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Abstract We study a class of discounted, infinite horizon stochastic games with public and
private signals and strategic complementarities. Using monotone operators defined on the
function space of values and strategies (equipped with a product order), we prove existence
of a stationary Markov–Nash equilibrium via constructive methods. In addition, we provide
monotone comparative statics results for ordered perturbations of our space of games. We
present examples from industrial organization literature and discuss possible extensions of
our techniques for studying principal-agent models.
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Short memory (Markov) equilibria · Constructive methods

1 Introduction and Related Literature

Since the class of discounted infinite horizon stochastic games was first introduced by Shap-
ley [50], the question of existence and characterization of equilibrium has been the object of
extensive study in game theory.1 In addition, more recently, stochastic games have become
a fundamental tool for studying dynamic equilibrium in economic models where there is re-
peated strategic interaction among agents with limited commitment. In many such economic

1See Raghavan et al. [47] or Neyman and Sorin [41] for an extensive survey of results, along with references.
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applications, the stochastic games studied assume limited commitment between agents, as
well as possessing both public and private information. When private information is intro-
duced into stochastic games, the structure of equilibrium becomes more difficult to analyze,
as one must keep track of how each player’s beliefs over the private histories of all the other
players evolves over time. Of course, private information can be introduced into the struc-
ture of a game in various forms, including private types and/or private monitoring (see, e.g.,
[32]). In the former case of private types, progress has been made recently by focusing on
public strategies and equilibria (see [24] or applications in [8]). In the latter case of private
monitoring, authors have often assumed that private monitoring is almost perfect (see [28]),
or that sequential equilibrium strategies are belief-free.2

An additional related issue in dynamic games that has received a great deal of attention
concerns the assumption of players’ infinite memory. In recent work, economists have be-
gun to analyze situations where players do not have arbitrarily long memory of their own
and/or others past moves or states. Given this assumption, the players cannot condition their
future actions on arbitrarily long histories.3 Even in this case, the characterization of a short-
memory or bounded-recall equilibria is somewhat problematic, as the punishment schemes
needed to sustain equilibrium are imposed in a somewhat ad hoc manner, and can depend on
the particular’s of the game at hand. Further, because of structure imposed on the game in
the name of analytic tractability, restrictive assumptions are often placed on player’s action
spaces, as well as the space of private signals/distributions, not to mention public random-
ization devices or necessity to use mixed strategies.

In this paper, we propose a new approach to analyze games with both public and pri-
vate information (types). Our motivation is to resolve the aforementioned predicaments in
the context of an important class of games, namely games of strategic complementarities.
We do this by introducing a simple strategy space, as well as imposing rational expectations
concerning the opponent’s private information. Importantly relative to the existing literature,
we also allow for uncountable multidimensional state and action spaces, and we assume that
players follow Markovian stationary pure strategies. In particular, such Markov stationary
Nash equilibrium (MSNE, henceforth) imply a few important characteristics: (i) the impo-
sition of sequential rationality, (ii) the use of minimal state spaces, where the introduction
of sunspots or public randomization are not necessary for the existence of equilibrium, and
(iii) a relatively direct method to compute both equilibrium values and strategies. It bears
mentioning that the resulting MSNE remains an equilibrium in any wider class of strategies
including stationary Markov ones.

To obtain our results, our work focuses on stochastic games with strategic complementar-
ities (GSC). It is well known that GSC have proven very useful in applications in economics
and operations research in a static context,4 but it turns out to be difficult to adapt exist-
ing toolkit to the study of dynamic equilibrium.5 One recent attempt to analyze dynamic
supermodular (extensive form) game was undertaken by Balbus et al. [12] in a context of
stochastic game with public signals. Here, we focus on the stochastic supermodular games
with both public and private shocks, and with our new results, we are able to link the lines

2For example, this occurs when one studies the case where continuation play is independent on the beliefs on
the information set (see [23]).
3Cf., [14, 18, 29] and [36].
4See, for example, the excellent survey of Vives [58] for a discussion of the extensive applications of GSC in
the economics literature.
5The only exception to this of which we are aware is (i) the example of dynamic global game presented in
[16], and (ii) the analysis of a large industry dynamics game studied in [51].
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of literatures on dynamic supermodular games with that on Bayesian supermodular games
[55, 57].

Our paper contributes also to the literature on existence of equilibrium in stochastic
games with uncountable state and action spaces without private types. Recall that Mertens
and Parthasarathy [38] and Maitra and Sudderth [37] prove existence of subgame perfect
Nash equilibrium in a class of such games. It is worth mentioning, however, that existence
of MSNE cannot be proved in a general case even if randomization is applied (for an ex-
tensive discussion of this fact; see [35]).6 In the class of correlated strategies involving i.i.d.
“public randomization,” MSNE have been shown to exist under different assumptions in
various papers including [21, 26, 46] and [30]. Recently, Duggan [22] extended the paper
by Nowak and Raghavan [46] by expanding the state space where MSNE exist by appealing
to the additional “noisy variables.”

In the literature pertaining to economic applications of dynamic/stochastic games, how-
ever, the central concern has not been exclusively on the question of weakening conditions
under which the existence of equilibrium can be established or various forms of folk theo-
rems (see, e.g., [25]). Rather, the emphasis has also been on characterizing the properties of
MSNE from a computational point of view. This approach arises in, for example, calibra-
tion approaches to characterizing MSNE (as in macroeconomics), or estimation/simulation
methods (as in industrial organization). For such questions, one needs to unify the theory of
existence of equilibrium with a theory to numerical implementation, which requires one to
present not only (i) constructive arguments to verify existence, but also (ii) sharp character-
izations of the set of equilibria being computed, and (iii) methods of relating error analysis
to particular approximation schemes at hand. Our paper proposes such a framework for the
class of stochastic games we study.

The rest of the paper is organized as follows. Section 2 defines the game and equilibrium
concept. Then, in Sect. 3, we prove our main theorem on MSNE existence and computation.
Section 4 presents three examples from industrial organization literature. Appendix states
the auxiliary theorem we use in our proofs, while Sect. 5 concludes with a discussion of
related methods.

2 The Class of Games

Consider an n-person infinite horizon stochastic game with private and public signals in dis-
crete time. That is, in each period t ∈ {0,1,2, . . .} = N, every player i initially observes both
public signal zt , as well as his own private signal θ t

i . At this stage, players simultaneously
undertake actions at = (at

i , a
t
−i ) where at

i denotes the actions of player i, at
−i denotes the ac-

tions of the remaining players, and at both (i) yields to each player a current period payoff,
as well as (ii) parameterizes a stochastic transition on states that governs the distribution of
public and private signals tomorrow. At the end of each period, all actions are then observed
by all players, payoffs are distributed, and the game moves forward to the next period.

Formally, the game is a tuple Γ = (Z,Θ,A, Ã,μ, r, q,Q), where the elements of these
primitives are described as follows:

6In some classes of games with absolutely continuous transitions (with respect to some probability measure
on the state space), approximations of stochastic games with uncountable state space by games with discrete
sets of states is possible. In this case, only ε-stationary equilibria can be constructed. See Jaśkiewicz and
Nowak [31] and their references.
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– Z is a public shock space, and is an interval in a vector space containing 0 vector, and
endowed with the Borel sigma-field Z .

– Θ = ∏n

i=1 Θi , where Θi is a Polish space of private shocks for player i.
– A = ∏n

i=1 Ai , where the set Ai is a closed subset of R
k equipped with its Euclidean

topology and componentwise partial order representing the action space for player i, with
the space A given the product order.

– Ã(z, θ) = ∏n

i=1 Ãi(z, θi), where Ãi is a measurable,7 Ai -valued correspondence, where
Ãi(z, θi) denotes a nonempty and compact set of actions available for player i when the
public shock is z and his private shock is θi .

– ri : Z×Θ ×A → R+ := [0,∞) is player i reward function for player i, which is assumed
to be measurable and uniformly bounded by M < ∞.

– q is a Borel measurable transition probability from Z × Θ × A to Z (i.e., when a pub-
lic shock is z, the vector of private shocks is (θ1, . . . , θn), and actions chosen are to be
(a1, . . . , an), then distribution on the continuation realizations of shocks in Z is given by
q(· | z, θ, a)).

– Q is a Borel measurable transition probability from Z to Θ (i.e., when a public shock
is z, then vector of private shocks is given by Q(· | z)). Further, let Q−i (· | z, θi) be a
regular conditional distribution on the “other players” private shocks Θ−i (i.e., when the
public shock is z, and private shock of player i is θi ).8 In other words, Q−i (· | z, θi) is
a posterior distribution on the other player’s private signals for player i when agent i

observes his own private state and the public state. In similar way, we let Qi(· | z, θ−i )

denotes a regular conditional distribution player i’s “own” private shocks Θi .

The players know the history of public shocks, their own private shocks, and their
past actions, and let Ht

i denote the set of all possible histories of player i up to period
t . An element ht

i ∈ Ht
i is of the form ht

i = (z1, θ1
i , a1, z2, θ2

i , a2, . . . , at−1, zt , θ t
i ) where

zh ∈ Z, θh
i ∈ Θi , ah ∈ Ã(zh, θh), 1 ≤ h ≤ t . A strategy for player i is then a sequence

σi := (σ 1
i , σ 2

i , . . .), where for each t , σ t
i : Ht

i → Ai is a measurable mapping such that
σ t

i (h
t
i) ∈ Ãi(z

t , θ t
i ). A strategy σi is Markov if each σ t

i depends on current signals/shocks
only (i.e., σ t

i (h
t
i) = σ t

i (z
t , θ t

i ). A Markov strategy is stationary if σ 1
i = σ 2

i = · · · = σ 0
i for

some measurable mapping σ 0
i . We denote by σ := (σ1, . . . , σn) a profile of Markov station-

ary strategies.
Suppose player i knows realization of the public shocks, as well as her private shocks,

but does not know a realization of private shocks of other players. If the initial public shock
is z, and her initial private signal is θi , then player believes the initial distribution on the
others’ private shocks is just Q−i (· | z, θi), and the evolution of the private shocks θ t

−i is a
Markov chain with a distribution at any step t given by Q−i (· | zt , θ t

i ).

Remark 1 By our assumptions, if the current state is (z, θ), Markov stationary strategy pro-
file is σ , then the distribution of the next state (z′, θ ′) is given by measure:

Q̃(Z0 × T | z, θ) :=
∫

Z0

Q
(
T | z′)q

(
dz′ | z, θ, σ (z, θ)

)
,

7That is, lower inverse image of an open set is Borel. In the literature, it is sometimes called a weakly
measurable correspondence (see, e.g., [27, 33]). By Theorem 4.1. of Himmelberg [27] or Lemma 18.4 in
Aliprantis and Border [3], the product correspondence (z, θ) → Ã(z, θ) is also measurable. Finally, in this
paper measurability of various mappings means Borel measurability.
8Existence of regular conditional probability shall follow from standard conditions (e.g., see [7]).
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where Z0 is a measurable subset of Z and T is a measurable subset of Θ . Notice, player
i does not know the realization of θ−i , but knows the realization (z, θi), and believes that
current realization on θ−i is given by Q−i (· | z, θi). Because of this, he believes that the
distribution on (z′, θ ′) is given by

Q̃i(Z0 × T | z, θi)

:=
∫

Θ−i

∫

Z0

Q
(
T | z′)q

(
dz′ | z, θi, θ−i , σi(z, θi), σ−i (z, θ−i )

)
Q−i (dθ−i | z, θi).

Thus, for arbitrary Markov stationary strategy profile σ , the evolution of public and private
state (zt , θ t

i ) for agent i is a Markov decision process with transition probability Q̃i .

The last remark requires a discussion of the structure of players’ beliefs, as well as the
formation of these beliefs in equilibrium. A dynamic game with public states and private
(information) types can potentially possess many sequential equilibria (as players can con-
dition their action and beliefs on arbitrary histories). In such a case, the beliefs of any given
player relative to the type and/or actions of the other players can matter a great deal in the
construction of any such sequential equilibrium. This is true, in particular, for games with
no private types (as, for example, analyzed in [2]; APS, henceforth). However, in APS, the
authors concentrate on public strategies; therefore, each player’s belief about how his rivals
moves is irrelevant in their approach.

Similarly, in this paper, we focus on Markov stationary strategies, and assume players’
use Markovian private beliefs as well (see also [17]). That is, when constructing Markov
stationary strategies, the players condition their beliefs on the current state, as well as current
private types only. Such a belief structure is rational in our setup (as knowing current state
and own type is sufficient for forecasting the continuation structure of the game assuming
other players are using Markovian strategies and Markovian-private beliefs). Finally, what
guarantees the rationality of such beliefs is our assumption that each period, the distribution
on private types depends only on current states.

Let Ht = {(z1, θ1, a1, z2, θ2, a2, . . . , at−1, zt , θ t )} be a set of histories of the game up to
step t and H∞ = {(z1, θ1, a1, z2, θ2, a2, . . .)}, both endowed with the product σ -algebra. For
every player, given initial public and private states, the transition among public and private
states, the profile of strategies σ = (σ1, . . . , σn), and a belief that others private shocks are
changing according to Q(· | zt ), we can generate a sequence of probability measures on
histories Ht (t < ∞). Then, according to the Ionescu–Tulcea theorem (see [15]), we know
there exists a measure, say P

z,θi ,σ

i on H∞, and a corresponding expected value operator, say
E

z,θi ,σ

i , such that the objective for player i is to maximize lifetime payoffs given by

γi(σ )(z, θi) = (1 − β)E
z,θi ,σ

i

( ∞∑

t=1

βt−1ri

(
zt , θ t , σ t

i

(
zt , θ t

)
, σ t

−i

(
zt , θ t

))
)

,

Definition 1 A Nash equilibrium in our game is therefore a profile σ ∗ from which no uni-
lateral deviation is profitable. That is, σ ∗ is a Nash equilibrium if for every player i and her
arbitrary strategy σi :

∀(z, θi) ∈ Z × Θi γi

(
σ ∗)(z, θi) ≥ γi

(
σi, σ

∗
−i

)
(z, θi).

Any Nash equilibrium that is stationary in Markov strategies is then called MSNE.
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3 Main Results

In this section, we build our results on the existence, computation, and equilibrium compar-
ative statics of MSNE in the parameters of the game.

To begin with the existence question, suppose player i knows (z, θi) in some period, and
believes that the distribution of private shocks for the other agents is Q−i (· | z, θi). If σ−i is
a Markov stationary strategy for the other players in the game, and her own action is ai , then
her current expected reward is given simply by

Ri(z, θi, ai, σ−i ) :=
∫

Θ−i

ri

(
z, θi, θ−i , ai, σ−i (z, θ−i )

)
Q−i (dθ−i | z, θi).

In line with Remark 1, the expected value from some integrable continuation value vi :
Z × Θi → R+ is computed as

Ei(z, θi, ai, σ−i , vi)

:=
∫

Θ−i

∫

Z

∫

Θi

vi

(
z′, θ ′

i

)
Q

(
dθ ′ | z′)q

(
dz′ | z, θi, θ−i , ai, σ−i (z, θ−i )

)
Q−i (dθ−i | z, θi).

Define the following function space for candidate equilibrium values:

Vi := {
vi : Z × Θi → [0,M] : vi(0, θi) ≡ 0, vi is Borel measurable

}
.

Also, define a set of Markov stationary strategies to be

Σi := {
σi : Z × Θi → Ai : σi(z, θi) ∈ Ãi(z, θi), σi is Borel measurable

}
.

Observe Σi is nonempty by the measurable selection theorem of Kuratowski and Ryll-
Nardzewski [33]. Denote by V := ∏n

i=1 Vi , and Σ := ∏n

i=1 Σi the product space of Markov
stationary value functions and strategies, and endow V × Σ with its (product) pointwise
partial order (i.e., (v1, σ 1) ≤ (v2, σ 2) whenever both v1

i (z, θi) ≤ v2
i (z, θi) and σ 1

i (z, θi) ≤
σ 2

i (z, θi) ∀i = 1, . . . , n ∀(z, θi) ∈ Z × Θi ).
We now formulate the assumptions we shall need for our existence theorem.

Assumption 1 Assume that:

– ri(z, θ, ·) is continuous on A for each (z, θ) ∈ Z × Θ and ri(·, ·, a) is measurable on
Z × Θ for each a ∈ A.

– Ãi is a nonempty, compact, and complete sublatticed-valued correspondence.
– ri is supermodular9 in ai , has increasing differences10 in (ai, a−i ), is increasing in a−i ,

and

ri(0, θi , θ−i , ai, a−i ) ≡ 0 ∀(θ, a) ∈ Θ × A.

9Function f : X → R on a lattice X is supermodular iff f (x′ ∧ x) + f (x′ ∨ x) ≥ f (x′) + f (x) for all
x′, x ∈ X, where x′ ∧ x = inf{x′, x} and x′ ∨ x = sup{x′, x}.
10Function f : X×T → R, where X,T are partially ordered sets (posets), has increasing differences in (x, t)

iff f (x′, t ′) − f (x, t ′) ≥ f (x′, t) − f (x, t) for any t ′ ≥ t , x′ ≥ x.



Dyn Games Appl

– q is on the form

q(· | z, θ, a) = p(· | z, θ, a) + (
1 − p(Z | z, θ, a)

)
δZ(·),

where δZ is a Dirac delta on Z concentrated at 0, i.e., δZ({0}) = 1, p(· | z, θ, a) is some
measure such that p(Z | z, θ, a) < 1, and p(Z | 0, θ, a) ≡ 0 ∀(z, θ, a) ∈ Z × Θ × A.

– For vi ∈ Vi denote p(vi | z, θ, a) = ∫
Z

vi(z
′, θ ′

i )p(dz′ | z, θ, a), and assume that p(vi |
z, θ, a) is (a) continuous, supermodular, and increasing in a, and (b) measurable in (z, θ).

Given the assumptions on preferences and stochastic transitions q , we can write down
an auxiliary game such that for any continuation value v ∈ V , the auxiliary game is a game
of strategic complementarities with positive externalities. Further, when q has the specific
form in our conditions above, we can preserve supermodularity in the game to each players
value function recursively at each stage of the game. We should mention that although this
is a powerful technical assumption, the conditions are satisfied in many applications (e.g.,
see the discussion in [16] for a particular example of this exact structure). Additionally, as
we assume positive returns (i.e., r(0, ·) ≡ 0), our assumptions above assure that the expected
continuation value is supermodular in its arguments (as well as monotone in a). This struc-
ture is common in the literature. For example, a stronger version of this assumption was
introduced by [4], used in a series of papers by [43–45], as well as studied extensively in the
context of games of strategic complementarities with public information in [12]. We refer
the reader to our two related papers (see [12, 13]) for a detailed discussion of the nature of
these assumptions.

As the next remark indicates, though, our current form of this assumption is significantly
weaker than in the existing literature.

Remark 2 Observe that we do not require that p is a probability measure. A typical example
of p is: p(· | z, θ, a) = ∑J

j=1 gj (z, θ, a)ηj (· | z, θ), where ηj (· | z, θ) are measures on Z
and gj : Z × Θ × A → [0,1] are functions with

∑J

j=1 gj (·) ≤ 1. However there are many
examples of p that cannot be expressed by a linear combination of stochastic kernels, and
still satisfy our assumptions. For example, on Z = A = [0,1], consider p having a density
ρp(z′ | z, θ, a) = ξ(θ)(

√
z′ + L(z, a, θ)−√

z′) for sufficiently small function ξ and function
L increasing in a.

Along these lines, we first introduce the following additional notation. We define for each
player i:

Wi(z, θi, ai, σ−i , vi) = (1 − β)Ri(z, θi, ai, σ−i ) + βEi(z, θi, ai, σ−i , vi),

which is expected payoff to any player i who faces continuation vi , with the others using
strategy σ−i . Define this player’s best response operator to be:

Pi (vi, σ−i )(z, θi) = arg max
ai∈Ãi (z,θi )

Wi(z, θi, ai, σ−i , vi),

as well as her corresponding best response value function to be

Ti (vi, σ−i ) = max
ai∈Ã(z,θi )

Wi(z, θi, ai, σ−i , vi).
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By P(v, σ ) := ∏n

i=1 Pi (vi, σ−i ), we denote best responses for all the players. Also, put
T (v, σ ) := (T1(v1, σ−1), . . . , Tn(vn, σ−n)) to be the vector of value functions for all players
induced by these best replies maps.

To construct MSNE, we define a few new mappings. First, consider the correspondence
Φ defined on the product space V × Σ , and defined to be the mapping

Φ(v,σ ) := T (v, σ ) × P(v, σ ).

Using this correspondence, we can define new mappings using the greatest (resp., least se-
lection) from Φ(v,σ ) given by

Φ(v,σ ) = (
T (v, σ ), P(v, σ )

)
resp., Φ(v,σ ) = (

T (v, σ ), P(v, σ )
)
,

where we have P(v, σ ) := ∏n

i=1 P i (vi, σ−i ) with P i (v, σ−i ) the greatest selection from
Pi (v, σ−i ). Similarly, define the least selections P i and P . Notice, this can be done by Lem-
mas 3 and 4 stated below.

We now make a number of important observations.

Lemma 1 For each σ−i ∈ Σ−i and vi ∈ Vi , function Wi(z, θi, ai, σ−i , vi) is a Carathéodory
function in (z, θi) and ai , that is: Wi is measurable in (z, θi) and continuous in ai .

Proof See Chap. 7 in [15]. �

Lemma 2 Ei(z, θi, ai, σ−i , vi) is supermodular in ai increasing in σ−i and has increasing
differences in (ai, σ−i ).

Proof Observe that

Ei(z, θi, ai, σ−i , vi)

=
∫

Θ−i

∫

Z

∫

Θi

vi

(
z′, θ ′

i

)
Q

(
dθ ′ | z′)q

(
dz′ | z, θi, θ−i , ai, σ−i (z, θ−i )

)
Q−i (dθ−i | z, θi).

Hence, the assertion follows from Assumption 1, as supermodularity, increasing differences
and monotonicity are preserved by summation. �

Lemma 3 For each i, P i and P i are increasing in (vi, σ−i ) and both functions (z, θi) →
P i (vi, σ−i )(z, θi) and (z, θi) → P i (vi , σ−i )(z, θi) are measurable.

Proof First observe that by Lemma 2 Wi is supermodular in ai . We need to show it has in-
creasing differences in (ai;σ−i , vi). As increasing differences are preserved by summation,
we just need to show that Ri and Ei have increasing differences separately. Observe that

Ri

(
z, θi, a

1
i , σ−i

) − Ri

(
z, θi, a

2
i , σ−i

)

=
∫

Θ−i

ri

(
z, θi, θ−i , a

1
i , σ−i (z, θ−i )

) − ri

(
z, θi, θ−i , a

2
i , σ−i (z, θ−i )

)
Q−i (dθ−i | z, θi),

is increasing in σ−i as ri has increasing differences in (ai, σ−i ). Similarly, Ei has increasing
differences. To see that observe that by our assumption
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(ai, vi)

→
∫

Θ−i

∫

Z

∫

Θi

vi

(
z′, θ ′

i

)
Q

(
dθ ′ | z′)p

(
dz′ | z, θi, θ−i , ai, σ−i (z, θ−i )

)
Q−i (dθ−i | z, θi),

has desired increasing differences by monotonicity of p. Thus, Wi has increasing differences
in (ai;σ−i , vi). Hence, by Theorem 6.2. in [54], Pi is ascending, compact, and sublatticed-
valued correspondence from V × Σ into itself. As a result P i and P i are increasing.

Now the aim is to show that both P i (vi, σ−i ) and P i (vi, σ−i ) are measurable. Measura-
bility of Pi (vi , σ−i ) is a well-known fact. To see that observe:

Pi (vi, σ−i )(z, θi)

=
{
ai ∈ Ã(z, θi) : Wi(z, θi, ai, σ−i , vi) ≥ max

ai∈Ã(z,θi )

Wi(z, θi, ai, σ−i , vi)
}
,

which by Lemma 1.10 of [42] or Theorem 18.19 in [3] is measurable. We now show that
extremal selections are measurable. Consider a collection of maximization problems Oij :
maxyj such that y ∈ Pi (vi, σ−i )(z, θi), y = (y1, . . . , yk) ∈ R

k . Define P 0
ij (vi, σ−i )(z, θi)

as the set of all maxima in the problem Oij . Then the correspondence (z, θi) →
P 0

ij (vi, σ−i )(z, θi) is measurable and compact-valued. By Theorem 4.1 in [27],

(z, θi) → Y 0
i (z, θi) :=

k⋂

j=1

P 0
ij (vi, σ−i )(z, θi)

is measurable as well. Observe that Y 0
i (z, θi) is single-valued and its element, say y0

i (z, θi)

is a measurable function. Trivially, y0
i (z, θi) = P i (vi, σ−i )(z, θi). Similarly we prove a mea-

surability of P i (v, σ ). �

Lemma 4 T is isotone on V ×Σ and function Ti (vi, σ−i ) is measurable on Z ×Θi for each
(vi, σ−i ), i = 1, . . . , n.

Proof Recall that Ti (vi, σ−i ) = maxai∈Ã(z,θi )
Wi(z, θi, ai, σ−i , vi). Hence, the monotonicity

follows directly from Assumption 1. To show that Ti (vi , σ−i ) is measurable we just apply
Lemma 1 and Theorem 18.19 in [3]. �

Lemma 5 Φ and Φ are isotone and map V × Σ into itself.

Proof It follows directly from Lemmas 3 and 4. �

Lemma 6 σ ∗ is a MSNE equilibrium with v∗ as a corresponding payoff iff (v∗, σ ∗) ∈
Φ(v∗, σ ∗).

Proof It follows directly from principle of optimality and standard dynamic programming
arguments (see [15]). Also observe that σ ∗ remains a MSNE if players are allowed to use
more general strategies (assuming beliefs are Markov). �
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Lemma 7 Φ is monotonically inf-preserving and Φ is monotonically sup-preserving.11

Proof By Lemmas 3 and 4, we immediately conclude that Φ(v,σ ) and Φ(v,σ ) are well
defined. We show that Φ is monotonically inf-preserving. Let (σ n, vn) be a decreasing se-
quence and (v, σ ) = ∧{(vn, σ n) ∈ (V,Σ)}. By Lemma 5, Φ(vn, σ n) is a decreasing se-
quence, hence pointwise convergent to some φ0. We need to show that φ0 ∈ Φ(v,σ ). Clearly,
by Assumption 1, the function a → Ei(z, θi, a, bi) is continuous on A for any vi . Applying
Fatous lemma for varying measures (see [49], p. 231), we obtain Ei(z, θi, a

n
i , σ

n
−i , v

n
i ) →

Ei(z, θi, ai, σ−i , vi) whenever an
i → ai , and (σ n

−i , v
n
i ) → (σ−i , vi) pointwise in (z, θi) (as

n → ∞). Hence, φ0 ∈ Φ(v,σ ), and consequently φ0 ≤ Φ(v,σ ). On the other hand, observe
that Φ(v,σ ) ≤ Φ(vn, σ n). Taking a limit, we obtain Φ(v,σ ) ≤ φ0. Hence, φ0 = Φ(v,σ )

and Φ is monotonically inf-preserving. Similarly, we show that Φ is monotonically sup-
preserving. �

We now define two important sequences.

Definition 2 Let φ0(z, θ) ≡ (
∨

V,
∨

Σ) and for t ≥ 1:

φt+1 = Φ
(
φt

)
.

Similarly, let ψ0(z, θ) ≡ (
∧

V,
∧

Σ) and for t ≥ 1:

ψt+1 = Φ
(
ψt

)
.

Observe,
∨

V is the vector of constant functions that equal to M , while
∧

V is the vector
of constant functions equal to zero.

Having these observations and definitions in hand, we are ready to prove the main results
of the paper. We first prove a result on existence and computation of equilibrium values and
MSNE:

Theorem 1 Let Assumption 1 be satisfied. Then:

(i) there exist pointwise limits φ∗ = limt→∞ φt and ψ∗ = limt→∞ ψt .
(ii) φ∗

2 is a MSNE with φ∗
1 as a corresponding payoff vector. Similarly, ψ∗

2 is a MSNE with
ψ∗

1 as a corresponding payoff vector.
(iii) Let f ∗ be a MSNE and v∗ its corresponding payoff vector. Then φ∗

2 ≥ f ∗ ≥ ψ∗
2 and

φ∗
1 ≥ v∗ ≥ ψ∗

1 .

Proof

(i) We show that φt is a monotone sequence. Clearly, φ2 ≤ φ1. Assume that φt ≤ φt−1 for
some t > 1. By Lemma 5, we then have φt+1 ≤ Φ(φt ) ≤ Φ(φt−1) = φt . Hence, φt is
antitone. Similarly, we show ψt is isotone. As a result, both of these sequences have a
limit.

(ii) As φt+1 ∈ Φ(φt ), φt → φ∗ by previous step, hence and by Lemma 7, φ∗ ∈ Φ(φ∗). Sim-
ilarly, ψ∗ ∈ Φ(ψ∗). By Lemma 6, φ∗

1 and ψ∗
1 are Nash equilibria with corresponding

payoff vectors φ∗
2 , and ψ∗

2 .

11A function F : X → X, with X a chain complete poset, is monotonically sup (resp. inf)-preserving if for
any increasing (resp. decreasing) sequence xn , we have F(

∨
xn) = ∨

F(xn) (resp. F(
∧

xn) = ∧
F(xn)).

Here,
∨

denotes supremum of {xn} and
∧

its infimum.
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(iii) Let f ∗ be an arbitrary stationary Nash equilibrium with a corresponding payoff v∗.
Then by Lemma 6 (v∗, f ∗) ∈ Φ(v∗, f ∗) ⊂ [Φ(v∗, f ∗),Φ(v∗, f ∗)]. The last inclusion
follows from Lemma 7. Clearly, ψ1 ≤ (v∗, f ∗) ≤ φ1. Assume for some t ∈ N:

ψt ≤ (
v∗, f ∗) ≤ φt . (1)

By definition of Φ and Φ and Lemma 5, we have

ψt+1 = Φ
(
ψt

) ≤ Φ
(
v∗, f ∗) ≤ (

v∗, f ∗) ≤ Φ
(
v∗, f ∗) ≤ Φ

(
φt

) = φt+1.

Hence, the inequality in (1) follows for all t . Taking a limit in (1) by step (ii), we receive
ψ∗

2 ≤ f ∗ ≤ φ∗
2 and ψ∗

1 ≤ v∗ ≤ φ∗
1 . �

Theorem 1 states a number of things. We start this discussion from our existence result
(ii)–(iii), and then move to comment on our approximation result in (i).

First, the theorem establishes existence of MSNE for our infinite horizon game with
both public and private shocks; but it does more. It also provides bounds for constructing
every MSNE. Moreover, both of these extremal fixed points are actual MSNE, and therefore
provide equilibrium bounds for all MSNE. We can also obtain corresponding equilibrium
bounds for all MSNE equilibrium values.

Second, as is typical in the literature, to prove the existence of equilibrium, we construct
auxiliary one shot game parameterized by continuation values. What is important, though,
in our method is that instead of finding the set of Nash equilibria at every period, we param-
eterize the payoff function of every player by both continuation value function and strategy
profile for the actions of the other players. Using this added structure, we are then able to
evaluate the best response of the player depending on the strategy of the other players, as
well as his continuation value. The advantage of this method is the simplicity of resulting
computations that ensue as compared with the computations involved in the APS type meth-
ods of Cole and Kocherlakota [17], for example. We comment more on the importance of
this simplification in a moment.

Third, our method uses recent results on Bayesian supermodular games in its construc-
tion. That is, similar to the papers of Vives [57], or Van Zandt [55], MSNE are not necessarily
monotone as a functions of states (private or public); rather, we just impose enough structure
on the game to construct operators for value/strategy pairs that are monotone with continu-
ation values and other player strategies. In doing this, we are then able to obtain precisely a
dynamic supermodular game. Of course, we can also seek conditions sufficient to prove the
existence of monotone Markovian equilibrium (in states). For this case, we simply impose
stronger complementarity assumptions in the primitives of the game between actions and
states.12

Fourth, the theorem provides a simple iterative algorithm to construct the greatest and
least equilibria in our infinite horizon game. More specifically, as compared with other
methods (e.g., APS methods), we simultaneously iterate on operators defined in terms of
both player values and Markovian strategies. We are able to show in the theorem that our
iterations converge in order to Markov equilibrium strategies (as well as their associated
equilibrium values). One characterization that is missing here, though, are estimates of the

12See, for example, [48] and citations therewithin for a related papers on monotone equilibria in Bayesian
games. Also, see [19] or [6] for monotone MSNE in stochastic supermodular games with public information.



Dyn Games Appl

rate of convergence, as well as the accuracy of our approximations to the least and great-
est MSNE. To address these latter issues, we can introduce additional metric structure, and
study the metric convergence question, and perhaps looks for stronger properties of MSNE
(e.g., local Lipschitz structure).

Fifth, our algorithm is simpler than that proposed in [12] for the case of public informa-
tion, as we do not need to compute equilibria of the auxiliary game at every value function
iteration. However, this simplification comes at a cost, as our iterations are not equilibria in
truncated finite horizon games. In this sense, our method is similar to that discussed in [52],
but very different than the one developed in Balbus and Nowak [10, 11], or Balbus et al. [12]
for games with public information.

Sixth, the approach used in the proof of Theorem 1 reminiscent of the iterated elimina-
tion of dominated strategies (as discussed, for example, in [57]), but extended to dynamic
games. Indeed, as observed by Chassang [16], the simultaneous iterated elimination of dom-
inated Markovian strategies (and corresponding values) leads to convergence in order to ex-
tremal MSNE. Recall that this procedure heavily depends on the (Markovian) equilibrium
and (Markov-private) beliefs concepts applied.

Finally, we make two more specific remarks on how the results can be strengthened by
strengthening conditions on the primitives, or changed by altering order structure on the
space of functions where we study the equilibrium existence problem.

Remark 3 If the best replies are functions, then we can strengthen our results by saying that
the MSNE set is a countably chain complete. That is, MSNE set is closed under countable
sup/infs of chains. It follows from our generalization of Tarski–Kantorovitch fixed-point
theorem (see Proposition 1 in the Appendix).

Remark 4 If the order on each Vi and Σi is changed to a.e. (where, a.e. refers to private
and public signals), then we can conclude using Veinott [56]/Zhou [60] generalization of
the Tarski [53] fixed-point theorem that the MSNE set not only has the greatest and least
elements, but is also a complete lattice. This follows from that fact the set of bounded,
Borel-measurable functions is a sigma-complete lattice, when endowed with pointwise (ev-
erywhere) order, but is a complete lattice, when endowed with a.e. order (see [57]). In this
paper, we prefer to use pointwise (everywhere) order mainly for comparative statics results
presented in Theorem 2 below.

We complete this section on the existence and characterization of MSNE, we conclude
with an important corollary of the main theorem.

Corollary 1 MSNE exists in a class of stochastic games satisfying Assumption 1 with per-
fect monitoring and no private information, i.e., where with probability one θi = θj for all
players.

Observe, by this corollary, we prove the existence of MSNE in class of games similar to
Curtat [19] or Amir [5]. Similar to their work, we let the within-period game exhibit strategic
complementarities, but there are also a few specific differences that are worth mentioning.
First, we do not require that payoffs or transition probabilities to be Lipschitz continuous,
an assumption which appears to be very strong relative to many economic applications.
Second, we also do not impose any conditions on payoffs and stochastic transitions that
imply (i) “double increasing differences” in player’s payoff structure, or (ii) strong concav-
ity conditions such as strict diagonal dominance that are needed to obtain their existence
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result. Third, and equally as important, we do not assume any increasing differences be-
tween actions and states (hence, our equilibrium strategies are not necessarily increasing on
Z). These new results do come at the expense of requiring our assumption on transition Q,
which is more specific than required by either Amir or Curtat.

We now present our results on monotone equilibrium comparative statics, and show the
set of MSNE is ordered relative to order perturbations of the deep parameters of the game. To
do this, consider a parameterized version of our game Γ (ω), where ω ∈ Ω is a set of param-
eters of the game, where Ω is a poset. More specifically, denote by Ã(z, θ;ω), ri(z, θ, a;ω)

and p(· | z, θ, a;ω) the parameterized versions of our primitive data of the original game,
and by φ∗

2,ω and ψ∗
2,ω the two extremal MSNE computed in Theorem 1 at parameter ω. If φ∗

1,ω

and ψ∗
1,ω , denote the corresponding equilibrium payoffs then: (φ∗

1,ω, φ∗
2,ω) = Φ(φ∗

1,ω, φ∗
2,ω)

and (ψ∗
1,ω,ψ∗

2,ω) = Φ(ψ∗
1,ω,ψ∗

2,ω).
We make the following assumptions on the parameterized class of games.

Assumption 2 Assume that:

• For each ω ∈ Ω Assumption 1 holds.
• Each ri has increasing differences in (ai,ω), and is increasing in ω.
• p(vi | z, θ, a,ω) has increasing differences in (ai,ω), and is increasing in ω for each

vi ∈ Vi .
• Ãi(z, θ) does not depend on ω.

With this parameterization complete, we can now state our central equilibrium monotone
comparative statics theorem for our class of parameterized games:

Theorem 2 Let Assumption 2 be satisfied. Then extremal MSNE φ∗
2,ω,ψ∗

2,ω are monotone
with ω on Ω .

Proof Consider a model parameterized by ω. Consider the least MSNE equilibrium as
ψ∗

2,ω(z, θ). We show that ψ∗
2,ω is increasing in ω. To do it, observe that ψ∗

ω := (ψ∗
1,ω,ψ∗

2,ω)

is a fixed point of operator Φ(v,σ ;ω). Clearly, by Lemma 5, Φ is increasing in (v, σ )

and by Lemma 7 is monotonically sup-preserving. We need to show that this operator is
increasing in ω. Let (ṽi(ω), σ̃i(ω)) := Φi(vi, σ−i;ω). By definition of σ̃i , it is a least se-
lection of argmax correspondence of the function ai → Wi(z, θi, θ−i , ai, σ−i , vi;ω) over
Ãi(z, θi). By Lemma 2, Wi is supermodular in ai and Ãi does not depend on ω. Analo-
gously, we prove Wi has isotone differences in (ai,ω). Hence, by [54] , σ̃i is increasing in
ω. Since Wi is increasing in ω, hence ṽi is increasing in ω. This implies that Φ is isotone
in ω. As by Lemma 7, Φ is monotonically sup-preserving, and V × Σ is countably chain
complete poset, hence by Proposition 1 we obtain that ψ∗

ω is the least element of the set
Kω := {ψ ∈ V × Σ : Φ(ψ;ω) ≤ ψ}. To show that ψ∗

ω increases in ω, let ω ≤ ω′. Then

ψ∗
ω′ = Φ

(
ψ∗

ω′ ;ω′) ≥ Φ
(
ψ∗

ω′ ;ω)
.

Hence, ψ∗
ω′ is some selection of Kω , while ψ∗

ω is the least selection of this set. Therefore,
ψ∗

ω ≤ ψ∗
ω′ and ψ∗

2,ω ≤ ψ∗
2,ω′ . Similarly, we show that φ∗

2,ω increases in ω. �

We should remark, we are not aware of any similar monotone comparative statics result
for dynamic games in the existing literature. Here, our monotone equilibrium comparative
statics result follows from the monotonicity of our operators and applications of our exten-
sion of Veinott [56] parameterized fixed point theorem to countable chain complete posets
(see proof of Theorem 2).
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4 Examples

In this section, we present three applications of our methods. In all three examples, the
results of our paper can be used to verify existence of the greatest and the least Markov
stationary Nash equilibrium, as well as provide methods to compute these extremal equilib-
ria by the simple iterative procedure. Finally, Theorem 2 offers the corresponding result per
monotone equilibrium comparative statics.

4.1 Dynamic Price Competition with Private Information

Consider an economy with n firms who are competing for customers buying heterogeneous,
but substitutable, goods. Firms have private information concerning their demand parame-
ters θi ⊂ [−εi, εi] = Θi , and there is also a public signal z ∈ Z = [0, z] ⊂ R

n+ giving each
firm partial information on others’ firm demand parameters. More succinctly, let the demand
parameter be given by si(zi, θi).

After observing z (that could, for example, reflect business cycle fluctuations), the indi-
vidual parameters θ are drawn from the conditional distribution Q(· | z). If the other firms
choose prices a−i (z, θ−i ), the interim payoff of firm i, choosing price ai ∈ [0, ā] is given by

ui(z, θi, ai, a−i ) =
∫

Θ−i

[
aiDi

(
ai, a−i (z, θ−i ), si(zi, θi)

)

− Ci

(
Di

(
ai, a−i (z, θ−i ), si(zi, θi)

))]
Qi(dθ−i | z, θi).

where Di is a demand. Normalize the profits such that if zi = 0, the firm’s i profit is zero
(e.g., that turnover is too small to cover the costs, and the company is driven out of the
market). As the within period game is Bertrand with heterogeneous firms and substitutable
products, the payoff Assumption in 1 is satisfied if demand Di is (a) increasing with others
prices, and (b) has increasing differences between (ai, a−i ). Also, as [0, ā] is single dimen-
sional, payoff is supermodular function of own price. Finally, assume as is standard that Ci

is increasing and convex.
To interpret this model using the language of our model, let measure p on Z capture the

influence on current parameters (θ, z) and prices on tomorrow’s demand parameterized by
vector z′. Therefore, apart from technical assumption on measurability, to apply our meth-
ods, we only require here that measure p be monotone, supermodular and continuous in
prices. This latter condition can be interpreted as the demand substitution between periods
(i.e., prices today imply higher probability on positive (z ∈ (0, z]) demand parameters the
next period, as consumers can wait for cheaper prices tomorrow). This effect is stronger if
others set higher prices as well via the supermodularity assumption. Indeed, when the com-
pany increases its price today, it may lead to a positive demand in the future if the others have
also high prices. But if the other firms set low prices today, then such impact is definitely
lower, as some clients may want to purchase the competitors good today instead.

4.2 Dynamic R&D Competition with Positive Spillovers and Private Costs

A second application of our results is inspired by d’Aspremont and Jacquemin [20], who
analyze a two stage game between oligopolists choosing the R&D expenditure to reduce
costs in the first stage, and then in a second stage compete a la Cournot. The authors study
the effects of R&D investment spillovers in an (subgame perfect) equilibrium, as well as its
optimality. To study such a game, we analyze an infinite horizon R&D competition model,
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where each period, we embed the two stage game of d’Aspremont and Jacquemin [20],
which is played between n oligopolists.

Along these lines, assume that the inverse demand is given by P (Q) = A − bQ, where
Q = ∑

i qi , and the production cost functions are given by ci = Ci(qi) = [z − zi − θi −
ai − δ

∑
j �=i aj ]qi , where z ∈ Z ⊂ [0, z]n is a drawn each period common cost parameter,

θi ∈ [−εi, εi] is noise on the actual cost parameter zi + θi , δ ∈ [0,1] is a spillover parameter,
and finally ai is a investment in a cost reduction R&D process. The cost of ai units of R&D
investment is then given by ai → γi(ai), which is assumed to be continuous and bounded.
Apart from the within period spillovers, higher investment ai has also intertemporal effects
via p of increasing probabilities of a positive cost reduction draw tomorrow.

Every period, the profit of an oligopolist assuming the next stage a Cournot equilibrium
is played is given by the function πi(z, θi, ai, a−i ), where

πi(z, θi, ai, a−i )

= 1

b

∫

Θ−i

[
A − n(z − zi − θi − ai − δ

∑
j �=i aj (z, θj ))

n + 1

+
∑

j �=i (z − zj − θj − aj (z, θj ) − δ
∑

k �=j ak(z, θk))

n + 1

]2

Q−i (dθ−i | z, θi) − γi(ai).

Observe, for a large R&D spillovers (i.e., δ > 0.5), the payoff is increasing in a−i (e.g.,
the top-dog strategy effect is dominated by a spillover effect), and πi(z, θi, ai, a−i ) has in-
creasing differences in (ai, a−i ) and (ai, s). Further, the measure p(· | z, θ, a) satisfies As-
sumption 1 if intertemporal investment effects are self-reinforcing (i.e., if high R&D invest-
ment today has positive effects on positive cost reduction the next period, and this effect is
stronger if others invest more). Finally, allowing z = 0 to be an absorbing state is justified,
e.g., if we have z̄ + εi ≥ A, i.e. assumption ruling out production possibilities if the size of
the market is too small relative to the unit production cost z.

4.3 Dynamic Cournot Competition with Learning-by-Doing and Incomplete Information

Finally, consider an economy where each period, n-firms compete by setting the quantity
qi of differentiated product. The goods are assumed to be behavioral complements, i.e., the
consumption of one good increases purchase of the complementary products. Additionally,
each firm has a individual stochastic learning-by-doing effect influencing its marginal cost
function via a parameter si = zi + θi measuring cumulative experience of the given firm.

Then profit of a given firm is summarized by

Π(z, θi, qi, q−i ) = qi

[
Pi

(
qi, q−i (z, θ−i )

) − c(zi + θi)
]
.

Observe that the assumptions on payoffs are satisfied if the cost c is decreasing in the
learning-by-doing parameters, Pi increasing in q−i (i.e., we have complementary goods),
and Pi has increasing differences in (qi, q−i ) (e.g., we have Pi given by the form Pi =
γ − qi + ∑

j �=iδj qj ).
Concerning the learning process, lets assume that joint experience vector z ∈ [0, z]n is

stochastic and drawn accordingly to a distribution p, while individual costs parameters
θ ∈ ×n

i=1[−εi, εi] which are noise in the learning effect are distributed according to Q.
Finally, let supPi() < c(0+ εi). Then the only restrictive assumption on p we require is that
q → p(· | z, θ, q) is continuous, increasing, and supermodular. One way of interpreting this
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condition (from the perspective of complementarity) is the higher output today increases the
chance of a positive experience draw next period, and that effect is stronger if others set
higher quantities, via spillovers. Under these conditions, all the main theorems of the paper
can be applied.

5 Conclusions and Related Techniques

This paper proposes a new set of monotone methods for a class of discounted, infinite hori-
zon stochastic games with both public and private signals, as well as strategic complementar-
ities. The role of strategic complementarities in the development of our methods is critical,
as these complementarities allow us to develop monotone methods to study the structure and
computation of Markovian equilibrium in our class of games directly.

Our analysis shares some of the properties of the belief-free equilibria studied in [23],
as we assume players have (rational) Markovian beliefs that depend only on public and in-
dividual signals, and we do not need to model beliefs off the equilibrium path as in their
work. Also, as Markovian equilibria are adopted here, we do not allow players to impose
punishments schemes inconsistent with Markovian strategies, which is also related to work
using belief-free equilibria. Additionally, in our model, public information amounts to sig-
naling the distribution of private information and past moves, rather than signaling current
opponents’ actions. Finally, our analysis is very closely related to ideas that are behind the
methods proposed by Cole and Kocherlakota [17], who develop methods for solving for
(nonstationary) Markov equilibria with Markov beliefs via APS-type methods applied in
function spaces.

Per extensions of the results in future work, perhaps the most critical class of models
where our stochastic games approach seems most appropriate is the study of Markovian
equilibrium in dynamic principal-agent problems, where we have both unobservable infor-
mation or actions, which is well known to greatly complicate the nature of dynamic equilib-
rium arrangements. In this literature, there are at least three other techniques used to study
similar dynamic principal-agent problems, namely: (i) APS methods, (ii) recursive saddle-
point method and (iii) first-order approaches. The APS approach has proven very useful for
verifying existence of sequential equilibrium in broad classes of both repeated and dynamic
games (see [9]). This approach focuses on the computation of the equilibrium value set,
without a sharp characterization of sequential equilibrium strategies that support any equi-
librium value in the equilibrium value set. Further, when these games have state variables
(like capital stocks or shocks), additional issues arise in the presence of public and private
information over uncountable state spaces. That is, the APS method becomes significantly
more complicated as the set of measurable Nash equilibrium values need not be closed in
any useful topology (e.g., weak-star topology).

Another important set of techniques for studying limited commitment problems are the
so-called “recursive saddlepoint methods” as discussed originally in the seminal work of
Kydland and Prescott [34], and further developed in [39], for example. These methods have
been shown to be very useful to compute equilibrium in some classes of incentive problems
with private information or actions, where primal and dual optimization problems can be ap-
propriately linked. One immediate limitation of such methods is that “punishment schemes”
are typically assumed to be “exogenous,” and specified in an ad hoc manner. Further, there
are subtle issues associated with the existence and computation of recursive saddlepoints
themselves, which is needed to guarantee KKT multipliers are useful and placed in appro-
priate dual spaces.
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Finally, the first-order approaches developed in Ábrahám and Pavoni [1]; Mitchell and
Zhang [40] are often useful when they can be rigorously applied. In particular, when prob-
lems are concave in equilibrium, one can precisely link the first-order conditions for opti-
mization problem with its actual solutions, e.g., by showing that these first-order conditions
are not only necessary but also (locally) sufficient.13 In this sense, the requirements needed
to apply such methods are similar to recursive saddlepoint methods. Unfortunately, as in
recursive saddlepoint problems, when state variables are present (as, for example, in a dy-
namic game), conditions on primitives that imply concavity of the value function are very
difficult to obtain.

The techniques developed in this current paper have an important technical advantage
over all this work, as in the present method, one works directly with both equilibrium strate-
gies and values simultaneously per the existence and computation of equilibrium question
without necessity to use first-order conditions, duality, or importantly restricting our results
to the ones available using APS-type techniques.
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Appendix: An Auxiliary Result

Here, we state and prove the following proposition of independent interest.

Proposition 1 Let X be a countably chain complete poset (i.e., if xn ∈ X is monotone se-
quence then its supremum and infimum belongs to X) with the greatest element θ and the
least element θ . Let F : X → X be an isotone function. Then:

(i) If F is monotonically inf preserving14 then Φ := ∧
Fn(θ) is the greatest fixed point

and if F is monotonically sup preserving then Φ := ∨
F n(θ) is the least fixed point.

(ii) If F is monotonically inf preserving function then

Φ =
∨{

x : F(x) ≥ x
}
. (2)

(iii) If F is monotonically sup preserving function then

Φ =
∧{

x : F(x) ≤ x
}
. (3)

(iv) If F is monotonically sup and inf preserving function, then its fixed-point set is a count-
ably chain complete poset.

13Observe that our tools actually allow to obtain conditions, where players best replies are characterized by
both necessary and sufficient first-order conditions (see [59] for the details).
14For definition, see footnote 11.
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Proof

(i) Assume F is monotonically inf-preserving. Clearly, F(θ) ≤ θ . If for some n, Fn(θ) ≥
Fn+1(θ), then Fn+1(θ) = F(Fn(θ)) ≥ F(Fn+1(θ)) = Fn+2(θ). Hence, Fn(θ) is de-
creasing, and φ is well defined. Since F is monotonically inf-preserving, we have

F(Φ) = F

(∧
Fn(θ)

)

=
∧

Fn+1(θ) = Φ.

Therefore, φ is a fixed point of F . We show it is the greatest fixed point. Let us take
arbitrary fixed point e = F(e). Clearly, e ≤ θ , and e = F(e) ≤ F(θ). If e ≤ Fn(θ),
then e = F(e) ≤ Fn+1(θ). Therefore, e ≤ Fn(θ) for all n, which implies e ≤ Φ . Sim-
ilarly, we prove that Φ is well defined and it is the least fixed point of F . We prove
analogously the case, when F is monotonically sup-preserving.

(ii) We prove equality (2). Let x be arbitrary point such that x ≤ F(x). Clearly x ≤ θ .
Assume x ≤ Fn(θ). Then x ≤ F(x) ≤ F(Fn(θ)) = Fn+1(θ). Hence, x ≤ Φ . Since
Φ ∈ {x : F(x) ≥ x}, equality (2) is proven.

(iii) We prove (3) analogously.
(iv) Let en be an countable chain of fixed points. Let ē = ∨

en. It exists in X as X is a
countable chain complete. Then

F(ē) = F

(∨
en

)

=
∨

F(en) =
∨

en = ē.

Similarly, we prove the thesis for decreasing sequences. �

References

1. Ábrahám A, Pavoni N (2008) Efficient allocations with moral hazard and hidden borrowing and lending:
a recursive formulation. Rev Econ Dyn 11(4):781–803

2. Abreu D, Pearce D, Stacchetti E (1990) Toward a theory of discounted repeated games with imperfect
monitoring. Econometrica 58(5):1041–1063

3. Aliprantis CD, Border KC (2006) Infinite dimensional analysis. A hitchhiker’s guide. Springer, Heidel-
berg

4. Amir R (1996) Strategic intergenerational bequests with stochastic convex production. Econ Theory
8:367–376

5. Amir R (2002) Complementarity and diagonal dominance in discounted stochastic games. Ann Oper
Res 114:39–56

6. Amir R (2005) Discounted supermodular stochastic games: theory and applications. Manuscript, Uni-
versity of Arizona

7. Ash R (1972) Real Analysis and Probability. Academic Press, New York
8. Athey S, Bagwell K (2008) Collusion with persistent cost shocks. Econometrica 76(3):493–540
9. Atkeson A (1991) International lending with moral hazard and risk of repudiation. Econometrica

59(4):1069–1089
10. Balbus Ł, Nowak AS (2004) Construction of Nash equilibria in symmetric stochastic games of capital

accumulation. Math Methods Oper Res 60:267–277
11. Balbus Ł, Nowak AS (2008) Existence of perfect equilibria in a class of multigenerational stochastic

games of capital accumulation. Automatica 44(6)
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