also countable and on s ∈ S\(D∪Dv)wehave vt (s) = ṽt (s) → ṽ(s) as
t → ∞. Since D∪ Dv is countable, hence from a sequence vt , we can choose a subsequence
such that vtn is convergent on Dv ∪ D as well. As a result, lim

n→∞ vtn (s) is this limit function.
��

Lemma 17 Let X = ∏

s∈S
K where K is a compact set in R

m, and (X, T ) be a product

topology. Let (Gt )t be a sequence of sequentially compact subsets of X. Assume Gt (s) 	= ∅
for all s ∈ S and (Gt )t is descending in the set inclusion order. Then, G∞ :=

∞⋂
t=1

Gt 	= ∅.

Proof of lemma 17 Let G be arbitrary sequentially compact subset of X . We show that
G(s) := Projs(G) is compact for all K . As canonical projection on every s is continu-
ous, as a function from X to K ; hence, it is sequentially continuous. Hence, every set G(s)
is a compact subset of R. Then,

⋂
t∈N Gt (s) 	= ∅ for all s and consequently:

⋂

t∈N
Gt =

∏

s∈S

⋂

t∈N
Gt (s) 	= ∅.

��
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