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b Department of Economics, Arizona State University, PO Box 879801, Tempe, AZ 85287-9801, USA
c Warsaw School of Economics, Theoretical and Applied Economics Department, Al. Niepodleg!ości 162, 02-554 Warsaw, Poland
a r t i c l e i n f o

Article history:

Received 3 May 2011

Received in revised form

6 January 2013

Accepted 18 January 2013
Available online 23 January 2013

JEL classification:

C62

C73

D91

040

Keywords:

Stochastic games

Constructive methods

Intergenerational altruism
89/$ - see front matter & 2013 Elsevier B.V

x.doi.org/10.1016/j.jedc.2013.01.005

esponding author. Fax: þ48 22 849 53 12.

ail address: lukasz.wozny@sgh.waw.pl (Ł. W
a b s t r a c t

We provide sufficient conditions for existence and uniqueness of a monotone, Lipschitz

continuous Markov stationary Nash equilibrium (MSNE) and characterize its associated

Stationary Markov equilibrium in a class of intergenerational paternalistic altruism models

with stochastic production. Our methods are constructive, and emphasize both order-

theoretic and geometrical properties of nonlinear fixed point operators, and relate our results

to the construction of globally stable numerical schemes that construct approximate Markov

equilibrium in our models. Our results provide a new catalog of tools for the rigorous analysis

of MSNE on minimal state spaces for OLG economies with stochastic production and limited

commitment.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Since the pioneering work of Phelps and Pollak (1968), Peleg and Yaari (1973), and Kydland and Prescott (1977, 1980),
there has been great interest in studying dynamic economies without commitment. In some cases, the lack of commitment
studied is between different generations of private agents, each who seek to develop enduring relations with successor
generations that are needed to sustain coordinated action over time. This sort of intergenerational limited commitment
problem arises in models of strategic altruistic growth, as well models where agents have preferences consistent with
hyperbolic discounting, among others. In other cases, the commitment friction is between public policy agents and
decisionmakers in the private economy who are trying to design mutually time-consistent equilibrium public policies.
Examples of such situation is Ramsey equilibrium in models of optimal taxation, sustainable sovereign/public debt, and
various monetary policy games.

In each of these models, in the end, the question of interest is the existence and characterization of the set of dynamic
equilibria. As is well-known, in the presence of intertemporal commitment frictions, there are significant complications in
. All rights reserved.
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verifying even the existence of subgame perfect equilibrium, let alone characterize the set of such equilibria. For reasons of
tractability and numerical computation, researchers have more recently focused on the existence of pure strategy Markov
stationary Nash equilibrium (MSNE) defined on ‘‘minimal’’ state spaces. Unfortunately, even when the set of subgame
perfect equilibrium is nonempty, sufficient conditions that guarantee the existence of MSNE are not so clear. Further, in a
great deal of recent applications of stochastic games, one seeks to compute elements of the set of MSNE (e.g., for
calibration or estimation exercises). For such problems, new issues arise concerning the mathematical foundations of
numerical procedures that are useful for such applied questions (as, in effect, much of this applied work implicitly assumes
the existence of unique MSNE at each parameter value). Therefore, for the literature emphasizing the quantitative aspects
of dynamic equilibria, perhaps the most important such issue is the stability of the set of MSNE in deep parameters. In this
paper, we propose a new set of monotone iterative techniques that address all of these questions within the context of a
well-studied class of models, namely stochastic overlapping generations models of growth with strategic bequests. In
these economies, one assumes no commitment between successor generations, and object of interest is the set of MSNE.
An important feature of our approach is to use properties of a stochastic transition structure. Specifically, under the
conditions we present, we are able to obtain an Euler equation representation for MSNE that is both necessary and
sufficient in all states. We are then able to use this Euler equation to show that any MSNE solution under our conditions
must necessarily be the solution to a decreasing, continuous nonlinear operator that transforms an appropriate space of
candidate equilibrium. Having this operator defined, we are able to provide sufficient conditions for MSNE existence in a
compact subset of continuous functions. We then provide a sharp characterization of the order structure of the MSNE set
(i.e., they are shown to form an ‘‘antichain’’).1

Next, and perhaps most strikingly, we provide a set of sufficient conditions under which globally stable iterative
procedures are available for computing unique MSNE.2 Moreover, our uniqueness result is valid relative to a very broad
class of bounded measurable functions. Finally, we present explicit example where our uniqueness conditions do not hold
and multiple MSNE exists. In this sense, we show our conditions for global stability are sharp. Our uniqueness result is
particularly important as the class of economies for which it holds include parameterizations of stochastic OLG models
found often in applied work.

Finally, we address issues related to the numerical approximation of MSNE in our economies. This question is
important in applied work as many papers that seek to study dynamic economies without commitment must first
numerically approximate MSNE (e.g., to estimate or calibrate the models to data). Therefore, we provide a catalog of
theoretical results characterizing the properties of simple approximation schemes (e.g., discretization methods) that can
be used to compute MSNE.

The remainder of the paper is organized as follows: Section 2 discusses how our methods and results fit into the
existing literature. Section 3 defines the class of models we initially consider. Section 4 provides conditions under which
our economies have (pure-strategy) MSNE, and under which the set of MSNE is a singleton. In Section 5, we provide
extensions of our results based upon so-called ‘‘mixed monotone’’ operators, which allow us to obtain results for the
nonseparable utility case. We also describe methods that construct approximate solutions for MSNE that achieve uniform
error bounds relative to a simple discretization method (see Section 5.4 for example). Section 6 concludes with a
discussion of applicability of our methods to other classes of stochastic games. At the end of the paper, we include an
appendix that presents some definitions, a few abstract fixed point theorems that we use in the paper, as well as the proofs
of all our results.3

2. Related literature

The environment we consider has long history in economics and dates back to the early work of Phelps and Pollak
(1968) and Peleg and Yaari (1973).4 The economy consists of a sequence of identical generations, each living one period,
and deriving utility from its own consumption, as well as that of a successor generation. As agents cannot commit to plans,
the ‘‘dynastic family’’ faces a time-consistency problem. In particular, each current generation has an incentive to deviate
from a given sequence of bequests, consume a nonsustainable amount of current bequests, leaving little (or nothing) for
subsequent generations.

Within this class of economies we study, conditions are known for the existence of semicontinuous MSNE, and have
been established under quite general conditions (e.g. Leininger, 1986; Bernheim and Ray, 1987). An important step
forward in characterizing the equilibrium was made in the work of Amir (1996b), where he introduces stochastic convex
transitions structures into the game, and is able to establish the existence of MSNE in the space of continuous functions.
This result has been further extended by Nowak and coauthors (e.g., see Nowak, 2006 or Balbus and Nowak, 2008). In this
latter work, a key innovation was to introduce a class of stochastic transition structures that are assumed to be an
1 We provide all the requisite definitions later in the paper when the results are presented.
2 It bears mentioning obtaining sufficient conditions for the existence of unique MSNE has been an open question in the literature (e.g., see the

discussion in Amir, 1996b).
3 Apart from the proof of the equilibrium uniqueness result, which is included in the body of the paper.
4 Versions of our model under perfect commitment have been also studied extensively in the literature, beginning with the important series of

papers by Laitner (1979a,b), Loury (1981), and including more recent work of Alvarez (1999) or Laitner (2002) a.o.
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(endogenous) mixtures of probability measures. It is important to note that in this body of work, when addressing the
existence of MSNE, nonconstructive topological fixed point methods have been predominantly used, so characterizations
of the set of MSNE have be primarily limited to compactness properties.5

Three important problems that have not been studied in existing literature concern: (i) constructive procedures6 for
studying MSNE, (ii) conditions for MSNE uniqueness, and (iii) methods for computing/approximating MSNE. Per the first
and third question, a constructive method allows one to develop rigorous numerical procedures for applied work to build
upon when computing MSNE. Per the second issue, conditions on uniqueness of MSNE allows one to study the stability of
MSNE relative to deep parameters in a natural manner. Such stability results are often needed for a rigorous quantitative
assessment of MSNE relative to data (e.g., in calibration or estimation methods).

To address all of these questions in our paper, we first provide sufficient conditions under which the set of pure-
strategy MSNE forms an antichain in standard pointwise partial order. We then develop sufficient conditions under
which the set of MSNE is actually a singleton. As our methods are constructive, these results provide a rich description of a
class of iterative methods for computing pure-strategy MSNE. In particular, our methods provide sufficient conditions
for globally stable approximate solutions relative to a unique non-trivial MSNE within a class of Lipschitz continuous
MSNE.

Relative to the literature on recursive methods for dynamic economies, the key technical innovation in our approach is
integration of order-theoretic, topological, and geometrical methods into a systematic study of the set of MSNE in a
stochastic growth model without commitment. Although our techniques can be related to previous work on monotone
methods (e.g., see Datta and Reffett, 2006 for a literature review and references), fixed point theory in ordered topological
spaces (e.g., see Amann, 1977) and geometrical properties of mappings defined in abstract cones (e.g., see Krasnosel’skiǐ
and Zabreǐko, 1984), what distinguishes the methods in this paper is our exclusive use of (iterative) fixed point theory for
decreasing operators. To the best of our knowledge, this paper is the first application of iterative methods for decreasing
operators for the study of Markov/recursive equilibrium in the economics literature.

The fact that the operator is decreasing, of course, greatly complicates matters. For example, unlike the increasing case
studied in large body of work in macroeconomics stemming from monotone map approach first presented in Coleman
(1991), as our operators are decreasing, they do not possess a fixed point property relative to complete partially ordered
sets. To resolve the existence question, we integrate topological constructions (based on Schauder’s theorem) into our
order-theoretic geometric approach. A second complication of studying iterative methods for decreasing operators stems
from the existence of ordered 2-cycles (or so-called ‘‘fixed edges’’). To rule out such cycles, stability conditions for
iterations (either global or local) require developing geometric conditions on fixed point operators (as opposed to, for
example, simple order theoretic conditions). These conditions have typically not been required in previous work based
upon increasing operators (e.g. Mirman et al., 2008). We show that such geometric conditions are available for our case,
under reasonable conditions relative to applied work.

Finally, we can relate our methods to those in the existing literature that characterize subgame perfect or MSNE in
dynamic economies without commitment. A ‘‘direct’’ approach to our class of problems has been undertaken by many
authors. In this approach, existence of MSNE is obtained via fixed point methods in function spaces. This approach has a
long line of important contributions,7 including Leininger (1986), Bernheim and Ray (1987), Sundaram (1989), Curtat
(1996), Amir (2002) and Nowak (2003, 2006, 2007). A second, albeit a less direct method of equilibrium construction, is
the ‘‘promised utility method’’, best illustrated in the seminal work of Abreu et al. (1990), denoted by APS henceforth. This
latter approach is based upon strategic dynamic programming arguments, and authors (e.g., Messner and Pavoni, 2004)
seek to characterize the set of equilibrium values that are sustainable in a sequential equilibrium. In this method, the set of
equilibrium values induced by sequential equilibria turns out to be the maximal fixed point of a monotone operator
mapping between spaces of correspondences (ordered under set inclusion). Then, a dynamic equilibrium becomes a
selection from the equilibrium correspondence (along with a corresponding set of sustainable pure strategies).

We should finally mention that although the promised utility approach has proven useful in some contexts,8 in our
class of models, it suffers from a number of well-known limitations. First, for our stochastic OLG models with strategic
altruism, we do not need to impose discounting, which is typically required for promised utility methods. Second, the
presence of noise over uncountable number of states introduces significant complications associated with the measur-
ability of value correspondences that represent continuation structures. Equally as troubling, characterizations of
stationary pure strategy equilibrium values (as well as implied pure strategies) are also difficult to obtain. Finally, it
has not yet been shown by those that apply promised utility continuation methods how one can obtain any
characterization of the long-run stochastic properties of stochastic games (i.e., equilibrium invariant distributions or
ergodic sets).9 All of these issues are resolved using our methods for the class of economies studied.
5 With only few exceptions like Balbus and Nowak (2004).
6 Which are important not only for theoretical issues such as equilibrium comparative statics, but also for characterizations of implied limiting

distributions associated with pure strategies of the game.
7 Also, see the work of Marcet and Marimon (1998) and Rustichini (1998) for a novel variation of this approach.
8 See e.g. Atkeson (1991), Bernheim et al. (1999), Phelan and Stacchetti (2001), Judd et al. (2003), and Athey et al. (2005).
9 For competitive economies, progress has been made. See Peralta-Alva and Santos (2010).
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3. The model

We consider an infinite horizon dynastic production economy with limited commitment.10 Time is discrete and
indexed by t¼0,1,2,y. The economy has one-good each period and has access to a single store of value which is productive
(hence, we refer to it as capital). Households are also endowed with a unit of time each period which they supply
inelastically. A dynasty consists of a sequence of identical generations, each living one period, each caring about its
successor generation. Any given generation divides its output x between current consumption c and investment x�c for
the successor generation. The current generation receives utility U from both its own current consumption and that of its
immediate successor generation. Finally, there is stochastic production technology summarized by a mapping Q that
transforms current stock and current investment into next period output.

We now provide some initial notation and formalities. Let IðxÞ ¼ ½0,x� be the set of feasible choices of consumption for a
generation with output x, x 2 I where the interval I is either bounded or unbounded,11 I.e., I¼ ½0,S� with S40 or I¼ ½0,1Þ.
By Io denote interior of I. The preferences of the current generation are represented by a bounded, continuous (and,
therefore, Borel measurable) utility function U : I � I-Rþ . The production technology is stochastic, and governed by
probability distribution Q ð�9x�c,xÞ of the next generation output parameterized by current investment x�c and state x.
Therefore, if the successor generation follows an integrable, stationary consumption policy h : I-I, the expected payoff of
the generation with endowment x and consuming c 2 IðxÞ is computed as follows:

Wðc,x,hÞ :¼

Z
I

Uðc,hðyÞÞQ ðdy9x�c,xÞ:

Assuming continuity of the problem’s primitive data, by a standard application of Weierstrass’s theorem, arg maxc2IðxÞWðc,x,hÞ
exists for each x 2 I, and can be viewed as a best response of a current generation to the policy h of its successor. A pure-
strategy, Markov stationary Nash equilibrium is a measurable function hn such that hn

ðxÞ 2 arg maxc2IðxÞWðc,x,hn
Þ. Note, such

an equilibrium remains an equilibrium if generations are allowed to use more general strategies.

4. Main results

We now present our main results. We start with a list of assumptions about preferences that are sufficient for the
existence of MSNE. First, we state our assumptions on preferences.

Assumption 1 (Preferences). The utility satisfy:
�

leis
U : I � I-Rþ is of the form Uðc1,c2Þ ¼ uðc1Þþvðc2Þ, where u and v are strictly increasing on I. Moreover v is bounded,
continuously differentiable on12 I1, u is twice continuously differentiable on I1, strictly concave and continuous on I,

�
 vð0Þ ¼ 0.

We now state the following assumption on the stochastic transition probability Q.

Assumption 2 (Technology). Transition probability Q satisfies
�
 Q ð�9x�c,xÞ ¼ ð1�gðx�cÞÞd0ð�Þþgðx�cÞlð�9xÞ, where

�
 g : I-½0,1� is strictly increasing, concave on I and twice continuously differentiable on I1,

�
 ð8x 2 IÞlð�9xÞ is a Borel transition probability on I, moreover lð�9xÞ satisfies a Feller Property, i.e., the function

x-
R

If ðyÞlðdy9xÞ is continuous whenever f is continuous and bounded measurable, and 8ðx 2 IÞ,lðf0g9xÞ ¼ 0,

�
 d0 is a probability measure concentrated at point zero.
Before preceding to our main existence theorems, we make a few remarks on these assumptions. We begin with a
comparison of the technical aspects of our conditions versus the existing literature. First, as in Nowak (2006), we assume Q

is a convex combination (or mixture) of two distributions, with l stochastically dominating d0. Hence, the stochastic
structure of our game places probability 1�g on the possibility that the next period capital is 0, and probability g it is
drawn from l (where these probabilities are endogenously determined in equilibrium). Second, notice all the
nonconvexities of transition Q are given by function 1�g. Now, as d0 is a Dirac delta measure concentrated at zero, and
vðhð0ÞÞ ¼ 0, essentially, all such production nonconvexities are negligible. Third, a comparison between our technologies
and those in Amir (1996b) for the case of unbounded state space I can be made. On the one hand, Amir’s transition Q is not
dependent on the stock, rather it depends on investment only. This situation may lead to the existence of a unique, yet
trivial, stationary Markovian equilibrium associated with MSNE. We seek to avoid this situation, and allow for more
10 More precisely, we are studying a dynamic stochastic production economy with both capital and labor, but with preferences not defined over

ure. Therefore, each period, agents supply labor inelastically. See remarks below on the formal interpretation of our stochastic production function.
11 To denote the latter case, we will sometimes write S¼1.
12 For any set A, A1 is said to be an interior of A.
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general stochastic transitions. On the other hand, Amir does not require the mixing specification for stochastic production
that we impose (although, of course, he does allow it). He also does not require one of distributions to be Dirac delta.13

Next, from an economic perspective, our assumptions on Q generate a large class of stochastically monotone and
stochastically concave transition probabilities (e.g., see Amir, 1996b for discussion). For example, one important simple
example has gðx�cÞ ¼ bðx�cÞa or gðx�cÞ ¼ bð1�e�ðx�cÞÞ where 14a40 and b are sufficiently small positive numbers. Such
functions (Cobb–Douglas and CARA) have found extensive use in applied macroeconomic papers. We should mention that
apart from Amir (1996b) and Nowak (2006), applied papers of Horst (2005) and examples in Curtat (1996) use similar
transition specification given by a convex combination of two stochastically ordered distributions. Hence, the difference
between ours and their approaches is that we take one of these distributions to be Dirac delta at zero.

With this discussion of assumptions in mind, we now proceed with the construction of the set of MSNE under our
Assumptions 1 and 2. First, under these conditions, notice the objective function Wðc,x,hÞ is strictly concave and
continuous in c on I(x). Hence, given any integrable and feasible continuation strategy h for the successor generation, there
is a well defined (measurable) best response mapping/operator given by

AðhÞðxÞ ¼ arg max
c2IðxÞ
Wðc,x,hÞ: ð1Þ

We now discuss existence of MSNE.

4.1. Existence

We first prove existence of MSNE within the class of Lipschitzian functions. To do this, consider a collection:

H¼ fh 2 CðIÞ9ð8y 2 IÞ0rhðyÞryg,

where CðIÞ is the set of nonnegative, continuous functions from I into I. Endow the set H with the pointwise partial order
and the topology of uniform convergence on compacta of I. As a matter of notation, we denote uniform convergence as
‘‘-

u
’’.14 Denote the zero element of H by y (with yðxÞ ¼ 0), and the identity map by y (where yðxÞ ¼ x).
We seek MSNE within a subset of H. Let LM be a set of all increasing and locally Lipschitz functions with common

modulus on all compact subsets of Io. Formally,

LM :¼ fh 2 H : 8W2C0
0rhðy1Þ�hðy2ÞrMðWÞ9y1�y29,y2Zy1 2Wg,

where C0 denotes a set of compact subsets of I1¼ ð0,1Þ and functionM : C0-Rþ . An important special subclass of LM is
the class of all increasing and Lipschitz continuous elements with common Lipschitz constant15 M:

LM ¼ fh 2 H9ð8y1ry2 2 IÞ0rhðy2Þ�hðy1ÞrMðy2�y1Þ,hð0Þ ¼ 0g:

Under Assumptions 1 and 2, for h 2 H, the objective function for the current generation is given by

Wðc,x,hÞ ¼ uðcÞþgðx�cÞ

Z
I

vðhðyÞÞlðdy9xÞ:

Further, as u and g are both differentiable on I1, after linearizing the objective W, using the first order condition, we can
define a mapping zðc,x,hÞ as follows:

zðc,x,hÞ :¼ u0ðcÞ�g0ðx�cÞ

Z
I

vðhðyÞÞlðdy9xÞ: ð2Þ

We now define our fixed point operator implicitly using the Euler equation zðc,x,hÞ ¼ 0. To do this, we first study the
properties of the mapping z in each of its arguments. Fix (x,h), x 2 I,x40, h 2 H. Then, given the concavity of value function
W in c, for each (x,h), a necessary and sufficient condition for cnðx,hÞ 2 I1 to be optimal is zðcnðx,hÞ,x,hÞ ¼ 0. Further, if
ð8c 2 IÞzðc,x,hÞ40, then, the optimal cn ¼ x; while, if ð8c 2 IÞzðc,x,hÞo0, the optimal cn ¼ 0. We use the optimal policy
function cnðx,hÞ to define a nonlinear operator A with values given pointwise by AhðxÞ :¼ cnðx,hÞ. By the above reasoning, we
have Ay ¼ y. Further, given that for all pairs (x,h), the Euler equation is necessary and sufficient for the optimal solutions
cnðx,hÞ, any MSNE must necessarily be a fixed point of our nonlinear operator.

To provide conditions where there exists some positive valued function M such that A maps LM into itself, we make
the following final assumption.

Assumption 3. Assume that
�

stu

som
ð8c 2 I\f0gÞu00ðcÞo0,

�
 for any x 2 I\f0g, any c 2 ½0,xÞ and g00ðx�cÞo0 the value of 9g0ðx�cÞ=g00ðx�cÞ9 is bounded (by some positive constant Mg),16
13 See his Example 2.
14 Note, if I is a bounded interval, our topology is equivalent to sup-norm topology. Also, our topology and notion of convergence is precisely that

died by Amir (1996b), and is often referred to as the compact-open topology.
15 Note, if M0 :¼ supfMðWÞ : W 2 C0go1, then LMDLM0

. Also, if I is a closed interval (and, hence, compact), the set LM is equivalent to LM for

e M.
16 Observe also that we allow g00ð0Þ ¼ �1.
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�

pos

and

req
collection of measures flð�9xÞ,x 2 Ig is stochastically decreasing17 with x,

�
 the cdf of lð�9xÞ say Flð�9xÞ is differentiable in x, i.e., for every y 2 I there exists derivative ð@=@xÞFlðy9xÞ,

�
 for each compact subset of Io (say W) there exists a constant MW

F such that 9ð@=@xÞFlðy9xÞ9rMW
F ð1�Flðy9xÞÞ. Let

MF :¼ supfMW
F : W 2 Co

g.
Define (for a given positive, integrable f) function pf : I-Rþ with pf ðxÞ :¼
R

If ðyÞlðdy9xÞ. We start with a short lemma
characterizing function pf under Assumption 3.

Lemma 1. Let Assumption 3 be satisfied. Then for all compact sets W � Io, x 2W and continuous, increasing function f the

following holds:

9p0f ðxÞ9rMW
F pf ðxÞ:

The next lemma shows the existence of a -
u

compact set LM such that A maps LM into itself under our general
assumptions, as well as gives conditions under which A maps LM into itself for some fixed number M.

Lemma 2. Let Assumptions 1–3 be satisfied. Then:
(i)
1

i
1

1

2

2

2

u

A : LM-LM, for some function M. Further, A is continuous and decreasing on LM,18
(ii)
 assume additionally MF o1, and let M¼ 2þMFMg . Then, A : LM-LM . Further, A is continuous and decreasing on LM.
We now provide our first important result on existence of MSNE. It is important to note that in this result, aside from
proving the existence of Lipschitzian MSNE, we also characterize the order structure of the equilibrium set in LM. In the
theorem, CA denotes the set of fixed points of the operator A.

Theorem 3. Assume 1–3. Let H0 be a set from Lemma 2 then:
(i)
 CA � LM and is a non-empty anti-chain (i.e., has no ordered elements in LMÞ.

(ii)
 If additionally MF o1, then, for a constant M :¼ 2þMFMg , the set of fixed points CA of A in LM is a non-empty anti-chain.
A few remarks on Assumption 3 and Theorem 3 are warranted.
First, requiring stochastic monotonicity of l for the transition structure is stronger than assumptions used in Nowak

(2006) to show existence of a monotone, continuous MSNE. However, to show existence of a Lipschitz continuous MSNE,
Nowak (2006) assumes that l does not depend on x.19 Using our Euler equation approach, for l constant, existence of
MSNE in L1 can be easily established. This case is not particularly interesting, however, as the continuation

R
IvðyÞlðdyÞ

becomes constant.20 Given this, our theorem is somewhat different, as we show existence of a monotone, Lipschitz
continuous MSNE with lð�9xÞ dependent on x. For this result, relative to Nowak (2006), we require some additional
assumptions bounding derivatives of g and pf.

Second, to see how conditions on pf in this theorem maybe satisfied, observe that if I is bounded, and for any x 2 I, the
measure lð�9xÞ has a density, and the ratios of derivative (with respect to x) of each of these densities (and densities
themselves) are bounded by some constant r (i.e., 9ð@=@xÞrðy9xÞ=rðy9xÞ9rr a.e.). Therefore, this assumption is indeed
satisfied with MF o1. So, clearly, verifying this condition in applications is direct.

Third, as our operator A embodies all the necessary conditions for any MSNE, exploiting the antitone structure of the
operator A, we are able to sharpen the characterization of the set of MSNE relative to existing results. Namely, the set of
MSNE forms an antichain. This fact could be important, for example, if one considers questions of the existence (or lack
thereof) of monotone comparative statics on the deep parameters of the game (as such conditions will be very difficult to
obtain in this class of games).

Finally, under the conditions of the theorem, generally the set of MSNE in LM is not a singleton (see Example 3).21 We
will consider the uniqueness question later in this section, and this will require further restrictions on primitives.

We finish this section with an example of probability measures that satisfy Assumption 3.22
7 We say that the collection of measures lð�9xÞ is stochastically decreasing with x iff function x-
R

I f ðyÞlðdy9xÞ is decreasing for any integrable,

tive real valued and increasing f of I.
8 I.e., 8h2 ,h1 2 LM with h2 Zh1, Ah1 ZAh2.
9 See Amir (1996b) for a corresponding assumption that Q does not depend on x.
0 Also MSNE uniqueness trivially follows from the monotonicity of the expected value function operator mapping reals to reals.
1 One method for checking uniqueness of the fixed point of A is to show it is upward directed. The partially ordered set ðB,rÞ is upward directed if

only if for any b1 ,b2 2 B there exists b3 2 B such that b1 rb3 and b2 rb3 (Cid-Araújo, 2004).
2 More examples concerning this and other results from the paper can be found in a working paper version (available from the authors upon

est) of this manuscript.
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Example 1. Let I¼ ½0,1� and rðy9xÞ ¼ ð2�xÞe�ð2�xÞy=ð1�e�ð2�xÞÞ. The distribution function is

Grðy9xÞ ¼
1�e�ð2�xÞy

1�e�ð2�xÞ
:

Note that Grðy9�Þ is a composition of the increasing function on [0,1] t-ð1�tyÞ=ð1�tÞ with increasing function e�ð2�xÞ;
hence, distribution function Fr is increasing. This implies that l is stochastically decreasing. Further, we can alternatively
express the density as rðy9xÞ :¼ expð�ð2�xÞyþFðxÞÞ, where FðxÞ :¼ lnð2�xÞ�lnð1�ex�2Þ. Note that

9F0ðxÞ9r
1

2�x
þ

ex�2

1�ex�2
r1þ

e�1

1�e�1
¼

1

1�e�1
:

Therefore, we have

@rðy9xÞ
@x

����
����rrðy9xÞðyþF0ðxÞÞ,

rrðy9xÞ 1þ
1

1�e�1

� �
¼ rðy9xÞ2�e�1

1�e�1
,

@=@x
� �

9Flðy9xÞ9r
Z

I
w½y,1�ðy

0Þ
@rðy09xÞ
@x

����
����dy0r

2�e�1

1�e�1
Flðy9xÞ:

Hence, Assumption 3 is satisfied.

4.2. Uniqueness

In this section, we turn to the question of the MSNE uniqueness. In particular, we prove the uniqueness of MSNE
relative to a class of bounded measurable strategies. This fact shall be particularly important (as later in the paper, we
study the properties of approximation procedures for constructing numerical solutions). It is equally as important if one
wants to compute numerically equilibrium comparative statics (in the set of MSNE) in the deep parameters of the model.

We begin by letting P¼ fp : I-Rþ 9p is bounded and Borel measurableg. Define an operator B : P-P as follows. For
p 2 P, compute

BðpÞðxÞ ¼

Z
I

vðcn

pðyÞÞlðdy9xÞ,

with

cn

pðxÞ ¼ arg max
c2IðxÞ
fuðcÞþpðxÞgðx�cÞg:

By Assumptions 1 and 2, we obtain

cn

pðxÞ ¼

x if u0ðxÞ�pðxÞg0ð0ÞZ0,

cp
0ðxÞ if u0ð0Þ�pðxÞg0ðxÞ404u0ðxÞ�pðxÞg0ð0Þ,

0 if u0ð0Þ�pðxÞg0ðxÞr0,

8><
>:

where cp
0ðxÞ is the c solving equation u0ðcÞ�pðxÞg0ðx�cÞ ¼ 0.

Now, consider the following functional equation:

pðxÞ ¼

Z
I

vðcn

pðyÞÞÞlðdy9xÞ: ð3Þ

This functional equation is easily shown to be well defined. Further, it is clear we have a solution to the functional equation
(3) pn 2 P if and only if hn

ðxÞ ¼ cn
pn ðxÞ is a MSNE.

The next theorem presents conditions under which B has a unique fixed point (and hence, MSNE is unique).

Theorem 4. Let conditions 1 and 2 be satisfied with I bounded. Assume that limc-0þ u0ðcÞ ¼1, u00ðcÞo0 for c40, and

ð(r,0oro1Þ such that ð8x 2 I,x40Þ the following holds:

ð8c 2 I1ðxÞÞ
cv0ðcÞ

vðcÞ
rr �

cu00ðcÞ

u0ðcÞ
�

cg00ðx�cÞ

g0ðx�cÞ

� �
: ð4Þ

Then, B is decreasing and has a unique fixed point pn in P1 such that

ð8p0 2 P1Þ lim
n-1

Jpn�pnJ¼ 0, ð5Þ
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where pn is computed recursively as ð8nZ1Þpn ¼ Bðpn�1Þ for all p0. Moreover, we have the following estimate of a convergence rate:

Jpn�pnJrMBð1�trn

Þ, ð6Þ

where MB40 and 0oto1 are positive constants that depend on the initial choice of p0.

Theorem 4 gives the sufficient conditions for the uniqueness of fixed points for the operator B. Our uniqueness result is
robust to a very large space of functions (i.e., the space of bounded, real-valued, Borel measurable functions on I). So our
unique fixed point corresponds to the unique measurable MSNE hn. The theorem also provides uniform error bounds, and
rates of convergence of iterations on B to this unique fixed point from any initial guess p0 at the fixed point. If we add
Assumption 3, and link our results with results of Theorem 3, this implies that this unique MSNE corresponds to existence
in the space23 LM. Therefore, the results prove uniqueness relative to a very large set of functions (namely, the space of
bounded measurable functions), and while we have existence in a very narrow set (Lipschitz continuous functions). So the
result of the theorem is very strong.24

As Theorem 4 is the main contribution of our paper, we present the proof of this result to highlight the role of particular
assumptions we invoke in its construction.

Proof of Theorem 4. The strategy of the proof is to show that conditions of Guo et al. (2004) theorem are satisfied (see
Theorem 9 in Appendix). Note first that P is normal solid cone with natural product order and sup-norm, and P1 is a set of
elements from P with strictly positive infimum.

We now show that BðpÞ 2 P1 whenever p 2 P. Begin by considering constant functions. Let oðc,x,pÞ ¼ uðcÞþpgðx�cÞ and
recall that cp(x) is decreasing in p and increasing and continuous in x. Hence25 by Assumption 2 BðpÞðxÞ ¼

R
Ivðc

n
pðyÞÞlðdy9xÞ is

continuous in x. On the other hand observe that

lim
c-0þ

oðc,x,pÞ

@c
¼ lim

c-0þ
ðu0ðcÞ�pg0ðx�cÞÞ ¼1:

Hence by definition of cp we obtain that cn
pðyÞ40 for y40. As v is strictly positive on I\f0g, and lð�9xÞ is not Dirac delta at 0,

this implies that BðpÞðxÞ :¼
R

Ivðc
n
pðyÞÞlðdy9xÞ40, for all x 2 I. Together with the continuity of BðpÞð�Þ, we have BðpÞ 2 P1

whenever p is constant. Now, consider arbitrary p 2 P and denote p :¼ supx2IpðxÞ. By the same reasoning as before, we

conclude that B is decreasing in p. Therefore, infx2IBðpÞðxÞZ infx2IBðpÞðxÞ40. Hence BðpÞ 2 P1 for all p 2 P1.
Next, for a given r,14r40, consider a function fr : ½0,1�-Rþ , frðtÞ ¼ trBðtpÞðxÞ. We will show that fr is increasing with

t on (0,1). Adding continuity of fr from the left at 1, we will conclude that (r,0oro1 such that frðtÞrfrð1Þ; hence,
trBðtpÞrBp as required by Guo et al. (2004) theorem.

Recall p-cn
pðxÞ is decreasing and continuous in the topology -

u
. By the same argument t-cn

tp is decreasing and

continuous. By definition of B it is sufficient to show that the function t-trvðcn
tpðyÞÞ is increasing for all y 2 I. Clearly

cn
tpð0Þ ¼ 0 for all t 2 ð0,1�. For arbitrary y 2 I1, let us divide interval T0 :¼ ð0,1� into two disjoints parts T0

¼ Ty
1 [ Ty

2, where

Ty
1 :¼ ft 2 T0 : cn

tpðyÞ 2 ð0,1Þg and Ty
2 :¼ ft 2 T0 : ctpðyÞ ¼ yg. Note that Ty

1 is open and Ty
2 is closed. Since t-trvðcn

tpðyÞÞ is

continuous, we just need to show that this function is increasing in all Ti
y
. It is easy to see that this function is increasing on

Ty
2. Let t 2 Ty

2, and cðtÞ :¼ cn
tpðyÞ. Clearly c(t) solves an equation ð@=@cÞoðc,y,tpÞ ¼ 0. Since u00ðcÞo0 for c40, by Implicit

Function Theorem we obtain that c0ðtÞ :¼ ðd=dtÞcn
tpðyÞ exists and

c0ðtÞ ¼
pðyÞg0ðy�cðtÞÞ

u00ðcðtÞÞþtpðyÞg00ðy�cðtÞÞ
: ð7Þ

Further

d

dt
ðtrvðcðtÞÞ ¼ rtr�1vðcðtÞÞþtrv0ðcðtÞÞc0ðtÞ ¼ tr�1vðcðtÞÞ rþt

v0ðcðtÞÞ

vðcðtÞÞ
c0ðtÞ

� �
:

By Eq. (7):

t
v0ðcðtÞÞ

vðcðtÞÞ
c0ðtÞ ¼ t

v0ðcðtÞÞ

vðcðtÞÞ

pðyÞg0ðy�cðtÞÞ

u00ðcðtÞÞþtpðyÞg00ðy�cðtÞÞ
¼

v0ðcðtÞÞ

vðcðtÞÞ
u00ðcðtÞÞ

tpðyÞg0ðy�cðtÞÞ
þ

g00ðy�cðtÞÞ

g0ðy�cðtÞÞ

¼

v0ðcðtÞÞ

vðcðtÞÞ
u00ðcðtÞÞ

u0ðcðtÞÞ
þ

g00ðy�cðtÞÞ

g0ðy�cðtÞÞ

¼�

v0ðcðtÞÞ

vðcðtÞÞ

�
u00ðcðtÞÞ

u0ðcðtÞÞ
�

g00ðy�cðtÞÞ

g0ðy�cðtÞÞ

Z�r,

ð8Þ
23 Example 2 shows that it is indeed possible for a common functional forms of preferences and production to satisfy all these assumptions.
24 When solving functional equations, solutions exist in subclasses of function. For a strong uniqueness result, one seeks existence in a narrow class,

and uniqueness in a broad class. It bears mentioning, for our class of economies, we cannot imagine requiring a uniqueness argument in a larger class of

functions than bounded measurable functions (hence, our uniqueness result is a strong as seems possible for our class of games).
25 Observe that the proof of this theorem remains valid if we change assumption on Feller property of lð�9xÞ into first order stochastically decreasing

assumption.
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where the last inequality follows from (4). Combining (7) and (8) we obtain that ðd=dtÞðtrvðcðtÞÞZ0, and therefore

trvðcðtÞÞ ¼ trvðcn
tpðyÞÞ is increasing on the interval Ty

2. Hence, we obtain monotonicity of frð�Þ on the whole interval [0,1].

As a result, we have that trBðtpÞrBp for any t,0oto1, any p 2 P1 as in Theorem 9. Therefore, we conclude that B has a
unique fixed point in P1, and conditions (5) and (6) hold. &

The geometric intuition behind the proof of Theorem 4 is as follows: since the operator B is decreasing, it may have
multiple, unordered fixed points (i.e., our existence theorem show that set of fixed points is nonempty antichain). The
conditions in Theorem 2 assert, however, that the operator B operator is ‘‘e-convex’’ (see Guo and Lakshmikantham, 1988)
for a discussion). In particular, it is contraction along cone origin rays. This is a very strong infinite dimensional geometric
condition for an operator to satisfy, and proves sufficient for existence of a unique fixed point.

From an economic perspective, the condition (4) has a simple interpretation in terms of elasticities of payoffs. In
particular, the condition on the primitive data of the model used to generate current period returns requires that the sum
of their elasticities in absolute value (namely, the elasticities implied by the derivatives of u0 and g0 with respect to c)
exceed the elasticity of consumption for continuation utility (which is an integral parameterized by v). That is, the
percentage change in continuation dynastic utility v resulting from a percentage change in c cannot be too high.26

Although, of course, this condition (4) is restrictive (and, indeed, one cannot expect MSNE uniqueness under general
conditions in this class of games), it is still satisfied for many utility functions including those often used in applications. To
understand the nature of the restrictions, let use provide a simple illustration of the role of the conditions.

Example 2. Let I be bounded. Consider the time separable power utility function: Uðc1,c2Þ ¼ ca1þdcb2, where 0odr1 and

a40,b40 with aþbo1. Observe that U satisfies Assumption 1 and conditions in Theorem 4, whenever stochastic
production parameterized by the function g satisfies Assumption 2. To see this, follow the inequalities for c given as in (4):

cv0ðcÞ

vðcÞ
¼ bo1�ar1�a� cg00ðx�cÞ

g0ðx�cÞ
¼�

cu00ðcÞ

u0ðcÞ
�

cg00ðx�cÞ

g0ðx�cÞ
,

where the first inequality is satisfied by assumption, and the second follows from the strict monotonicity and concavity of
g. Since, the inequality is strict, (r with 0oro1, such that condition (4) holds for x in bounded I.

So, for example, under many standard power/CRRA utility specifications used in applied macroeconomic modeling, our
condition is satisfied. Further, to understand the nature of our condition, notice that by dividing inequality (4) by c, for
continuous v with v(0)¼0, the left hand side of our inequality tends to infinity with c-0. So, essentially for our condition
to hold for c close to 0, one needs the absolute risk aversion measure �u00=u0 be unbounded, and also tend to infinity with c

limiting to 0. Hence, condition (4) is not satisfied for utility functions such as uðcÞ ¼ lnðcþ1Þ or CARA preferences given
e.g. by uðcÞ ¼ 1�e�c . Finally, observe that Example 2 suggests that for CRRA utilities, functional form of a ‘‘production’’
function g does not have to be specified, nor does g00=g0 need to be unbounded. This is important in the view of Assumption
3 and Theorem 3 where for MSNE in LM we need g0=g00 to be bounded. Hence, our Example 2 can satisfy Assumption 3
as well.

The theorem also provides a globally stable successive approximation algorithm which allows us to compute the unique
equilibrium, as well as providing the basis for uniform error bounds for equilibrium values directly. To see this, from the
unique relationship between hn and pn (i.e., hn

ðxÞ ¼ cn
pn ðxÞÞ, we are able to relate theorems on hn with theorems that concern

pn. To do this, we simply relate iterations on the operators A, with iterations on the operator B as follows:

Anþ1h0ðxÞ ¼ cn

Bnp0
ðxÞ, ð9Þ

with p0ðxÞ ¼
R

Ivðh0ðyÞÞlðdy9xÞ. Then, by continuity of p-cn
pðxÞ pointwise, we have Anþ1h0-hn pointwise. Since (under

Assumption 3) Anþ1h0 2 LM , and LM is compact, pointwise convergence implies uniform convergence.
These relationships are summarized more formally in the following corollary.

Corollary 1. Let Assumption 3 and the assumptions of Theorem 4 be satisfied. Then, A has a unique fixed point hn, and

ð8h0 2 LM1Þ lim
n-1

Jhn�hn
J¼ 0, ð10Þ

where

Jhnþ1�hn
JrMAð1�trn

Þ, ð11Þ

where MA40 is a positive constant dependent on the choice of h0.

We finish this section with an example, where condition (4) is not satisfied. Indeed, in this case, we show MSNE are
multiple (in particular, three).

Example 3. Let S¼ ½0,1�, uðcÞ ¼
ffiffiffi
c
p

, and vðcÞ ¼ c4. Assume that a transition probability Q ð�9x�c,xÞ ¼ ð1�
ffiffiffiffiffiffiffiffiffi
x�c
p

Þ

d0ð�Þþ
ffiffiffiffiffiffiffiffiffi
x�c
p

lð�9xÞ, and lð�9xÞ ¼ mð�ÞwGðxÞþwGc ðxÞnð�Þ, where wG is an indicator function. Assume that G is some subset of
26 Observe that condition (4) is equivalent to: ½lnðvðcÞÞ�0rr½lnðg0ðx�cÞÞ�0�r½lnðu0ðcÞÞ�0. We thank anonymous referee for suggesting this formulation.
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S :¼ ½0,1� containing number
ffiffiffiffiffiffiffi
0:94
p

and not containing
ffiffiffiffiffiffiffi
0:84
p

. Assume that n is supported in G while m on Gc, and 4th
moments of m and n respectively, are M4

m ¼ 0:8 and M4
n ¼ 0:9.

We now turn to analyze functional equation (3). Under assumptions of the example we obtain:

pðxÞ ¼

Z
S

y

1þp2ðyÞ

� �4

lðdy9xÞ ¼
Z

S

y

1þp2ðyÞ

� �4

mðdyÞwGðxÞþ

Z
S

y

1þp2ðyÞ

� �4

nðdyÞwGc ðxÞ:

Observe that solution p must be constant on G and its complement, hence we can put

pðxÞ ¼ awGðxÞþbwGc ðxÞ: ð12Þ

Since m is concentrated on Gc and n on G we have

pðxÞ ¼

Z
S

y

1þb2

 !4

mðdyÞwGðxÞþ

Z
S

y

1þa2

� �4

nðdyÞwGc ðxÞ, ¼
M4

m

ð1þb2
Þ
4
wGðxÞþ

M4
n

ð1þa2Þ
4
wGc ðxÞ: ð13Þ

Combining (12) and (13) we have

a¼ 0:8

ð1þb2
Þ
4
,

b¼
0:9

ð1þa2Þ
4
:

8>>><
>>>:

Hence a solves the equation:

a 1þ
0:9

ð1þa2Þ
4

 !2
0
@

1
A

4

¼ 0:8:

There are exactly three as satisfying this equation: an

1 � 0:547, an

2 � 0:705 and an

3 � 0:08. This yields exactly three fixed
points pn

1ðxÞ ¼ 0:547wGðxÞþ0:316wGc ðxÞ, pn

2ðxÞ ¼ 0:705wGðxÞþ0:179wGðxÞ, and pn

3ðxÞ ¼ 0:08wGðxÞþ0:877wGðxÞ. These fixed
points correspond to three different MSNE:

cn

1ðxÞ ¼
0:77x if x 2 G,

0:909x if x=2G,

(

cn

2ðxÞ ¼
0:668x if x 2 G,

0:969x if x=2G,

(

and

cn

3ðxÞ ¼
0:993x if x 2 G,

0:565x if x=2G,

(

4.3. Continuous equilibrium comparative statics

In this section, we consider the question of conditions for continuous comparative statics of an MSNE equilibrium set.
Such a condition would be very useful (for example) when estimating deep parameters of the models (e.g., via GMM or
some simulated moments method). Such comparative statics are also sufficient to build rigorous applications of calibration
methods to the question of sensitivity analysis in our games.

To study this question, we first parameterize primitives of our economy by y 2 Y, where Y is a compact interval in Rm.
For each y 2 Y, let uð�,yÞ, vð�,yÞ, gð�,yÞ be functions summarizing preferences and stochastic technologies in the previous
sections of the paper (only now, we let them depend on yÞ, and let the probability measure we use to generate the
stochastic transitions on the state be parameterized as lð�9x,yÞ. Notice initially that when Assumptions 1–3 are satisfied for
any y 2 Y, the constant M¼ 2þMF Mg might depend on y. Denote this dependence on deep parameters by MðyÞ, and
observe that for compact I, we have MðyÞo1 for all y 2 Y. Therefore, if we further assume that supy2YMðyÞrM for some
constant M 40, we let LNEM ðyÞ denote the set of MSNE belonging to LM in the game with parameter y. For future reference,
we often denote this correspondence as a mapping y-LNEM ðyÞ.

We now have the following comparative statics theorem.

Theorem 5. For each y 2 Y, let Assumptions 1–3 be satisfied, and I bounded. Moreover, let the mappings ðc,yÞ 2 I1�Y-uðc,yÞ,
ðc,yÞ-vðc,yÞ, ði,yÞ 2 I1�Y-gði,yÞ be continuous, as well as let the collection ðy,xÞ-lð�9x,yÞ has Feller property. If in addition,
we assume vð�,�Þ is uniformly continuous, and supy2YMðyÞrM for some constant M 40, then the correspondence y-LNE

M
ðyÞ is

upper hemicontinuous (i.e. has a closed graph).
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Corollary 2. Let assumption of Theorem5 be satisfied. If for all y, there is a unique MSNE, then the function y-LNEM ðyÞ is

continuous.

The theorem (as well as its corollary) is very important in applications. First, obviously, the corollary gives conditions
under which continuous sensitivity analysis of the equilibrium set is possible. Such a result is critical in developing
conditions under which the simulated moments of the model converge to the actual moments of the model (e.g., Santos
and Peralta-Alva, 2005).

Second, given recent work on approximating upper hemicontinuous correspondences (e.g., Beer, 1980; Feng et al.,
2009), the theorem implies that one can build step function approximation scheme to approximate the equilibrium
correspondence to compute equilibrium comparative statics. For such an algorithm, it will be the case that as the ‘‘mesh’’
of the approximation scheme becomes finer, the approximation scheme will converge pointwise Hausdorff to the mapping
LNEM (uniform in the case of the corollary to the theorem). Constructing such an approximation scheme is possible
because the theorem shows that the equilibrium correspondence LNEM is valued in a compact subset of a function space,
where uniform approximation schemes for arbitrary elements of this function space can easily be constructed (e.g., using
various discretization schemes or piecewise linear/constant approximation schemes), as well as the fact that the theorem
says the entire set of MSNE moves in an upper hemicontinuous manner. The result is important as it is difficult to imagine
how one could obtain such a strong characterization of the set of MSNE using the various alternative methods in the
existing literature (i.e., APS or generalized Euler equation methods (henceforth, GEE)).

Third, the theorem provides an exact analog to the correspondence based solutions methods for games (e.g., APS
methods) relative to the question of computable equilibrium comparative statics. This is in contrast to the existing methods,
whose focus is on how to compute the set of Markov or subgame perfect equilibrium that exist at a particular parameter,
say y 2 Y. So, in this sense, our methods provide a new direction for correspondence-based computational methods that
are an alternative to the methods in the existing literature.

Finally, returning to the corollary of the theorem, we know of no analog to this theorem in the existing literature using
either GEE methods or correspondence based/promised utility methods. In particular, without our geometric approach
(which require operators in function spaces to characterize the requisite geometric conditions), even if it is known that the
equilibrium correspondence LNE

M
is nonempty valued, it is not known if it is a function. Such a sharp characterization of

LNEM is needed if one wants to have a great deal of certainty that the comparative static computed actually corresponds to
the actual comparative static that arises in the equilibrium of the stochastic game.
4.4. Existence of stationary Markov equilibrium and stochastic equilibrium dynamics

The results stated in Theorems 3 and 4 allow us to further characterize the structure of MSNE for the economies under
study. To do this, we first prove a result on the existence for Stationary Markov Equilibrium (SME). We define a Stationary
Markov equilibrium to be a pair hn

2 LM (that is, a pure-strategy MSNE in LM), and its set of associated invariant
distributions on I. We prove the following result:

Theorem 6. Let Assumptions 1–3 be satisfied, with gð0Þ40, and I bounded. Assume additionally that JgJo1, and let hn
2 LM be

a MSNE of the game. Then, the Markov process induced by Q, parameterized by hn has a unique invariant distribution, and a

process started from x0 2 I converges to this distribution.

With results of Theorem 4, we have the immediate corollary that is particularly useful in applications:

Corollary 3. Under Assumptions 1–3 with gð0Þ40 and I bounded, there exists a SME. If in addition other conditions of Theorem 4
are satisfied, then there exists a unique SME.

We make two remarks per these results. First, it is important to note that in our model, as lð�9xÞ is stochastically
decreasing, the transition probability is not a special case of that in the work of Amir (1996b). If lð�9xÞ is stochastically
increasing (see e.g. Amir, 1996b) we would easily obtain convergence to an invariant distribution (by the Knaster–Tarski
theorem); the problem is its uniqueness would not be guaranteed. Such a situation could be a significant complication in
some applications (e.g., in calibration or estimation problems).

Second, apart from previously stated assumptions, in these results, we do require that gð0Þ40. Many common
production functions used in applied work satisfy this condition.27 We only need this condition for our results on SME, not
existence of MSNE. The assumption is required to avoid situations that arise in the literature under existing assumptions
(e.g., Nowak, 2006, where one assumes bounded I and g(0)¼0). In this case, the invariant distribution induced by a MSNE
hn can be unique, but trivial.
27 For example, many CES production functions. That is, for our economy assuming inelastic labor supply (hence, in equilibrium, n¼1), one

specification for g has ĝ ðk,nÞ ¼ Gðg1ðkÞþg2ðnÞÞ, where G and gi are strictly increasing, strictly concave, and smooth, and gið0Þ ¼ 0. Then gð0Þ ¼ ĝ ð0,1Þ40.

For example, if g given by a standard CES production function (used commonly in the real business cycle and macroeconomics literature), we have

ĝ ðk,nÞ ¼ ½ksþns�1=s , which has gðkÞ ¼ ĝ ðk,1Þ satisfying our assumption as gð0Þ ¼ ĝ ð0,1Þ ¼ 140. To see why the condition is needed, as we allow g(0)¼0,

given our specification of Q, observe that the unique equilibrium invariant distribution associated with any MSNE will be concentrated at the point x¼0.
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Example 4. Assume 1–3 with I bounded but with g(0)¼0. Let fxt : t 2 Ng be a Markov chain generated by Q ð�9xt�hn
ðxtÞ,xtÞ.

We now show that xt-0 almost sure and xt 40 for at most finite number of t.

Let pt :¼ Probðxt 40Þ. Let Eð�Þ be an expected value operator induced by the chain fxt : t 2 Ng. We show that
P1

t ¼ 1 pt o1.

Observe that pt ¼ 1�Ftð0Þ, where Ft is a distribution function of xt. Clearly, Ftð0Þ :¼ 1�Eðgðxt�1�hðxt�1ÞÞÞ :¼ 1�rt�1. By our

assumptions, we have

rt ¼ Eðgðxt�hðxtÞÞÞ

¼ E

Z
I

gðx�hðxÞÞlðdx9xt�1Þgðxt�1�hðxt�1ÞÞ

� �

rE

Z
I

gðxÞlðdx9xt�1Þgðxt�1�hðxt�1ÞÞ

� �

r
Z

I
gðxÞlðdx90Þrt�1: ð14Þ

Since 0o
R

IgðxÞlðdx90Þo1, we have
P1

t ¼ 1 rt r1. Since pt ¼ rt�1, by Borel–Cantelli theorem, we obtain the occurrence

fxt 40g holds for the finite number of t almost surely.

The above example shows exactly the content of our productivity assumption gð0Þ40. Intuitively, the need for the
condition is quite simple: if we let 0 be an absorbing state, given the specification of the noise on compact I, eventually the
equilibrium processes will end up in a trivial invariant distribution, delta Dirac concentrated at point 0. Also, the reasoning
provided in the above Example 4 can be easily generalized to the case where I is unbounded, since by Assumption 2 lð�9xÞ is
stochastically decreasing.

Finally, and importantly, note that if we assume that lð�9xÞ is stochastically increasing and I is unbounded, this
reasoning above will not work. Therefore, for example, although Amir (1996b) is not characterizing the set of SME of a
similar bequest game to ours, we cannot claim that under g(0)¼0, the set invariant distribution in his class of games would
be trivial.

5. Further discussion and extensions

We conclude with a discussion of how our results can be extended. In particular, we discuss how to (i) derive error
bounds for an approximation procedure for computing MSNE of the bequest game, (ii) show the uniform convergence of
nonstationary equilibria in the finite horizon bequest game to the equilibria in infinite horizon game, (iii) extend our
uniqueness result to the case of models with non-separable utility, and finally (iv)present a simple numerical example
illustrating all our results derived in the paper.

We begin with the question of uniform approximation schemes for MSNE.

5.1. Computing MSNE

We first construct accurate approximate schemes for MSNE for the economies we consider. In particular, we discuss a
simple discretization method for computing fixed points of the operator A (and, hence B via relation (9)) corresponding to a
unique MSNE of our bequest economy. Following standard arguments in the literature (e.g., Fox, 1973; Bertsekas, 1975;
Hinderer, 2005), and exploiting the Lipschitz and uniform continuity of MSNE, we can calculate uniform error bounds for
an approximation of given precision, and we can prove that a discretization procedures converge uniformly to an actual
solution as its precision/mesh of the scheme gets arbitrarily large/fine. We consider the case of bounded intervals I.

Consider the following discretization scheme. Partition bounded set I into m mutually disjoint intervals I1,I2, . . . ,Im such
that I¼ [m

i ¼ 1 Ii where xi 2 Ii and Pm ¼ fx1,x2, . . . ,xmg. Denote by dm ¼maxm
i ¼ 1supx2Ii

9x�xi9, i.e. the maximal grid size.
Consider a function hm, as well as an operator Am, where hm is a piecewise-constant approximation (i.e. a step function
approximation) of h defined by28

ð8x 2 PmÞ hmðxÞ ¼ hðxÞ,

ð8x 2 IiÞ hmðxÞ ¼ hðxiÞ,

and, similarly, Amhm is a piecewise-constant approximation to Ahm defined by

ð8x 2 PmÞ AmhmðxÞ ¼ AhmðxÞ,

ð8x 2 IiÞ AmhmðxÞ ¼ AmhmðxiÞ:

So, the approximation is the following: the approximate function is set equal to the original function on the grid of the
approximation, and we extend the approximation’s definition to the whole compact interval I by defining the
approximation to be constant in each of the subintervals Ii. This is a standard piecewise constant discretization scheme.
28 We choose a piecewise constant approximation scheme because it is arguably the simplest approximation scheme on can imagine. Obviously,

similar results are available for piecewise linear, splines, and some polynomial schemes.
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Now, for any h0
2 LM , let the approximation of h0 be given by h0

m, and define Am
n

be an n-th iteration of the approximate
operator Am from h0

m.

Theorem 7. Let Assumption3 and those of Theorem 4 be satisfied with MF o1, and dm-0 as m-1. Then, for any h0
2 LM1:

lim
n-1

lim
m-1

JAn
mh0

m�hn
J¼ 0: ð15Þ

where hn
2 LM1 is the unique fixed point of operator A. Moreover, we have the following estimate for an approximation error:

ð8n,m 2 NÞ JAn
mh0

m�hn
Jrðnþ1ÞdmMþMAð1�trn

Þ, ð16Þ

where 14r40 and MA40,14t40 are constants that are dependent on a choice of h0
2 LM1.

Observe that the inequalities in (10) and (11) imply that operator A has properties similar to a contraction mapping.
Indeed, appealing to versions of the converse to Banach’s contraction mapping theorem (namely, Janos, 1967 or more
recently Hitzler and Seda, 2001), one can show that there exists a metric that induces an equivalent topology as the sup
norm and under which the operator A is a contraction. Further, by the main theorem in Leader (1982), there exist direct
links between iterations of the operator A in the original metric (i.e., sup metric) and the induced iterations of A under the
equivalent metric under which it is now a contraction. This link proves a critical step when calculating error bounds of our
approximation.

5.2. Finite horizon stochastic games

We now can show how MSNE is the limit of (nonstationary) Markov Nash Equilibrium in finite horizon versions of our
stochastic game. In particular, we provide conditions when the unique MSNE is the uniform limit of the collection of
nonstationary Markov Nash equilibrium for finite horizon versions of our game. Such conditions are not known in the
existing literature.

To do this, first consider a finite horizon case of our bequest game (i.e. an economy populated by T generations, each
with preferences ð8toTÞ uðctÞþgðx�ctÞ

R
vðctþ1ðyÞÞlðdy9xÞ, and the terminal generation with payoff uðcT ÞÞ. The results on

existence and uniqueness of nonstationary equilibria in this class of games are well known (e.g. see Amir, 1996a). Now,
consider the limiting behavior of Markovian Nash equilibrium in these games. More succinctly, if cn

T is the optimal strategy
of a first generation in the T-horizon bequest game in a Markovian Nash equilibrium, can we give conditions that
guarantee (i) uniqueness of MSNE in the infinite horizon game, say hn, such that (ii) we have limT-1cn

T ¼ hn uniformly. We
give those conditions in the following lemma:

Lemma 8. Assume 1–3 as well as conditions in Theorem 4. Then hn is the unique MSNE of the infinite horizon bequest game, and

we have the nonstationary pure strategy Nash equilibrium in the finite horizon game satisfying

Jcn

T�hn
J-0:

5.3. Extensions to economies with non-separable utility via mixed-monotone operators

We next extend our uniqueness results for MSNE to economies where each generation has non-separable utility. For
this, we appeal to a branch of fixed point theory that has not found any application in economics (namely, the fixed point
theory for mixed monotone operators).

We begin by defining a mixed monotone operator in the context of our application. Consider an operator
f : X � X-X, where X is a partially ordered set. We say f ðx,yÞ is mixed-monotone if (i) for each y 2 X, x-f ðx,yÞ is increasing
and (ii) for each x 2 X, y-f ðx,yÞ is decreasing. We shall say xn is a fixed point for our mixed-monotone operator
if f ðxn,xnÞ ¼ xn. For the existence and computation of fixed points of f, we will exploit important results on existence and
uniqueness of fixed points for mixed monotone operators at each stage that are due to Guo et al. (2004). These fixed point
results exploit geometric conditions that imply that ‘‘two stage’’ iterations from least and greatest elements of X will
converge to unique fixed points. We shall show these geometric conditions can be checked in important economic
applications.

To develop our arguments for this section, we shall maintain the conditions on technology in Assumption 2, but replace
Assumption 1 with the following new condition:

Assumption 4 (Preferences). The utility function satisfy:
�
 U(c) is given by Uðc1,c2Þ ¼ uðc1Þþnðc1Þvðc2Þ where u,n,v : Rþ-Rþ , are strictly increasing and continuous. Moreover u,n
are continuously differentiable and are strictly concave,

�
 u(0)¼0, nð0Þ ¼ 0, v(0)¼0,

�
 lima-0u0ðaÞ ¼1 and ð8a 2 I,a40Þ0ou0ðaÞo1,

�
 lima-0g0ðaÞ ¼1 and ð8a 2 I,a40Þ0og0ðaÞo1.



Ł. Balbus et al. / Journal of Economic Dynamics & Control 37 (2013) 1019–10391032
Using Lemma 1 from Nowak (2006), for a continuation strategy for the successor generation h 2 H, a standard argument
shows that objective function for the current generation:
Wðc,x,hÞ ¼ uðcÞþnðcÞgðx�cÞ

Z
I

vðhðyÞÞlðdy9xÞ

is well-defined, strictly concave in c on I(x). Therefore, at each h 2 H, there is a unique best response for the current
generation. Also, note that as u,n and g are each continuously differentiable, we can again use the linearization
ð@W=@cÞðc,x,hÞ to define a mapping zðc,x,hÞ as follows:

zðc,x,hÞ :¼ u0ðcÞþn0ðcÞgðx�cÞ

Z
I

vðhðyÞÞlðdy9xÞ�nðcÞg0ðx�cÞ

Z
I

vðhðyÞÞlðdy9xÞ:

Using z as before, define a new mapping Bðc,x,h1,h2Þ:

Bðc,x,h1,h2Þ ¼ u0ðcÞþn0ðcÞgðx�cÞ

Z
I

vðh1ðyÞÞlðdy9xÞ�nðcÞg0ðx�cÞ

Z
I

vðh2ðyÞÞlðdy9xÞ,

where h1,h2 2 H. Notice, we have decomposed the continuation structure of the game into a pair of functions ðh1,h2Þ. We
can use this decomposition in B to define a mixed-monotone operator.

To see this, first observe that B is strictly decreasing with c and h2 and strictly increasing with h1. Define an operator C

on CðIÞ � CðIÞ for x40 by Cðh1,yÞ ¼ y (where yðyÞ 	 0 and yðyÞ ¼ y), and if h24y then Cðh1,h2Þ is an argument c which solves
the equation Bðc,x,h1,h2Þ ¼ 0. Observe, as B is strictly decreasing with c, the Inada conditions guarantee that C is well
defined. Moreover, as B is continuous in x and c, we have C : CðIÞ � CðIÞ-CðIÞ. Finally, Inada conditions imply that
Cðh1,h2Þay. The fact that C is mixed monotone is straightforward. Also, note that as opposed to the method used in Section
4.2, here we define an operator not on values but on the first order condition.

We now extend our main result of the previous section to our new setting. In this case, instead of proving the general
theorem on existence using implied elasticities of current vs. continuation payoffs, for simplicity, we use power utility
functions (similar to Example 2) to show conditions for the uniqueness of MSNE with nonseparable payoffs. Recall, power
utility functions are often found in applied work.

Proposition 1. Let uðc1Þ ¼ cg1, nðc1Þ ¼ ca1, and vðc2Þ ¼ cb2, where 0oao1, 0obo1, 0ogo1 with I bounded. If Assumptions 2
and 4 on bounded I are satisfied with aþ2bo1, gra, then, C has a unique fixed point on CðIÞ and condition (A.5) holds.

5.4. Example

We conclude the paper by presenting a simple numerical example that illustrates all results of our paper. In particular,
we consider the special case of power utility and Cobb–Douglas production. This class of primitives has found extensive
use in applied work in macroeconomics, for example.

Example 5. Consider the following environment: let the state space be I¼ ½0,1�, preferences given by a time separable
utility Uðc1,c2Þ ¼ ca1þcb2, the stochastic transition on output is given by Q ð�9x�c,xÞ ¼ ð1�ðx�cÞgÞd0ð�Þþðx�cÞglð�9xÞ, where d0

is a delta Dirac concentrated at x¼0, and the ‘‘production’’ function ðx�cÞg is of a standard Cobb–Douglas form, with the
measure l having a cdf given by ð1�e�ð2�xÞyÞ=ð1�e�ð2�xÞÞ. Under these assumptions, 0 is an absorbing state of Q. Let
14a40,14b40,14g40.

For this economy, our main existence theorems (Theorems 3 and 4) show the set of MSNE is nonempty in a class of
Lipschitzian functions and contains no ordered elements in the standard pointwise partial order. Further, if aþbo1, then
there exist a unique MSNE given by a Lipschitz continuous function, and is unique relative to a class of bounded
measurable functions. Moreover, this consumption policy is just the pointwise limit of the sequence of consumption
policies for finite horizon version of our economy (Lemma 4). By Corollary 2, we have continuous equilibrium comparative
statics (i.e., this MSNE is continuous in the deep parameters). Finally, we can easily approximate MSNE consumption policy
by a piecewise-constant approximation scheme to any arbitrary level of accuracy (in the sup norm) by using a simple
Picard iteration scheme (Theorem 7). Proposition 1, then, extends these results to the case of non-separable utilities.

The numerical results of our calculations for this example29 are presented in Fig. 1. In the left panel, we assume the
capital share g¼ 0:33, and vary the preference parameters a and b. In the right panel, we let the preference parameters be
a¼ 0:6 and b¼ 0:3, and vary g. Sensitivity analysis shows the large discrepancies in consumption values and more
importantly consumption function slopes.

It bears mentioning that correspondence-based methods (e.g., APS methods) do not apply to this example (e.g., we do
not assume discounting). Further, GEE methods are not needed (as necessary and sufficient Euler equations can be used to
characterize best replies), nor are their application necessarily justified, as MSNE are not necessarily smooth.
29 MATLAB program implementing our numerical procedure is available from authors upon request.



Fig. 1. Consumption policy in a unique MSNE. Left panel: parameter g¼ 0:33 and various a,b. Right panel: parameters a¼ 0:6,b¼ 0:3 and various g.
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6. Conclusion

This paper proposes an order-theoretic method for proving the existence of Markov stationary Nash equilibria (MSNE) in
games of intergenerational altruism, as well as new methods for constructing nontrivial SME. Under additional conditions,
using new geometrical methods in operator theory, we are able to give simple conditions for the existence of a unique MSNE,
as well as provide a catalog of globally stable iterative procedures for computing nontrivial SME. Our theorems are sharp, in
the sense that we can provide explicit examples when uniqueness conditions are met, and when they fail. As the methods are
also constructive, we are able to provide a detailed accounting of the relationship between approximate and actual MSNE for
the economies we study. Our methods also work for models with non-separable lifecycle utility. For this case, we use a
‘‘mixed-monotone’’ method, which has not been applied in the existing literature on stochastic games.

The main results of the paper (e.g., Theorems 3 and 4) present sufficient conditions for existence and uniqueness of
MSNE that are often met in applied work in intergenerational models of dynamic equilibrium (e.g., overlapping
generations models in macroeconomics). We argue that in applications, global stability is a key property of the set of
MSNE, and we are able to prove results on continuity of the set of MSNE in deep parameters (a result very useful for the
simulation and estimation of the models at hand). Finally, using fixed points methods for mappings in abstract cones, we
are able to construct a sequence of policies converging uniformly to the unique MSNE of the economy. The results can be
extended to asymptotic results for approximate solutions via simple discretization arguments, and we can then obtain
uniform error bounds for computing unique MSNE. We stress that the methods and examples presented in the paper can
be generalized and used to study the broad class of overlapping generations macroeconomies with partial commitment.

Many key issues, though, still remain to be studied in future work. For example, one can ask if it is possible to design a
decentralized OLG economy without commitment that corresponds to decentralization of the equilibria in bequest game
under study. If this is possible, the results here could provide a tractable dynamic general equilibrium model without
commitment that would be useful for applied work that study lifecycle models with limited commitment. In principle, one
could compute equilibrium prices, and prove the existence of a unique decentralized stationary Markov equilibrium.
Additionally, one could add labor/leisure choice into the environment (see Balbus et al., 2012c). We feel that these two
steps are necessary in order to bring the models with partial commitment that are common in macroeconomic
applications to the level of analysis which is now common with models lacking such strategic interactions across
generations.

Finally, as mentioned in the introduction, we believe that our monotone value function operator methods can be
applied to other classes of economies, including time-consistency games such a policy games and models with hyperbolic
discounting. For example, in Balbus et al. (2012b), we show how our monotone operator methods can be used to compute
optimal, time-consistent consumption policy of a quasi-hyperbolic consumers under uncertainty facing borrowing
constraints. Additionally, in Balbus et al. (2012a), we prove a number of theorems allowing for a constructive study of
equilibria of stochastic supermodular games including such models as dynamic Bertrand models, dynamic R&D models,
dynamic public good games or time-consistent public policies.
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Appendix A. Definitions and abstract fixed point theorems

Here we provide few definitions, as well as state a useful theorem that we use in our discussion on unique MSNE.30

Definition 1. Let E be a real Banach space and PDE be a nonempty, closed, convex set. Then
�
 P is called a cone if it satisfies three conditions: (i) p 2 P,E40) Ep 2 P; (ii) p 2 P,�p 2 P) p¼ y, where y is a zero
element of; and (iii) p 2 P, q 2 P) pþq 2 P,

�
 suppose P is a cone in E and P1a|, where P1 denotes the set of interior points of P, we say that P is a solid cone,

�
 a cone P is regular iff each increasing sequence which has an upper bound in order has a limit,

�
 a cone P is said to be normal if there exists a constant N40 such that

ð8p1,p2 2 PÞ yrp1rp2 ) Jp1JrNJp2J:
Theorem 9 (Guo et al., 2004). Let P be a normal solid cone in a real Banach space with partial ordering r and B : P1-P1 be a

decreasing operator (i.e. if p1op2 2 P then Bp2rBp1) satisfying

ð(r,0oro1Þð8p 2 P1Þð8t,0oto1Þ trBðtpÞrBp, ðA:1Þ

then B has a unique fixed point pn in P1 and

ð8p0 2 P1Þ lim
n-1

Jpn�pnJ-0, ðA:2Þ

where ð8nZ1Þpn ¼ Bðpn�1Þ. Moreover we have the following estimate of convergence rate:

Jpn�pnJrMBð1�trn

Þ, ðA:3Þ

where MB40 and 0oto1 are positive constants dependent on the choice of p0.

It is important to stress that Guo et al. (2004) establish uniqueness results under weaker conditions than we use in our
work (A.1). Rather, we use a stronger version of their result which also guarantees the other conclusions of Theorem 9.

Definition 2. Let P be a cone in real Banach space with partial ordering r and operator C : P � P-P. If C is increasing with
the first argument and decreasing with the second, i.e. ð8p0,p,q0,q 2 PÞðp0ZpÞðq0ZqÞ, we have Cðp0,qÞZCðp,qÞ and
Cðp,qÞZCðp,q0Þ, we say that C is a mixed monotone operator. If (pn 2 P such that Cðpn,pnÞ ¼ pn, then pn is called a fixed
point of C.

Theorem 10. Let P be a normal solid cone in real Banach space with partial ordering r and C : P1� P1-P1 be a mixed

monotone operator. Assume that there exists a constant 0oro1 such that

ð80oto1Þð8p,q 2 P1Þ Cðtp,t�1qÞZtrCðp,qÞ: ðA:4Þ

Then, C has a unique fixed point pn 2 P1, and for any p0,q0 2 P1, we have

lim
n-1

pn ¼ lim
n-1

qn ¼ pn, ðA:5Þ

where 8nZ1, pn ¼ Cðpn�1,qn�1Þ and qn ¼ Cðqn�1,pn�1Þ.

Appendix B. Proofs
Proof of Lemma 1. First we show that function x-pf ðxÞ is differentiable for any continuous bounded and increasing
function f. Without loss of generality, assume limy-1f ðyÞ ¼ 1. Observe that pf is a Lebesgue–Stieltjes integral on a form:

pf ðxÞ ¼

Z
I

f ðyÞFlðdy9xÞ:
30 See Theorem 3.2.5 in Chapter 3.2 of Guo et al. (2004).
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Since f is continuous increasing and bounded from above, and Flð�9yÞ is right-continuous, by Theorem 21.67 in Hewitt and
Stromberg (1965), we can integrate it by parts to arrive at

pf ðxÞ ¼ 1�

Z
I

Flðy9xÞdf ðyÞ: ðB:1Þ

Calculating the derivative of the left side of (B.1), and letting hn-0 be a sequence, observe that as Flðy9xÞ is differentiable
in the interval containing x, there exists a value yn

y 2 ð0,1Þ such that

Flðy9xþhnÞ�Flðy9xÞ
hn

����
����¼� @

@x
Flðy9xþy

n
yhnÞ

rMW
F ð1�Flðy9xþy

n
yhnÞÞrMW

F :

where the last inequality follows from Assumption 3. Since
R

IM
W
F df ðyÞo1, by dominated convergence theorem:

lim
n-1

Z
I

Flðy9xþhnÞ�Flðy9xÞ
hn

df ðyÞ ¼

Z
I

@

@x
Fðy9xÞ df ðyÞ:

As a result, by (B.1), we have

p0f ðxÞ ¼�

Z
I

@

@x
Flðy9xÞ df ðyÞ: ðB:2Þ

Combining with (B.2), Assumption 3 and (B.1), we have 9p0f ðxÞ9rMW
F pf ðxÞ &

Proof of Lemma 2. Step1: We prove (i). Without loss of generality assume S¼1. We first construct H0 � H such that H0

contains increasing functions and is compact in the -
u

topology. This set will take a form H0 :¼ LM for some positive
valued functionM. Before finding this function, we show that such a space LM is compact with endowed topology -

u
. Let

h 2 LM be arbitrary. Note that for all y 2 I 0rhðyÞry. Next observe that LM is equicontinuous for all selections ofM. Take
y0 2 I0 and sufficiently small E 2 ð0,y0=2Þ. Define W0 :¼ ½y0=2,ð3=2Þy0�. Clearly y0 is interior point of W0. Let M0 :¼MðW0Þ.
Observe ½y0�E,y0þE� �W0. Then, if we take dominðE=M0,EÞ, then suph2LM 9hðy0Þ�hðy0Þ9oE for all y0 2 ðy0�d,y0þdÞ. For
y0 ¼ 0 we have suph2LM 9hðy

0Þ�hð0Þ9¼ suph2LMhðy0Þry0oE for d¼ E. Hence LM is equicontinuous. Clearly LM is pointwise
closed, hence by the Arzela–Ascoli theorem (e.g., Kelley, 1955, Theorem 17, p. 233), LM is compact in the topology -

u
.

Let x 2 I,x40, and h 2 H be increasing. Clearly Ah is well-defined (i.e., nonempty and single-valued). We now find a
function M such that Ah 2 LM. First, we show that Ahð�Þ is increasing whenever h is. As (by Assumptions 2 and 3) the
function x-zðc,x,hÞ (z is defined in (2)) is increasing and c-zðc,x,hÞ (by Assumptions 1 and 2) is strictly decreasing, there
exists x1 and x2 such that 0rx1ox2rS, and such that if x 2 ð0,x1� then AhðxÞ ¼ 0, if x 2 ½x2,SÞ then AhðxÞ ¼ x, and if x 2

ðx1,x2Þ then Ah(x) is a zero of the function zð�,x,hÞ (i.e. the argument for which this function reaches 0). If ð0,x1� ¼ |, then
x1 ¼ 0 and if ðx2,SÞ ¼ |, then x2 ¼ S. Moreover, Ahð�Þ is increasing and continuous on intervals ð0,x1�, ðx1,x2Þ and ½x2,SÞ. As
Ahðx1Þ ¼ 0 and Ahðx2Þ ¼ x2, hence for each x 2 ½x1,x2� we have Ahðx1ÞrAhðxÞrAhðx2Þ, which implies that Ahð�Þ is increasing
on all I. If ð0,x1� ¼ | or ðx2,SÞ ¼ |, then this monotonicity holds as well.

To see Ahð�Þ is Lipschitz on all W 2 C0 define wðc,x,pÞ :¼ uðcÞþpðxÞgðx�cÞ for some given continuous, decreasing,
nonnegative function p. Recall Wðc,x,hÞ ¼wðc,x,pvJhÞ, where pf was defined in Section 4.1. Denote the unique argument
maximizing w with respect to c to be cnðxÞ. Also let c0 denote a zero element of a function ð@=@cÞwðc,x,pÞ, if it exists, and
observe that

cnðxÞ ¼

x if u0ðxÞ�pðxÞg0ð0Þ40,

c0ðxÞ if u0ð0Þ�pðxÞg0ðxÞ404u0ðxÞ�pðxÞg0ð0Þ,

0 if u0ð0Þ�pðxÞg0ðxÞo0,

8><
>:

following from concavity of u and g.31 Since 0rc0ðxÞrx there exist points xi 2 I, i¼1,2 such that 0rx1ox2oS such that
cnðxÞ ¼ x for x 2 ðx2,SÞ, cnðxÞ ¼ c0ðxÞ for x 2 ½x1,x2� and cnðxÞ ¼ 0 for x 2 ½0,x1Þ. Note that I2 :¼ ðx2,SÞ or I1 :¼ ½0,x1Þ can be empty
sets. Without loss of generality assume that both sets are nonempty. Note that on I1 cn is Lipschitz continuous with a
constant 0 and on I2 cn has a Lipschitz constant 1. It is sufficient to show that c0 is also Lipschitz continuous on all compact
subsets W � ðx1,x2Þ. Note that on ðx1,x2Þ c0ðxÞ 2 ð0,xÞ and pðxÞ40. Hence by Implicit Function Theorem, the derivative c00
exists and

c00ðxÞ ¼
pðxÞg00ðx�c0ðxÞÞþp0ðxÞg0ðx�c0ðxÞÞ

u00ðc0ðxÞÞþpðxÞg00ðx�c0ðxÞÞ
:

We now put pðxÞ ¼
R

IvðhðyÞÞlðdy9xÞ for some increasing h 2 H\f0g such that ðx1,x2Þ is a nonempty set. Let x 2W . By Lemma 1
we have 9p0ðxÞ=pðxÞ9rMW

F . Further, we also have

9c00ðxÞ9¼
pðxÞg00ðx�c0ðxÞÞ

u00ðc0ðxÞÞþpðxÞg00ðx�c0ðxÞÞ
þ

p0ðxÞg0ðx�c0ðxÞÞ

u00ðc0ðxÞÞþpðxÞg00ðx�c0ðxÞÞ

����
����
31 We write u0ð0Þ :¼ limc-0þ u0ðcÞ for short.
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r1þ
�p0ðxÞg0ðx�c0ðxÞÞ

�u00ðc0ðxÞÞ�pðxÞg00ðx�c0ðxÞÞ
r1þ

�p0ðxÞg0ðx�c0ðxÞÞ

�pðxÞg00ðx�c0ðxÞÞ

r1þMW
F Mg o1,

where Mg is a bound of 9g0=g009, and these constants exist by Assumption 3. Hence, Ahð�Þ is Lipschitz continuous on all
compact subsets W � ðs1,s2Þwith modulus 1þMW

F Mg . To show it is Lipschitz continuous on all compact W it is sufficient to
show it is continuous. But it is easy to verify that x-

R
IvðhðyÞÞlðdy9xÞ is continuous, as h is continuous. Hence, the continuity

of Ahð�Þ follows from continuity of u and g and Berge’s maximum theorem. Therefore, cnðxÞ is a Lipschitz continuous
function with Lipschitz constant 2þMW

F Mg i.e. sum of the Lipschitz constant on subintervals. Setting MðWÞ :¼ 2þMW
F Mg

we conclude that Ah 2 LM. Obviously, if we take a function h 2 LM and p(x) such that ðx1,x2Þ ¼ |, then Ah¼ y or Ah¼ y and
AðhÞ 2 LM as well. This implies that A maps LM into itself.

We next show that A is continuous (in -
u

convergence) on LM. We have Ahn-Ah pointwise when hn-h, by continuity of
functions u,g,v and Lebesgue’s dominated convergence theorem. Since LM is equicontinuous, the topology of pointwise
and -

u
convergence coincide in LM hence, Ahn-

u
Ah uniformly on all compact subsets of I.

Finally, A is decreasing. Let h1rh2. Since h-zðc,x,hÞ is decreasing we have zðc,x,h1ÞZzðc,x,h2Þ. If Ah2ðxÞ ¼ 0 the
hypothesis holds trivially. Let Ah2ðxÞ 2 ð0,x�. Then zðAh2ðxÞ,x,h2ÞZ0. If zðAh2ðxÞ,x,h2Þ ¼ 0, and zðAh1ðxÞ,x,h1Þ ¼ 0. then
zðAh2ðxÞ,x,h1ÞZ0. In this case, zð�,x,h1Þ is decreasing, so we obtain Ah1ZAh2. If zðAh1ðxÞ,x,h1Þ40, we immediately obtain
Ah1ðxÞ ¼ x, and Ah1ZAh2 as well. Finally, if Ah2ðxÞ ¼ x, then for all c 2 ð0,xÞ, we have 0rzðc,x,h2Þrzðc,x,h1Þ and Ah1ðxÞ ¼ x

as well.
Step2: We prove (ii). We repeat the reasoning from the previous step. We just need to show that there exists a compact

set say H0 � H such that AðH0Þ � H0. This is H0 :¼ LM for M :¼ 2þMgMF . Repeating reasoning from the previous step we
obtain 9c00ðxÞ9r1þMF Mg for x 2 ðx1,x2Þ. &

Proof of Theorem 3. Step1: Proof of (i). Let H0 be a set from Lemma 2. As it was mentioned before H0 is compact in -
u

.
Clearly H0 is convex. Lemma 2 asserts that A is continuous. Hence, by Schauder’s theorem (e.g., Kuratowski, 1966, p. 544),
CA � H0 is nonempty. Suppose now that CA has two ordered fixed points in LM say, h,ĥ 2 CA. Then for all x 2 I, hðxÞr ĥðxÞ.
By monotonicity property of the operator A (Lemma 2) we obtain hðxÞ ¼ AhðxÞZAĥðxÞ ¼ ĥðxÞ. Hence hðxÞ ¼ ĥðxÞ. Hence each
pair of the ordered fixed points is a pair of identical elements. Therefore, CA is antichained.

Step2: Proof of (ii). Let M be a number from Lemma 2. By the proof of Lemma 2 set LM is closed, relatively compact and
hence compact (in topology -

u
). The convexity of LM is obvious. Lemma 2 asserts that A is continuous. Hence, by Schauder’s

theorem (e.g., Kuratowski, 1966, p. 544), CA � LM is nonempty. We repeat reasoning from previous step to obtain that CA

is antichain. &

Proof of Corollary 1. Fix x 2 I and for any nonnegative constant p consider lðpÞ ¼ cn
pðxÞ i.e. consider l as a function from R to

R. Let us take p 2 ½0,p� with p ¼
R

IvðyÞlðdy90Þ. We show that l is a Lipschitz continuous function on ½0,p�. Since p-cn
pðxÞ is

decreasing and continuous, hence there exist number Z such that cn
pðxÞ ¼ x for all p 2 ½0,Z�, and cn

pðxÞ 2 ð0,xÞ for all p 2 ðZ,p�.
Inada condition on u guarantees that cn

pðxÞ40, whenever p40. Without loss of generality assume that 0oZoS. With fixed
x we have l0ðpÞ :¼ ð@=@pÞcn

pðxÞ ¼ 0 for p 2 ½0,Z�. Let p 2 ðZ,SÞ. Then ð@=@pÞoðlðpÞ,x,pÞ ¼ 0. By Implicit Function Theorem we have

9l0ðpÞ9¼
�g0ðx�lðpÞÞ

u00ðlðpÞÞþpg00ðx�lðpÞÞ
r
�g0ðx�lðpÞÞ

pg00ðx�lðpÞÞ

pg00ðx�lðpÞÞ

u00ðlðpÞÞþpg00ðx�lðpÞÞ
r

Mg

p
:

Hence, for all E40, and p1,p2 2 ½E,p�, we have

9lðp1Þ�lðp2Þ9r
Mg

E 9p1�p29: ðB:3Þ

Let pmaxðxÞ :¼
R

IvðyÞlðdy9xÞ. Clearly it is a decreasing and continuous function. Let

p1
maxðxÞ :¼ BðpmaxÞðxÞ ¼

Z
I

vðcn

pmax
ðyÞÞlðdy9xÞ:

Since limc-0þ u0ðcÞ ¼1, cn
pmax
ðyÞ40 for all y40. Noting that p1

maxð�Þ is continuous on compact I (as pmax, is continuous), we
conclude that minx2Ip

1
maxðxÞ40. Therefore

p1
maxðxÞZE :¼ min

x2I
p1

maxðxÞ40:

Consider a sequence pn defined in (6). Note that Bðp0Þ ¼ p1rpmax ¼ BðyÞ as by Theorem 4 operator B is decreasing. Suppose
pmaxZpnZp1

max for some n. Applying B we obtain p1
maxrpnþ1. This implies that pnðxÞZp1

maxðxÞZE for all n and x. By
definition of l we have lðBnp0Þ ¼ cn

Bnp0
ðxÞ ¼ Anþ1

ðh0ÞðxÞ. Therefore,

9Anþ1
ðh0ÞðxÞ�hn

ðxÞ9¼ 9cn

Bnp0
ðxÞ�cn

pn ðxÞ9r
Mg

E
9Bnp0ðxÞ�pnðxÞ9rMA91�trn

9,

with MA :¼ ðMg=EÞMB. The last inequality follows from definition of lð�Þ and (B.3). &
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Proof of Theorem 5. Let hð�9ynÞ 2 LNEM ðynÞ, yn-y and hð�9ynÞ-
u

h0. We show that h0 2 LNEM ðyÞ. From definition of hð�9ynÞ

we have

uðhðx9ynÞÞþ

Z
I

vðhðy9ynÞ,ynÞlðdy9x,ynÞgðx�hðx9ynÞÞ ðB:4Þ

ZuðcÞþ

Z
I

vðhðy9ynÞ,ynÞlðdy9x,ynÞgðx�cÞ, ðB:5Þ

for all c 2 ½0,x�. For fixed x we need to show that the convergence

Jn :¼

Z
I

vðhðy9ynÞ,ynÞlðdy9x,ynÞ-

Z
I

vðh0ðyÞ,yÞlðdy9x,yÞ :¼ J ðB:6Þ

is satisfied. We have

9Jn�J9r
Z

I
9vðhðy9ynÞ,ynÞ�vðh0ðyÞ,yÞ9lðdy9x,ynÞ ðB:7Þ

þ

Z
I

vðh0ðyÞ,yÞlðdy9x,ynÞ�

Z
I

vðh0ðyÞ,yÞlðdy9x,yÞ
����

����: ðB:8Þ

Let dn :¼
R

Ivðh0ðyÞ,yÞlðdy9x,ynÞ�
R

Ivðh0ðyÞ,yÞlðdy9x,yÞ. Since vðh0ðyÞÞ is continuous; hence, by Feller property of lð�9x,yÞ, we
obtain dn-0. As vð�,�Þ is uniformly continuous and hð�9ynÞ-

u
h0ð�Þ, hence vðhð�9ynÞ,ynÞ-

u
vðh0ð�Þ,yÞ. Since I is bounded, for all

e40 there is ne such that for all n4ne, we have

Jvðhð�9ynÞ,ynÞ�vðh0ð�Þ,yÞJoe:

Therefore, for n4ne we have

9Jn�J9reþdn:

Taking a limit n-1 and next e-0 we have 9Jn�J9-0. If we take a limit in (B.4), we obtain h0 is a Nash equilibrium in the
game with y. Moreover, h0 2 LM , hence h0 2 LNEM ðyÞ. &

Proof of Theorem 6. Let a MSNE hn
2 LM be given. For a transition probability Q ð�9x�hn

ðxÞ,xÞ define a corresponding
Markov operator T : CðIÞ-CðIÞ by

Tf ðxÞ ¼ gðx�hn
ðxÞÞ

Z
I

f ðyÞlðdy9xÞþð1�gðx�hn
ðxÞÞÞf ð0Þ:

Observe, the operator T is stable; hence Q ð�9x�hn
ðxÞ,xÞ has a Feller property. We now show T is also quasi-compact.32 To see

that this is the case, define an operator L:

Lf ðxÞ ¼ ð1�gðx�hðxÞÞÞf ð0Þ,

in CðIÞ. Endow CðIÞ with the sup norm and denote a unit ball in CðIÞ by K. Let f be an arbitrary element from K. Note that

LðKÞ ¼ fð1�gðx�hðxÞÞÞf ð0Þ : f 2 Kg:

Clearly,

LðKÞ ¼ fað1�gðx�hðxÞÞÞ : a 2 ½0,1�g

is the compact set. Hence, L is a compact operator. Let f 2 K , then

9Tf ðxÞ�Lf ðxÞ9¼ gðx�hðxÞÞ

Z
I

f ðyÞlðdy9xÞ
����

����
rgðx�hðxÞÞ

Z
I
9f ðyÞ9lðdy9xÞrJgJ1o1:

Hence, JT�LJo1 and hence T is quasi-compact.
Finally, applying Theorem 3.3 from Futia (1982), we conclude that T is equicontinuous. Further, observe that

Q ð09S�hn
ðSÞ,SÞ40, and Q ð090,0Þ40. Therefore, Theorem 2.12 Futia (1982) shows that if an operator T is equicontinuous

and Q satisfies the above mixing condition, then the Markov process induced by Q and hn has a unique invariant
distribution mn. Moreover, we get that from any initial x0 2 I, the measure on I induced by Q and hn converges to mn. &

Proof of Theorem 7. For any x 2 Ii:

9An
mh0

mðxÞ�hn
ðxÞ9r9AðAn�1

m h0
mÞðxiÞ�AðAn�1h0

ÞðxiÞ9þ9A
nh0
ðxiÞ�Anh0

ðxÞ9þ9Anh0
ðxÞ�hn

ðxÞ9, ðB:9Þ
32 An operator T : CðIÞ-CðIÞ is said to be quasi-compact iff there exists a natural number n and a compact operator L such that JTn
�LJo1.
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where above follows from the definition of Am and a triangle inequality. Further, by Theorem 3 A maps LM into LM, and by
point (ii) in Theorem 4 we obtain

9Anh0
ðxiÞ�Anh0

ðxÞ9þ9Anh0
ðxÞ�hn

ðxÞ9rMdmþMAð1�trn

Þ: ðB:10Þ

Next, observe in the sup norm:

JAðAn�1
m h0

mÞ�AðAn�1h0
ÞJr sup

k ¼ 1,2,...
JAk
ðAn�1

m h0
mÞ�Ak

ðAn�1h0
ÞJrJAn�1

m h0
m�An�1h0

J,

where the first inequality follows from the definition of the sup, operator, and the second follows by point 9 in Leader
(1982) theorem. Specifically we can apply the main theorem in Leader (1982) as A is continuous, uniformly contractive and
LM compact. As a result we conclude that, there exists a number k for iterations of A giving smaller distance than the sup,
distance between any two starting points, e.g. An�1

m h0
m and An�1h0, applying the above n times, we obtain

JAðAn�1
m h0

mÞ�AðAn�1h0
ÞJrJAn�1

m h0
m�An�1h0

J

rMdmþJAðAn�2
m h0

mÞ�AðAn�2h0
ÞJr � � �r ðn�1ÞMdmþJh0

m�h0
J¼ nMdm: ðB:11Þ

Combining the expressions (B.9)–(B.11) we obtain

JAn
mh0

m�hn
JrJAðAn�1

m h0
mÞ�AðAn�1h0

ÞJþdmþJAnh0
�hn

Jr ðnþ1ÞMdmþMAð1�trn

Þ: ðB:12Þ

The first assertion follows from (B.12) by taking limits with m-1, and next with n-1. &

Proof of Lemma 8. Observe that cn

1 ¼ y and that cn
T ¼ AT�1y. Since conditions in Theorem 9 are satisfied (via relation (9))

we obtain limT-1AT�1y ¼ hn uniformly. &

Proof of Proposition 1. Let h1,h2 2 CðIÞ1 and 0oto1 be given. For simplicity, for a given x 2 I denote Cðh1,h2ÞðxÞ ¼ ~C and
Cðth1,t�1h2ÞðxÞ ¼ ~C t . Observe ~C 4 ~C t . From the definition of ~C and ~C t we obtain

g ~C
g�1
þa ~C

a�1
gðx� ~C Þ

Z
I

hb
1ðyÞlðdy9xÞ� ~C

a
g0ðx� ~C Þ

Z
I

hb
2ðyÞlðdy9xÞ ¼ 0,

Similarly, for ~C t , we have

g ~C
g�1

t þa ~C
a�1

t gðx� ~C tÞ

Z
I

tbhb
1ðyÞlðdy9xÞ� ~C

a
t g0ðx� ~C tÞ

Z
I

t�bhb
2ðyÞlðdy9xÞ ¼ 0:

Solving for
R

Ih
b
2ðyÞlðdy9xÞ from the latter equation, and substituting the result into the former, we have

tb
~C
a
g0ðx� ~C Þ

~C
a
t g0ðx� ~C tÞ

g ~C
g�1

t þa ~C
a�1

t gðx� ~C tÞ

Z
I

tbhb
1ðyÞlðdy9xÞ

� �
¼ g ~C

g�1
þa ~C

a�1
gðx� ~C Þ

Z
I

hb
1ðyÞlðdy9xÞ

� �
:

As g is strictly concave, and 0oao1, we have ~C
a
g0ðx� ~C Þ= ~C

a
t g0ðx� ~C tÞ41; hence

tb g ~C
g�1

t þa ~C
a�1

t gðx� ~C tÞ

Z
I

tbhb
1ðyÞlðdy9xÞ

� �
o g ~C

g�1
þa ~C

a�1
gðx� ~C Þ

Z
I

hb
1ðyÞlðdy9xÞ

� �
: ðB:13Þ

We now show by contradiction that ~C t Zt2b=ð1�aÞ ~C . Assume ( ~x 2 I, ~x40 such that ~C tð ~xÞot2b=ð1�aÞ ~C ð ~xÞ. It follows that
t2b ~C

a�1

t ð ~xÞ4 ~C
a�1
ð ~xÞ. Moreover, as g and h1 are nonnegative, and gð ~x� ~C tð ~xÞÞ4gð ~x� ~C ð ~xÞÞ, we have

atb ~C
a�1

t ð ~xÞgð ~x� ~C tð ~xÞÞ

Z
I

tbhb
1ðyÞlðdy9xÞZa ~C

a�1
ð ~xÞgð ~x� ~C ð ~xÞÞ

Z
I

hb
1ðyÞlðdy9xÞ: ðB:14Þ

Since gra, we have b=ð1�gÞrb=ð1�aÞ. With 0oto1, we obtain t2b=ð1�aÞ ~C ð ~xÞotb=ð1�aÞ ~C ð ~xÞrtb=ð1�gÞ ~C ð ~xÞ. Combining this
result with the assumption, we have: ~C tð ~xÞotb=ð1�gÞ ~C ð ~xÞ. Which leads to the following:

tb ~C
g�1

t ð ~xÞ4
~C
g�1
ð ~xÞ: ðB:15Þ

Adding inequalities (B.14) and (B.15), we obtain a contradiction (B.13) at ~x. Hence ~C t Zt2b=ð1�aÞ ~C .
By assumption 2bþao1 hence r :¼ 2b=ð1�aÞo1; therefore, the hypotheses of condition (A.4) in a Theorem 10 is

satisfied. Since CðIÞ is a subset of a normal solid cone in a real Banach space, and C mixed monotone with Cð�,�Þay, we
conclude from Theorem 10 (see Appendix) the existence of a unique fixed point of C on CðIÞ. &
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