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Abstract

We propose a novel approach to comparative statics which ap-

plies to environments where complementarities play a critical role,

including environments in which the existing methods for obtaining

monotone comparative statics appear inadequate. Our approach is

dynamic and, methodologically, in the spirit of the celebrated “cor-

respondence principle” introduced in Samuelson (1947). It applies

even to: (a) environments with a continuum of equilibria, (b) en-

vironments in which all equilibria are unstable; and (c) chaotic en-

vironments, in which adaptive dynamic adjustment processes may

not converge.
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1 Introduction

Comparative statics has always been a foundational question of economic

analysis. It asks how the set of optimal or equilibrium solutions of an

economic model vary relative to a perturbation of the model’s parame-

ters. Such predictions are important as they contain much of the empirical

content of the economic model being studied.

The purpose of this paper is to propose a new approach to compara-

tive statics in environments where complementarities play a critical role,

including environments in which the existing methods for obtaining mono-

tone comparative statics appear inadequate. Such situations can arise in

games with strategic complementarities (GSC), but also in other economic

settings such as dynamic general equilibrium economies. To better ex-

plain the nature of the paper’s methodological contribution, we start with

a motivating example of a game that highlights both the limitations of

the existing methods, as well as the contributions of our new comparative

statics approach.1

Example 1. Our leading example is a simple game with a continuum of

actions and a continuum of equilibria. The ideas are easier to explain

in this setting. However, analogous arguments apply to more complicated

coordination games with a finite number of actions and multiple equilibria.

Consider the following joint venture. Players 1 and 2 choose actions a1

and a2, respectively, interpreted as their effort. The cost of taking action ai

1 This is a slightly modified version of the team of managers game studied in Milgrom

and Roberts (1990), Section 4, Example (5).
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for player i = 1, 2 is cai, for some c ∈ (0, 1). The output of the team that

consists of the two players is 2 min{a1, a2}. So the payoff of each player

i is min{a1, a2} − cai. This game has a continuum of equilibria: all pairs

(a1, a2) such that a1 = a2 are equilibrium strategies.

Suppose that players are initially playing actions a01 and a02, and the

productivity of player 1 increases, so the output becomes 2 min{ta1, a2} for

some t > 1, and the payoffs are now min{ta1, a2} − cai for i = 1, 2. Intu-

itively, the output should increase in response to this positive productivity

schock. We cannot make this conclusion, however, by comparing equilib-

ria. For example, if a01 = a02 = a0 ∈ (0, 1) initially, the total output in this

equilibrium (for t = 1) is equal to 2a0. And for t > 1 the game has a

continuum of equilibria. In some of them the output is higher

than 2a0, but in others the output is lower than 2a0. Indeed, any

efforts a/t and a ∈ [0, 1] are equilibrium strategies. In addition, all equi-

libria are unstable, in the sense that for some pairs of efforts arbitrarily

close to an equilibrium, the best-response dynamics does not converge to

the equilibrium.

Suppose that players adaptively learn of playing this game with the new

parameter t. In discrete time, this learning happens through a sequence of

action profiles (ak)∞k=0, starting from an action profile (not necessarily an

equilibrium) a0 = (a01, a
0
2). We will define the set S(a0) of all “reasonable”

(i.e. adaptive) sequences (ak)∞k=0, and action profiles a(t) and a(t) such that

in the long run (i.e., for large k) ak cannot be “much smaller” than a(t)

and cannot be “much larger” than a(t) for any sequence (ak)∞k=0 ∈ S(a0).

We will compute a(t) and a(t) for this game:

a(t) = (min{a01, a02/t},min{a01t, a02}), and

a(t) = (max{a01, a02/t},max{a01t, a02}). (1)

Note that a(t) and a(t) are equilibria. In general, this will not always be
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the case. One can check that in this example, for any sequence of action

profiles (ak)∞k=0 br(lim infk a
k) = lim infk br(ak), where br stands for the

best response. We will prove that if this (and an analogous condition for

lim sup) are satisfied in a setting, then both our long-run bounds a(t) and

a(t) are equilibria.

So, suppose first that we started from an equilibrium a01 = a02 = a0

for t = 1, and in the process of an adaptive dynamic after the change

of t form t = 1 to t > 1 we end up in an equilibrium for this t > 1. The

output in any such equilibrium must be between that in a(t) and that in a(t),

which are equal to 2a0 and 2ta0 by (1). That is, the new equilibrium

output for t > 1 is never lower than the output 2a0 in the original

equilibrium, but it happens to be strictly higher for some new

equilibria.

Note that we reached the conclusion regarding the total output, despite

the fact that the best-response of one player (player 2) strictly decreases

when t increases.2 Yet the total output in the long run is never lower.

Thus, applying our approach, we can conclude, in contrast to

the previous approaches, that the total output will (weakly) in-

crease in response to the increase in t.

So far, we conducted equilibrium comparative statics. However, given

the unstability of equilibria, it is plausible to expect chaotic dynamics that

may not converge to any equilibrium. Our approach also applies to this

case, and the conclusions seem more intriguing.

So, suppose that we start from an arbitrary action profile a0 = (a01, a
0
2).

Since formulas (1) still apply, and we derive the following claims:

(a) If a01 ≤ a02 ≤ ta01, then the total output in a(t > 1) is 2a02, which is

equal to the total output in a(t = 1).

2 That is, the example violates an assumption that is typically made in the existing

results on monotone comparative statics.
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(b) If a02 > ta01, then the total output in a(t > 1) is 2ta01, which is greater

than 2a01, the total output in a(t = 1).

(c) If a02 < a01, then the total output in a(t > 1) is 2a02, which is equal

to the total output in a(t = 1).

Therefore, in each case we can conclude that the output will weakly

increase in response to the increase in t.

Our approach to comparative statics can shortly be described as follows:

starting at an initial equilibrium of some economic setting (or actually, at an

initially observed outcome),3 we identify sharp or tight bounds for remote

iterations of a large class of adaptive dynamic sequences initiated by a

perturbation of the model’s parameters. We next compare these bounds

with the initial equilibrium (or the corresponding bounds for the original

parameters). In our motivating example, these bounds are a(t) and a(t)

given in (1) (and the corresponding bounds for the original parameter are

a(1) and a(1) when a0 is not an equilibrium). If a statistic at a(t) is greater

than that at a0, then we claim that the statistic increases in response to

the parameter change. For example, the total output increased in response

to an increase from t = 1 to t > 1. If a0 is not an equilibrium, then a

conservative analyst may require the statistic at a(t) to be greater than that

at the corresponding upper bound at a lower t to claim that the statistic

increases in response to the parameter change. But a less conservative

analysts may require only that the statistic at a(t) is greater than that at

the corresponding upper bound and that the statistic at a(t) is greater than

that at the corresponding lower bound for a lower parameter t.

Our approach is iterative and methodologically in the spirit of the cele-

brated “correspondence principle” first presented in the work of Samuelson

(1947) and then extended most notably in a series of papers by Echenique

3 This setting can be a game, as in Example 1, but it does not have to be a game

(see Section 6 for other examples).
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(e.g., Echenique (2002, 2004); see also McLennan (2015)). However, as

the motivating example shows, it applies to environments with continuum

of equilibria, which all can be unstable; and, as it will be shown later, it

also applies to chaotic environments, in which the initially observed out-

come may not be an equilibrium and adaptive dynamic sequences never

converge.

The aim of our paper is to introduce a method of conducting com-

parative statics, and show that it is useful in applications. We prove no

path-breaking theorems. However, our propositions extend several exist-

ing results based upon fixed-point comparative statics for parameterized

monotone correspondences in sigma-complete lattices, where the compara-

tive statics results pertain to sets of fixed points, or only to extremal fixed

points,4 or to stable fixed points of Euclidean lattices (as in previously

mentioned papers) only. In particular, we provide conditions under which

comparative statics is conclusive for so called “mixed shocks,” i.e., shocks

affecting some variables positively and other variables negatively.

Related Literature For economic models in which the analysis reduces

to solving to an optimization problem, there is a large set of comparative

statics tools. They involve, among others, the implicit function theorem.

These tools typically require strong regularity conditions on the optimiza-

tion problem (e.g., the smoothness of objectives and constraints, the interi-

ority of all optimal solutions, etc.), and comparative statics predictions are

often only local in nature.5 Alternatively, lattice programming provides a

4 Fixed-point comparative statics results for strong set order monotone (or “ascend-

ing”) correspondences in complete lattices can be found in Topkis (1998), Chapter 2,

Section 5. See also Theorem 2 in Chapter 10 in Veinott (1992). For comparative statics

results on extremal fixed points, see Milgrom and Roberts (1990, 1994) and Milgrom

and Shannon (1994).
5 There are methods for globalizing the implicit function theorem. See the celebrated

work of Gale and Nikaido (1965), as well as more recent contributions (and references

therewithin) of Blot (1991), Phillips (2012), and Cristea (2017).
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set of tools for obtaining global monotone comparative statics of optimal

solutions to parameter change (see Topkis (1998) among others).

Performing comparative statics analysis on equilibrium problems is more

complicated. Especially in economic models with multiple equilibria, fixed-

point comparative statics typically involves the tools of transversality and

degree theory, and others from differential topology. These tools typically

provide only weak local equilibrium comparative statics results, and even

for these, they require stronger regularity conditions on the primitives than

in the context of implicit function based comparative statics of optimiza-

tion problems.6 Alternatively, there is an extensive literature on fixed-point

comparative statics for parameterized monotone operators and correspon-

dences that transform chain-complete partially ordered sets. It is especially

interesting about these tools that the equilibrium comparative statics are

often computable. But a general limitation of these existing order-theoretic

approaches is that they typically provide limited comparative statics infor-

mation in the presence of multiple equilibria. That is, the comparative stat-

ics results pertain typically to only extremal equilibria (i.e., least/minimal

or greatest/maximal) and the constructive nature of the comparative stat-

ics result does not hold for iterations from any initial point.7

A well-known approach to studying the equilibrium comparative statics

of any equilibria is embodied in the so-called “correspondence principle,”

which was suggested originally in the seminal work of Samuelson (1947).8

6 There is an extensive literature on these approaches to equilibria comparative statics

for “regular economies” based upon versions of Thom’s transversality theory and Sard’s

theorem.

For surveys of work on regular economies, see Mas-Colell (1985, 1996), Nagata (2004),

and McLennan (2018).
7 See, for example, the computable comparative statics results for Nash equilibrium

in Bayesian supermodular games in Van Zandt (2010). Also, see the discussion in Balbus

et al. (2022a). There, iterations need to start from least (resp., greatest) elements of the

domain.
8 See also McLennan (2015) for an interesting recent discussion of the correspon-

dence principle, citations of the extensive literature and implications for equilibrium
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Here, one seeks to identify regularity conditions of optimization problems or

equilibrium problems for unambiguous equilibrium comparative statics by

refining away unstable equilibria, and then restricting attention to regular

(or smooth) equilibria. This approach is inherently dynamic, and can be

applied when equilibria are locally unique and amenable to applications

of the implicit function theorem. Echenique (2002) has extended these

ideas substantially, and has been able to prove stronger versions of the

correspondence principle for GSC’s on lattices A when there is a convex

set of parameters T . For example, Echenique (2002) showed that in GSC’s,

a continuous equilibrium selector t → a∗(t) is increasing if and only if it

selects stable equilibria.9

Our paper shares with the correspondence principle the idea that the

identification of monotone comparative statics is critically tied to a dy-

namic approach. That is, one is interested in viewing an equilibrium as

the stationary point of a dynamical system, in which a new equilibrium

emerges from an old equilibrium after a change in a parameter value via

some dynamic adjustment process. For example, if an equilibrium at the

original set of parameters is locally stable, then one can develop sufficient

conditions on the behavior of this dynamical system that guarantee that

starting from the equilibrium for the old parameter, the dynamical sys-

tem will actually converge to the new equilibrium for small changes of the

parameter.

But this leaves open many interesting questions. Aside from the ob-

vious question of relaxing the needed topological structure and conditions

required to study the stability of local equilibrium comparative statics via

comparative statics.
9 See also Echenique (2002, 2004) for the precise formulations of various versions of

this result. Notice, in the presence of multiple equilibria, the existence of continuous

equilibrium selector is an added complication in applying Echenique (2002) results. But

he is able to weaken the continuity requirements in some cases.
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correspondence principle based arguments, what do we do when all the

equilibria are unstable? What if there is a continuum of equilibria (i.e.,

equilibria are indeterminate and not locally isolated)? Or finally, what if

the setting is chaotic, and observed outcomes do not converge to any equi-

librium? Echenique (2002) provides a partial answer to these questions

by observing that in GSC’s, if a correspondence BR : A → A defined

on the space of action profiles A, a complete lattice, is strongly increas-

ing and upper hemi-continuous, then for every action profile a0 such that

a0 ≤ inf BR(a0), a best-response sequence starting from a0 obviously con-

verges to a fixed point of BR that is higher than a0.10 In this paper we

provide answers to these questions, in particular, by substantially general-

izing Echenique’s result.

The remainder of the paper is organized as follows. In the next section,

we define mathematical terminology. In section 3, we introduce our main

concepts. Sections 4 and 5 contain examples and main results. The results

that explain the relation of our approach to the existing results are in

Section 4, and newer results on mixed shocks and aggregate comparative

statics are in Section 5. In Section 6, we present applications. We include

the proofs into the main text, delegating only the proofs of more technical

results to Appendix.

2 Preliminaries

We start with introducing some basic definitions. A partially ordered set

(or poset) is set A equipped with a partially order ≥. For a′, a ∈ A, we say

a′ is strictly higher than a, and write a′ > a, whenever a′ ≥ a and a′ ̸= a.

10 See Milgrom and Roberts (1990) and Milgrom and Shannon (1994) for some re-

sults preceding Echenique’s result. See also Balbus et al. (2022a) Proposition A.2. for

some recent generalizations of monotone comparative statics results for dynamic games.

Finally, see Heikkilä and Reffett (2006) for fixed-point results for parameterized corre-

spondences with applications to games (and in particular, GSC’s).
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A poset (A,≥) is a lattice if for any a, a′ ∈ A there exists the join a∨ a′ :=

sup{a, a′} ∈ A and there exists the meet a ∧ a′:= inf{a, a′} ∈ A. A lattice

A is complete (resp. sigma-complete) if there exists
∨

B := supB ∈ A and∧
B := inf B ∈ A, for any (resp. countable) B ⊆ A. A subset B ⊂ A is a

sublattice of A if B is a lattice in the order induced from A, i.e. the join

a∨a′ and the meet a∧a′ as defined in (A, ≥) belongs to B for all a, a′ ∈ B.

Let (A,≥) and (B,≥) be posets. A mapping f : A → B is order-

preserving (or increasing) on A if a′ ≥ a implies f(a′) ≥ f(a) for a, a′ in

A. Let F : A ⇒ B be a nonempty-valued correspondence. Assume that

for each a ∈ A set F (a) has the greatest and the least element in A, and

these elements belong to F (a). Denote them with F (a) := supF (a) and

F (a) := inf F (a). We say F is weakly increasing11 whenever a′ > a implies

that F (a′) ≥ F (a) and F (a′) ≥ F (a). We say F is strongly increasing

whenever a′ > a implies that F (a′) ≥ F (a).

A sequence (ak)∞k=0 of elements of A is increasing if ak+1 ≥ ak for

each k. It is strictly increasing if ak+1 > ak for each k. Decreasing and

strictly decreasing sequences are defined in the obvious dual manner. A

monotone sequence then is either increasing or decreasing. We say that a

increasing (resp., decreasing) sequence (ak)∞k=0 converges to a ∈ A whenever∨
k≥0 a

k = a (resp.,
∧

k≥0 a
k = a). That is, when a is the supremum (resp.,

infimum) of the increasing (resp., decreasing) sequence.

Suppose A and B are sigma-complete lattices. The mapping f : A → B

is upward order continuous (resp., downward order continuous) if for any

increasing (resp., decreasing) sequence (ak)∞k=0 with ak ∈ A, we have:

f
(∨

k≥0 a
k
)

=
∨

k≥0 f(ak)
(
respectively f

(∧
k≥0 a

k
)

=
∧

k≥0 f(ak)
)
. The

mapping f is then order continuous if it is both upward and downward

order continuous. Notice, if f is upward or downward order continuous, it

11 Observe that weak monotonicity of a correspondence is a weaker notion than

(Veinott-) strong set-order monotonicity. In particular, F need not be sublattice valued.
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is order-preserving or increasing mapping on A.12

3 Concepts

3.1 Adaptive dynamic adjustment

The idea of our approach to comparative statics can be described as follows.

Suppose that we initially observe a vector of variables or actions to be a0,

from a set of all possible vectors A, which describes the current endogenous

outcome in a setting of interest. This a0 need not even be a Walrasian or

Nash equilibrium, or an equilibrium in any other sense if we expect chaotic

behavior in the studied setting. Then an exogenous parameter t of the

setting changes, and this initiates an adaptive dynamic adjustment process

in the setting with the new parameter. If we allow for chaotic behavior,

then the adaptive dynamic adjustment process applies also to the original

setting, before the parameter changed. It seems reasonable to assume that

this dynamic process must have the form of some sequence (ak)∞k=0 from

a class of sequences S(a0). We will focus on the following, large class

of sequences S(a0). However, we emphasize that analysts are allowed to

choose their preferred class of sequences, and perform a similar analysis.

For a correspondence F : A ⇒ A, a sequence (ak)∞k=0 starting from a0

is an adaptive sequence if

∃γ∈N ∀k∈N F (inf{ak, ..., ak−γ+1}) ≤ ak+1 ≤ F (sup{ak, ..., ak−γ+1}),

where it is assumed ak−γ+1 = a0 for k < γ − 1. Denote by S(a0) the set of

all adaptive sequences starting from a0.

The idea is to be quite agnostic about the specific form of adjustments.

We basically impose one postulate, namely, that agents respond to a statis-

12 If a mapping is upward (resp., downward) order continuous, it is also by definition

sup (resp, inf) preserving. So our definitions here coincide with standard definitions of

order continuity (e.g., Dugundji and Granas (1982), p 15).
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tic of some finite history of variables or actions observed in previous pe-

riods. The parameter γ measures how far agents look into the past, and

inf{ak, ..., ak−γ+1} and sup{ak, ..., ak−γ+1} are the extreme statistics of the

variables or actions they observed in the past they look into. The corre-

spondence F : A ⇒ A represents possible responses.

Echenique (2002) in his analysis of GSC used convergent sequences

(ak)∞k=0 ∈ S(a0) for conducting comparative statics within equilibrium set-

ting. However, as we demonstrate the comparative statics can be conducted

for a larger set of environment that GSC, and even when there is no con-

vergent adaptive dynamic sequence.13

3.2 Bounds of adaptive sequences

Suppose A is a sigma-complete lattice. At first sight, studying all sequences

(ak)∞k=0 ∈ S(a0) seems intractable. However, we will show next that it re-

duces to studying single action profiles a and a. To define these action

profiles, we first define by induction action profiles ak,γ (and simultane-

ously, action profiles ak,γ): Let a0,γ = a0,γ = a0 for all γ ∈ N, and let

ak+1,γ = F (inf{ak,γ, ..., ak−γ+1,γ}) and ak+1,γ = F (sup{ak,γ, ..., ak−γ+1,γ}).

It is assumed that ak−l,γ = a0,γ and ak−l,γ = a0,γ for l > k. Next, for

any given γ, define lim infk a
k,γ =

∨
k

∧
l≥k

al,γ and lim supk a
k,γ =

∧
k

∨
l≥k a

l,γ

Observe that lim infk a
k,γ and lim supk a

k,γ exist by sigma-completeness of

the lattice. In addition, the sequence
(
lim infk a

k,γ
)∞
γ=0

is decreasing and

the sequence
(
lim supk a

k,γ
)∞
γ=0

is increasing. Let a = limγ→∞ lim infk a
k,γ

and a = limγ→∞ lim infk a
k,γ.

The following table contains a useful graphical exhibition of sequences

ak,γ, limits lim infk a
k,γ and profile a, as well as the inequalities and conver-

gences between them. An analogous graphical exhibition applies to ak,γ,

13 Despite using the same sets of sequences, the overlap between the Echenique’s

analysis and our paper is quite small.
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lim infk a
k,γ and a.

lim infk a
k,1 a4,1 a3,1 a2,1 a1,1≥

lim infk a
k,2

≥

a4,2

≥

a3,2

≥

a2,2 ≤
≥

a1,2≥

lim infk a
k,3

≥

a4,3

≥

a3,3 ≤
≥

a2,3 ≤

≥

a1,3≥

lim infk a
k,4

≥

a4,4 ≤

≥

a3,4 ≤
≥

a2,4 ≤

≥

a1,4

↓ γ

a

3.3 Monotone comparative statics

In applications, we are typically interested in comparing some statistic

φ(a) ∈ R, where a in the long-run outcome for the original and new setting,

more precisely, in comparing φ(ak) for large enough values of k. In our

motivating example, φ was the total output. Intuitively, if φ(anew,k) for

any large value of k in the new setting is at worst only slightly smaller than

φ(aold,k) for any large value of k in the original setting for any sequences

(aold,k)∞k=0, (a
new,k)∞k=0 ∈ S(a0) provided that k is large enough, and this

“slightly” is closer and closer to zero for larger k, then we can say that in

the long-run the statistic φ increases in response to the parameter change.

In the realm of monotone mappings f or correspondences F , which we now

restrict attention to, it makes sense to limit attention also to monotone

statistics φ.

We are now ready to define monotone comparative statics in the most

general case. To formalize the dependence on a parameter, we introduce a

set of parameters T , and assume that correspondence F : A× T ⇒ A. By

ak+1,γ(t) and ak+1,γ(t) we denote elements of the sequences constructed in

Section 3.2 for F (·, t). We analogously define a(t) and a(t). Let function

φ : A × T → R denote a statistic, or an aggregate. We now study only
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correspondences F and functions φ that are monotone in a for any given t.

Definition 1. A statistic φ : A× T → R weakly increases with a parameter

change from t′ to t′′ if φ(a(t′′), t′′) ≥ φ(a(t′), t′) as well as φ(a(t′′), t′′) ≥

φ(a(t′), t′). We say such a statistic increases strongly with a parameter

change if φ(a(t′′), t′′) ≥ φ(a(t′), t′).

We can define in a dual manner when a statistic decreases. We will

now motivate Definition 1. Suppose that we initially observe a0 given a

parameter t = t′ or t′′. Let for a moment a := a(t) and a := a(t) and

similarly ak,γ := ak,γ(t) and ak,γ := ak,γ(t). Since a ≤ lim infk a
k,γ for

any γ, lim infk a
k,γ is the limit of the increasing sequence

(
inf l≥k a

l,γ
)∞
l=0

.

Therefore, because we consider continuous comparative statics, for any

ε > 0 and for any large enough value of k, it must be that φ(a) − ε <

φ
(
inf l≥k a

l,γ
)
, which in turn implies that φ(a) − ε < φ(al,γ) for l ≥ k.

Similarly, for any ε > 0 and for any large enough value of k, it must be

that φ(al,γ) < φ(a) + ε for l ≥ k.

Therefore, if φ(a(t′′), t′′) ≥ φ(a(t′), t′), then φ(al,γ(t′), t′) can be larger

only a little than φ(al,γ(t′′), t′′) for large l. So, “at infinity,” φ(ak(t′), t′) ≤

φ(ak(t′′), t′′) for any adaptive dynamic sequences (ak(t′))∞k=0 and (ak(t′′))∞k=0.

Similarly, if φ(a(t′′), t′′) ≤ φ(a(t′), t′), then φ(ak(t′), t′)) ≥ φ(ak(t′′), t′′) at

infinity for any adaptive dynamic sequences (ak(t′))∞k=0 and (ak(t′′))∞k=0.

Note that our approach to comparative statics is conservative. Indeed,

φ(a0) ≤ φ(a) implies that φ(a0) − ε < φ(ak,γ) for large enough values of

k. However, the converse is in general false. This converse implication

would be true if we were comparing the elements of the lattice A instead

of thereof statistic. More precisely, suppose that b < ak,γ for any b < a0

and for large enough values of k. Then b ≤ infk≥K ak,γ for large values of

K. So b ≤ lim infk a
k,γ for all γ, and this implies that b ≤ a.
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3.4 Equilibrium analysis

So far our comparative statics was not an equilibrium analysis. One may

wish to postulate, however, that adaptive dynamic should result in the long

run in an equilibrium. Or one may simply be interested only in equilibrium

analysis.14 Under some seemingly natural conditions, the bounds a and a

are in fact fixed points of F . Thus, if these conditions are satisfied, our

bounds are appropriate tools for equilibrium comparative statics. Suppose

f : A → A is an increasing mapping.

Theorem 1. If f(lim infk a
k) = lim infk f(ak) for any sequence (ak)∞k=0,

then a is a fixed point. If f(lim supk a
k) = lim supk f(ak) for any sequence

(ak)∞k=0, then a is a fixed point.

We will prove the first part of the theorem. The proof of the second

part is analogous.

Proof. For k ≥ γ+1 we have:
∧

k≥n b
k,γ =

∧
k≥n inf{ak−1,γ, ak−2,γ, . . . , ak−γ,γ}.

Observe that for j ≥ n we have
∧

k≥n−γ a
k,γ ≤ inf{aj−1,γ, aj−2,γ, ..., aj−γ,γ},

hence
∧

k≥n−γ a
k,γ ≤

∧
j≥n inf{aj−1,γ, aj−2,γ, ..., aj−γ,γ}. On the other hand,

for k ≥ n− γ we obtain inf{ak+γ,γ, ak+γ−1,γ, ..., ak,γ} ≤ ak,γ.

Hence
∧

k≥n inf{ak−1,γ, ak−2,γ, ..., ak−γ,γ} ≤
∧

k≥n−γ a
k,γ, and so∧

k≥n

inf{ak−1,γ, ak−2,γ, . . . , ak−γ,γ} =
∧

k≥n−γ

ak,γ. (2)

As a result, denoting by bk,γ := inf{ak−1,γ, ak−2,γ, . . . , ak−γ,γ} we obtain:

lim infk→∞ ak,γ = f(lim infk→∞ bk,γ) = f
(∨

n∈N
∧

k≥n b
k,γ

)
=

f
(∨

n∈N
∧

k≥n−γ a
k,γ

)
, where the last equation follows from (2). Thus,

lim inf
k→∞

ak,γ = f(lim inf
k→∞

ak,γ).

14 We refer the reader to our related paper Balbus et al. (2022b) and Olszewski

(2021a,b) for results on tight fixed-point (equilibrium) bounds of best-response iterations

on monotone correspondences and functions.
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Theorem 1 generalizes to weakly increasing correspondences F : A ⇒ A

such that F (lim supk a
k) = lim supk F (ak) and F (lim infk a

k) = lim infk F (ak)

by applying its present version for functions to functions f = F and f = F .

Therefore, in the settings that satisfy the continuity conditions from

Theorem 1, equilibrium comparative statics can be performed in the fol-

lowing way:

Definition 2. Suppose a0 is an equilibrium given some t ∈ T . A statistic

φ : A × T → R increases in equilibrium with a parameter change from t′

to t′′ if φ(a, t′′) ≥ φ(a0, t′), and it decreases with a parameter change if

φ(a, t′′) ≤ φ(a0, t′), where a = a(t′′) and a = a(t′′) and a(t′) = a(t′) = a0.

We conclude with an example that shows that a and a need not be fixed

points in the general case, that is, for all increasing mappings f .

Example 2. Let A = {(−1/n, 1/m) : n,m = 1, 2, ... and n ≤ m} ∪

{(−1/n, 0) : n = 1, 2, ...}∪{(0, 1)}∪{(0, 0)} be the lattice equipped with the

ordering inherited from R2. Let f : A → A be the mapping defined by letting

f(−1/n, 1/m) = (−1/(n + 1), 1/(m + 1)), f(−1/n, 0) = f(0, 0) = (0, 1).

Then, A is a complete lattice, and f is an order-preserving mapping. Sup-

pose that a0 = (−1, 1) then a = (0, 0) but f(a) = (0, 1).

4 Analysis: examples and results

We begin this section with returning to our motivating example.

Example 1 (continued). We will now present the computations that that

yield (1), which we referred to but skipped in the introduction. If a02/t >

a01 (which is equivalent to a02 > ta01), then a1,γ1 = a1,γ1 = a11 = a02/t and

a1,γ2 = a1,γ2 = a12 = ta01. Therefore (a2,γ1 , a2,γ2 ) = (a01, ta
0
1) and (a2,γ1 , a2,γ2 ) =

(a02/t, a
0
2). Finally, (ak,γ1 , ak,γ2 ) = (a2,γ1 , a2,γ2 ) and (ak,γ1 , ak,γ2 ) = (a2,γ1 , a2,γ2 ) for

k > 2 and all γ.
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If a01 > a02/t (which is equivalent to ta01 > a02), then again a1,γ1 = a1,γ1 =

a11 = a02/t and a1,γ2 = a1,γ2 = a12 = ta01. Therefore (a2,γ1 , a2,γ2 ) = (a02/t, a
0
2) and

(a2,γ1 , a2,γ2 ) = (a01, ta
0
1). And again, (ak,γ1 , ak,γ2 ) = (a2,γ1 , a2,γ2 ) and (ak,γ1 , ak,γ2 ) =

(a2,γ1 , a2,γ2 ) for k > 2 and all γ.

4.1 Samuelson’s Correspondence Principle

Consider now a classic example of GSC, namely, the Bertrand competition

with heterogenous products. This is an example of a setting to which the

correspondence principle from Samuelson (1947) applies. We will discuss

this principle after presenting the example, and show that our approach to

comparative statics generalizes Samuelson’s principle.

Example 3. Two firms compete in prices. The reaction curve of firm i =

1, 2 to the price of firm j ̸= i is given by pi = a + bpj, where 1/b > b.15

This last inequality means that the reaction curve of firm 1 is steeper than

the reaction curve of firm 2 in the system of coordinates with p1 on the

horizontal axis and p2 on the vertical axis.

For γ = 1, our dynamic sequences are best-response sequences. And it is

well-known that the best-response sequence (pk,1)∞k=0 converges to (p∗1, p
∗
2),

where p∗1 = p∗2 = a
1−b

are the unique Nash equilibrium prices. Let now

γ = 2. We will show that any sequence (pk,2)∞k=0 from our class of sequences

S(p0) also converges to (p∗1, p
∗
2). The argument for an arbitrary γ ≥ 2 is

analogous.

If p0 lies between the two reaction curves, then the sequence (pk)∞k=0

generated by the best-response dynamic is monotonic. It is decreasing when

p0i > p∗i for i = 1, 2, and increasing when p0i < p∗i for i = 1, 2. Consider

the former case; the arguments in the latter one are analogous. We show

15For simplicity, we restrict attention to symmetric firms, but this is inessential.
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by induction that

pk,2 = pk−1 and pk,2 = pk for k ≥ 2. (3)

Indeed, since p1,2 = p1,2 = p1 and p1i ≤ p0i for i = 1, 2, we have that

p2,2
i

= br(p1j) = p2i and p2,2i = br(p0j) = p1i . So, (3) holds for k = 2.

Similarly, since pki ≤ pk−1
i for i = 1, 2, we obtain, by (3) for k, that pk+1,2

i
=

br(pkj ) = pk+1
i and pk+1,2

i = br(pk−1
j ) = pki . Obviously, (3) implies that any

sequence (pk,2)∞k=0 from S(p0) converges to (p∗1, p
∗
2).

If p0 does not lie between the two reaction curves, then p2,2and p3,2 do,

and p2,2 ≥ p3,2 or p2,2 ≤ p3,2 (which inequality holds depends on the position

of a0). So, the previous argument applies. The case of the upper bound is

analogous.

Samuelson (1947) argues that for a stable equilibrium of a smooth map-

ping f , one obtains local comparative statics by referring to the Implicit

Function Theorem. In the setting studied in our paper, stability would be

naturally interpreted as convergence to an equilibrium a∗ of all adaptive

learning sequences starting at an a0 which is close to a∗. Up to now, we have

studied only convergence of monotone sequences. However, as Example 3

shows, there typically exist non-monotone convergent sequences. Conver-

gence of monotone sequences would not eliminate “saddle-path” equilibria.

Therefore, we need to extend our definition of a convergent sequence. For

comparison with Samuelson (1947) we restrict attention in this subsection

to A ⊆ Rl with a usual coordinate-by-coordinate order. By a′ ≫ a we

mean that a′i > ai for each i = 1, 2, . . . , l.

Definition 3. A sequence (ak)∞k=0 of elements of a lattice converges to an

element a∗ if ∀a≪a∗ ∃k ∀l≥k al > a and ∀a≫a∗ ∃k ∀l≥k al < a.

Theorem 2. Suppose that

sup{a ∈ A : a∗ ≫ a} = a∗ = inf{a ∈ A : a∗ ≪ a}. (4)
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If all adaptive learning sequences (ak)∞k=0 converge to a∗, then a = a = a∗.

Theorem 2 implies an important corollary that our approach is consis-

tent with Samuelson’s correspondence principle. To see why, notice first

that condition (4) is satisfied in the settings considered by Samuelson, be-

cause a smooth mapping f considered by him is defined on an open set in

an Euclidean space, considered with the standard coordinate-by-coordinate

order. Suppose that a0 from an open set is an equilibrium for a parameter

t′, and consider a small change of the parameter to t′′. Since the change

is small, there is a unique stable equilibrium a∗ in the open set for param-

eter t′′, and a0 belongs to the basin of attraction of a∗. Thus, Theorem

2 implies that according to our approach the comparative statics reduces

to comparing a0 and a = a = a∗, exactly as suggested by Samuelson. We

relegate the proof of Theorem 2 to Appendix.

Remark 1. Notice that the condition a = a = a∗ is actually close to being

sufficient for, but not equivalent to, the stability of a∗, defined as con-

vergence to a∗ of all adaptive learning sequences starting at any a0. In-

deed, if a = a∗ and a < a, then a < lim infk a
k,γ for every γ, because

a ≤ lim infk a
k,γ. Since lim infk a

k,γ =
∨
k

∧
l≥k

al,γ, the last inequality often

means that a <
∧
l≥k

al,γ for any large enough value of k. And if this is true,

then a < al,γ whenever l ≥ k for any adaptive learning sequence (ak,γ)∞k=0.

However, in general a <
∨
k

∧
l≥k

al,γ does not imply that a <
∧
l≥k

al,γ for any

large enough value of k.16

16 For example, a from R2 may have one coordinate smaller than, and the other

coordinate equal to the join meet, but a may have the former coordinate smaller than

the first coordinates of all meets, but the latter coordinate greater.
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4.2 Iterative monotone comparative statics result

In this section, we show that the result that is typically provided in the

literature on monotone comparative statics also holds for our method of per-

forming comparative statics. However, our result (as well as our method)

applies to a larger class of settings, and the result also improves on some

existing theorems.

Let a(t) and a(t) be the bounds of adaptive learning sequences con-

structed in Section 3.2 starting from a0 and iterating on F (·, t) for given

t ∈ T .

Theorem 3. Let A be a sigma-complete lattice and T be a poset. Endow

A× T with the product order. Let F : A× T ⇒ A be such that F (a, t) has

the greatest and the least elements for each a, t and suppose F is weakly

increasing on A× T . If t′ < t′′, then:

(i) a(t′) ≤ a(t′′) and a(t′) ≤ a(t′′);

(ii) if a0 is a fixed point of F (·, t′) and for any a ∈ A, F (a, ·) is strongly

increasing, then additionally a0 ≤ a(t′′).

The central result of Theorem 3 is point (i). It assures that the bounds

of iterations starting from any initial a0 are ordered with respect to t.

Weak monotonicity of F suffices to assure this weak monotone comparative

statics result. Point (ii) provides a strong monotone comparative statics if

iterations start from a fixed point a0. Strong monotonicity in point (ii) is

essential; for example, the result does not hold true if F (a0, t′′) < a0 is a

fixed point of F .17

17 It is important to keep in mind that Theorem 3 itself does not guarantee existence of

fixed points of F (·, t). If A is assumed to be additionally complete, then under conditions

of Theorem 3 the set of fixed points of F (·, t) is nonempty for each t by Tarski’s theorem.

When A is only sigma-complete, sufficient conditions for the existence of fixed points of

F (·, t) are provided in Balbus et al. (2022b).
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Focusing on GSC allows us to compare our results to those based on the

correspondence principle in Echenique (2002). Under his assumption that

a0 ≤ inf F (a0, t), the smallest equilibrium which is the limit of a convergent

sequences (ak)∞k=0 coincides with our lower bound a(t). So, the two papers

offer the same result in this case. But our result extends Echenique’s result

in few dimensions: (a) our correspondence F is assumed to be only weakly

(not necessarily strongly) increasing; (b) the adaptive dynamics may start

from an action profile a0 that is not ordered with its image18 under F ;

(c) the initial action profile a0 need not be an equilibrium. Further, the

adaptive dynamics may or may not be convergent.

Observe that Theorem 3 does not require any continuity of a correspon-

dence F . This is in a stark difference with respect to monotone compara-

tive statics results based upon the application of Tarski-Kantorovitch fixed

point theorem on sigma-complete posets (see, e.g., Balbus et al. (2022a)

Proposition A.2.). So relaxing the demand for a theory of equilibrium

comparative statics to comparative statics of iterative bounds, allows us to

obtain a new comparative statics result for discontinuous correspondences.

Moreover, observe that Theorem 3 applies to lattices A that are only sigma-

complete. This is a generalization with respect to comparative statics re-

sults of Veinott (1992) (Theorem 2 in Chapter 10)19 that require A to be

a complete lattice, correspondence F to be strong set order monotone and

pertain to comparative statics of extremal fixed points only. Again, The-

orem 3 is particularly useful in environments in which comparative statics

of iterative bounds is more adequate than comparative statics of extremal

equilibria (see examples in Section 6).

Proof. We start by proving (i). By the monotonicity of F , inf F (a0, t′) ≤
18 We find point (ii) important, because the Echenique assumption refers to a property

of the initial equilibrium (or the starting point), not to a feature of the setting.
19 See also Topkis (1998) Theorem 2.5.2.
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inf F (a0, t′′). So, a1,γ for t′ is no greater than a1,γ for t′′. Hence

inf{a0, a1,γ(t′)} ≤ inf{a0, a1,γ(t′′)}, and hence a2,γ(t′) ≤ a2,γ(t′′). By in-

duction, ak,γ obtained by iterating a0 on F (·, t′) is no greater than ak,γ

obtained by iterating a0 on F (·, t′′) for any k. Hence, lim infk a
k,γ(t′) ≤

lim infk a
k,γ(t′′) and hence a(t′) ≤ a(t′′).

Proof of (ii). Now suppose a0 is a fixed point of F (·, t′). We show a0 ≤

ak,γ(t′′) for any k and γ. Observe that a0 ≤ F (a0, t′) ≤ F (a0, t′′) = a1,γ(t′′)

by strong monotonicity. So, a0 ≤ inf{a0, a1,γ(t′′)} and hence a0 ≤ a2,γ(t′′).

By induction we obtain a0 ≤ ak,γ(t′′) for any k and γ and hence a0 ≤

lim infk a
k,γ(t′′) and so a0 ≤ a(t′′).

5 Results for aggregate comparative statics

In this section, we provide results on monotone “aggregate” comparative

statics that concern the comparative statics of some statistics or aggre-

gates φ of endogenous variables. These results differ from most results in

the existing literature, which typically concern endogenous variables them-

selves, like our Theorem 3. However, in numerous situations statistics may

unambiguously increase or decrease with a change in an exogenous param-

eter, although the endogenous variables may not be monotone. One such

situation was described in the Example 1, where the statistic φ was the

aggregate (team) output and F was the joint best-response mapping.

As before, assume that A is a sigma-complete lattice and T a poset, and

we endow A × T with the product ordering. We will assume throughout

the section that an aggregate φ : A × T → R is continuous on A and

monotone on A× T . The following results allow us to extend the iterative

comparative statics to the case in which mapping or correspondence F :

A × T → A is monotone on A but not necessarily on T . For given t′ and

t′′, let (ak,γ)∞k=0, and (bk,γ)∞k=0 be the sequences from Section 3, that is,
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b0,γ = a0,γ = b0 = a0 ∈ A; further, ak+1,γ = F (inf{ak,γ, ..., ak−γ+1,γ}, t′) and

bk+1,γ = F (inf{bk,γ, ..., bk−γ+1,γ}, t′′).

Theorem 4. Let t′′ > t′. Suppose φ(
∧

k≥n b
k,γ, t′′) ≥

∧
k≥n φ(bk,γ, t′′) for any

(sufficiently large) n and γ, and the following condition is satisfied:

if φ(a, t′) ≤ φ(b, t′′) and φ(a′, t′) ≤ φ(b′, t′′) for some a, b, a′, b′

φ (F (a ∧ a′, t′), t′) ≤ φ (F (b ∧ b′, t′′), t′′) . (5)

Then we have φ(a(t′), t′) ≤ φ(b(t′′), t′′).

Note that the hypotheses of Theorem 4, as well as the hypotheses

of Theorem 5, concern only specific values of t′ and t′′ as well as spe-

cific elements of the adaptive sequences (ak)∞k=0 and (bk)∞k=0. Condition

φ(
∧

k≥n b
k, t′′) ≥

∧
k≥n φ(bk, t′′) is strong. However, as the example below

the proof shows, the theorem need not hold true when this condition is vio-

lated, even though condition (5) is satisfied. One might also argue that the

condition is difficult both for interpreting and verification, because it refers

to, and requires computing the sequence of iterations (bk)∞k=0. We stated

the condition to pin down what we need for the proof. However, for many

statistics φ even the stronger condition that φ(
∧

B, t) =
∧
{φ(b, t) : b ∈ B}

(for any t ∈ T and any countable B ⊂ A) is satisfied, and this stronger

condition does not require computing any sequence. A similar comment

applies to Theorem 5. It may seem surprising that the condition refers

to only two pairs, because γ can be any positive integer in the definition

of general adaptive learning sequences. So, one would expect the present

condition to refer to any finite set of pairs. It is possible to require less due

to the following important property of general adaptivesequences.

Lemma 1. Let γ ≥ 2 and consider a sequence (ak,γ)∞k=0, where ak+1,γ =

f(
∧
{ak,γ, ..., ak−γ+1,γ}) for some increasing function f : A → A and given

a0,γ ∈ A. Then:
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1. for any n ≥ 0, j ∈ {1, ..., γ−1} we have anγ+j,γ = f(
∧
{anγ,γ, anγ+j−1,γ}),

2. for any n ≥ 1 we have anγ,γ = f(
∧
{a(n−1)γ,γ, anγ−1,γ}).

We relegate its proof to Appendix, and we will proceed to proving The-

orem 4.

Proof. Since φ is monotone on T we have: φ(a0,γ, t′) ≤ φ(b0,γ, t′′). By

condition (5), taking a = a′ = a0,γ and b = b′ = a0,γ we obtain: φ(a1,γ, t′) ≤

φ(b1,γ, t′′). Applying condition (5) again we obtain: φ(a2,γ, t′) ≤ φ(b2,γ, t′′).

Continuing by induction, if φ(ak−j,γ, t′) ≤ φ(bk−j,γ, t′′) for some k and each

j ∈ {0, 1, . . . , k} then φ(ak+1,γ, t′) ≤ φ(bk+1,γ, t′′). Indeed, this follows

from condition (5) and Lemma 1. As a result, we obtain: φ(ak,γ, t′) ≤

φ(bk,γ, t′′) for all k. Since
∧

k≥n a
k,γ ≤ ak,γ for any k ≥ n, by monotonicity

of φ on A we have: φ(
∧

k≥n a
k,γ, t′) ≤

∧
k≥n φ(ak,γ, t′) ≤

∧
k≥n φ(bk,γ, t′′) ≤

φ(
∧

k≥n b
k,γ, t′′), where the last inequality follows from assumption

φ(
∧

k b
k,γ, t′′) ≥

∧
k φ(bk,γ, t′′). Taking the limit with n and γ and using the

continuity of φ on A we conclude that φ(a(t′), t′) ≤ φ(b(t′′), t′′).

Example 4. Observe that we always have φ(
∧

k≥n b
k,γ, t′′) ≤

∧
k≥n φ(bk,γ, t′′),

and so condition φ(
∧

k≥n b
k,γ, t′′) ≥

∧
k≥n φ(bk,γ, t′′) in fact implies

φ(
∧

k≥n b
k,γ, t′′) =

∧
k≥n φ(bk,γ, t′′). To see that this condition is critical,

let us reconsider the sequence of best-response iterations (i.e. adaptive se-

quences with γ = 1) in our motivating example. Specifically, consider two

sequences: (at)
∞
t=0 and (bt)

∞
t=0, where a0 = b0 = (x, x) for some number

x ∈ (0, 1]. Then ak = ( x
t′
, xt′) for any odd k and ak = a0 for any even k.

Similarly, bk = ( x
t′′
, xt′′) for any odd k and bk = b0 for any even k. This

implies that ak,γ = ( x
t′
, x) and bk,γ = ( x

t′′
, x) for k, γ ≥ 2 whenever t′′ > 1

and t′ > 1.

But let now the aggregate statistics be given by: φ(x1, x2, t) = x1 + x2.

Assume t′′ > t′ > 1. Then we have: φ(
∧

k≥n b
k, t′′) = (1 + 1

t′′
)x < 2x =
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∧
k≥n φ(bk, t′′), and so the assumption of Theorem 4 is violated. Observe

that in this case the conclusion does not hold either. Indeed: φ(a(t′), t′) =

(1 + 1
t′

)x > (1 + 1
t′′

)x = φ(b(t′′), t′′), even though φ(ak, t′) ≤ φ(bk, t′′) for

any k.

A result analogous to that of Theorem 4 holds for upper bounds if we re-

place φ(
∧

k≥n b
k,γ, t′) ≥

∧
k≥n φ(bk,γ, t′) with φ(

∨
k≥n b

k,γ
, t′) ≤

∨
k≥n φ(b

k,γ
, t′)

and condition (5) with

if φ(a, t′) ≤ φ(b, t′′) and φ(a′, t′) ≤ φ(b′, t′′) for some a, b, a′, b′

φ
(
F (a ∨ a′, t′), t′

)
≤ φ

(
F (b ∨ b′, t′′), t′′

)
.

We then obtain: φ(a(t′), t′) ≤ φ(b(t′′), t′′). For this analogous result and for

Theorem 5, we need the following lemma, which is an analogue of Lemma 1

for (ak,γ)∞k=0 and its proof is omitted.

Lemma 2. Let γ ≥ 2 and consider the sequence (ak,γ)∞k=0, where ak+1,γ =

f(
∨
{ak,γ, ..., ak−γ+1,γ}) for some increasing function f : A → A and given

a0,γ ∈ A. Then:

1. for any n ≥ 0, j ∈ {1, ..., γ−1} we have anγ+j,γ = f(
∨
{anγ,γ, anγ+j−1,γ}),

2. for any n ≥ 1 we have anγ,γ = f(
∨
{a(n−1)γ,γ, anγ−1,γ}).

Our next and last theorem concerns the iterations started from a0, a

fixed point of F (·, t′).

Theorem 5. Let t′ < t′′ and suppose a0 ∈ F (a0, t′); in addition, φ(
∧

k≥n b
k,γ, t′′)

≥
∧

k≥n φ(bk,γ, t′′) for any (sufficiently large) n and γ, and the following

condition is satisfied:

if φ(a, t′) ≤ φ(b, t′′) and φ(a′, t′) ≤ φ(b′, t′′) for some a, b, a′, b′ then

φ
(
F (a ∨ a′, t′), t′

)
≤ φ (F (b ∧ b′, t′′), t′′) . (6)

Then we have φ(a0, t′) ≤ φ(b(t′′), t′′).
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Proof. From monotonicity of φ on T we have: φ(a0, t′) ≤ φ(a0, t′′). By

condition (6), taking a = a′ = a0 and b = b′ = b0, we obtain: φ(a1,γ, t′) ≤

φ(b1,γ, t′′). Applying condition (6) again, this time to a = a0, a′ = a1,γ, and

b = b0, b′ = b1,γ, we obtain: φ(a2,γ, t′) ≤ φ(b2,γ, t′′). Continuing by induc-

tion, if φ(ak−j,γ, t′) ≤ φ(bk−j,γ, t′′) for some k and each j ∈ {0, 1, . . . , k}

then φ(ak+1,γ, t′) ≤ φ(bk+1,γ, t′′). To see why, observe that by Lemma 2,

ak+1,γ = F (
∨
{ak,γ, a0,γ}, t′). Similarly, bk+1,γ = F (

∧
{bk,γ, b0,γ}, t′′) by

Lemma 1. Applying condition (6), φ(ak+1,γ, t′) ≤ φ(bk+1,γ, t′′). Observe

that (ak,γ)∞k=0 is increasing for all γ. Indeed, since a0,γ = a0 ≤ F (a0, t′) =

a1,γ and ak+1,γ = F (ak,γ, t′), (ak,γ)∞k=0 is increasing by the monotonicity of

F . Consequently,

φ(
∨
k≥n

ak,γ, t′) ≤
∧
k≥n

φ(bk,γ, t′′) ≤ φ(
∧
k≥n

bk,γ, t′′). (7)

Thus, by the monotonicity and continuity of φ, we have

φ(a0, t′) ≤ φ(lim supn a
n,γ, t′) = φ(limn a

n,γ, t′). Combining this with in-

equality (7), and referring again to the continuity of φ, we get: φ(a0, t′) ≤

φ(lim infn b
n,γ, t′′). Since this last inequality holds for all γ, we have that

φ(a0, t′) ≤ φ(b(t′′), t′′), as desired.

Motivating example, continued We will illustrate Theorems 4 and 5 in the

setting from our motivating example. Recall that in the motivating example

a best-reply mapping was: f(a1, a2, t) = (a2
t
, ta1) and the aggregate was:

φ(a1, a2, t) = 2 min{ta1, a2}. Thus φ(f(a, t), t) = 2 min{a2, ta1} = φ(a, t).

Obviously, we also have that φ(
∧

B, t) =
∧
{φ(b, t) : b ∈ B} for any B ⊂ A.

We will show first that condition (5) from Theorem 4 is satisfied. First,

observe that:

φ(f(a ∧ a′, t′), t′) = φ(a ∧ a′, t′) =

= φ((min{a1, a′1},min{a2, a′2}), t′) = 2 min{t′a1, t′a′1, a2, a′2}.
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Now, φ(a, t′) ≤ φ(b, t′′) and φ(a′, t′) ≤ φ(b′, t′′), i.e. min{t′a1, a2} ≤

min{t′′b1, b2} and min{t′a′1, a′2} ≤ min{t′′b′1, b′2}; this implies

min{t′a1, ta′1, a2, a′2} ≤ min{t′′b1, t′′b′1, b2, b′2}, which means that φ(f(a ∧

a′, t′), t′) ≤ φ(f(b∧ b′, t′′), t′′). As a result Theorem 4 can be applied to ob-

tain the iterative comparative statics result from the motivating example.

Finally, observe that, although condition in Theorem 5 is not satisfied

for arbitrary a, a′, b, b′,20 it is satisfied for the elements of the two sequences

{ak,γ}∞k=0 and {bk,γ}∞k=0 to which condition (6) is applied in the proof of

Theorem 5. Indeed, let t′′ ≥ t′ and consider a fixed point a0 = ( x
t′
, x) (for

some x ∈ (0, 1]) with the aggregate output of 2x. Since f is single valued,

the sequence {ak,γ}∞k=0 is constant. The sequence {bk,γ}∞k=0 starting from

b0 = a0 is given by b1,γ = ( x
t′′
, xt

′′

t′
) and b2,γ = ( x

t′′
, x) which is a fixed point of

f(·, t′′) for t′′ > t′. The value of the aggregate is: φ(a0, t′) = 2x = φ(b0, t′′)

and φ(a1,γ, t′) = 2x = φ(b1,γ, t′′), and φ(f(a0 ∨ a1,γ, t′), t′) = φ(a2,γ, t′) =

2x = φ(b2,γ, t′′) = φ(f(b0 ∧ b1,γ, t′′), t′′). The conclusion of Theorem 5 is

hence that φ(a0, t′) = 2x ≤ 2x = φ(b(t′′), t′′) as stated in the motivating

example. It is straightforward to show that φ(b(t′′), t′′) = 2x t′′

t′
.

6 Applications

6.1 Social learning on networks

Our first application is to studying social learning on networks. DeGroot’s

model, in which agents take weighted averages of the opinions they observe,

is a commonly applied approach to studying social learning. Obviously, this

very specific type of learning cannot well describe many real-life situations

of interest. Cerreia-Vioglio et al. (2023) recently suggested a more general

model, in which an opinion aggregator is a mapping that satisfies certain

20 Taking a = (2, 1), b = (2, 4), a′ = (0, 1), b′ = (2, 0) we have that φ(a, 1) = 1 ≤ 4 =

φ(b, 2) and φ(a′, 1) = 0 ≤ 0 = φ(b′, 2) but φ(f(a ∨ a′, 1), 1) = 1 > 0 = φ(f(b ∧ b′, 2), 2).
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axioms. In their model of an economy of n agents, the opinion profile is

represented by a vector a ∈ A = [0, 1]n, and learning is represented by an

opinion aggregator F : [0, 1]n → [0, 1]n that is monotone with respect to

coordinate-by-coordinate ordering on A = [0, 1]n.21 We will illustrate our

approach to comparative statics by applying it to the setting studied by

Cerreia-Vioglio et al. (2023).

Our first result says that when agents assign higher weights to higher

opinions, then all agents have higher opinions in the long-run. More specif-

ically, suppose that S is the set of all possible weight vectors, that is,

S = {s = (s1, ..., sn) ∈ [0, 1]n : s1 + ... + sn = 1}, where si, the i-th coor-

dinate of any s, represents the weight assigned to the i-th highest opinion.

The set T = Sn of weighting profiles (different agents may have differ-

ent weight vectors) is partially ordered by ≼, the coordinate-by-coordinate

first-order stochastic dominance. Now, we consider two opinion aggregators

F : A×T → A, which are defined as follows: each agent orders opinions in

the input vector from the lowest to the highest, and her output opinion is

the weighted average or the weighted median of the input opinions, where

the agent uses her own weights.

Proposition 1. If t′ ≼ t′′, then: a(t′) ≤ a(t′′) and a(t′) ≤ a(t′′); and if a0 is

a fixed point of F (·, t′), then a0 ≤ a(t′′).

That is, if the agents shift their weights towards higher opinions, then

the opinion of each of them increases in the long-run in response to this

shift.

Note that this result holds true even though the opinions need not

converge in the long-run. In addition, it follows from the proof that F

21 In addition to monotonicity, they impose two other axioms: normalization

(F (k, ..., k) = (k, ..., k) for all k ∈ [0, 1]) and translation invariance (F (a1+k, ..., an+k) =

F (a1, ..., an) + (k, ..., k) whenever it makes sense). They all are satisfied in our applica-

tion.
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can be defined in a variety of other ways, for example, one may use the

correspondence F that takes values between the weighted average and the

weighted median, more precisely, F (a) = {b ∈ A : F 1(a) ∧ F 2(a) ≤ b ≤

F 1(a) ∨ F 2(a)}, where F 1 is the weighted mean and F 2 is the weighted

median.

Proof. We will check the key assumption of Theorem 3 that F is weakly

increasing on A×T . All other assumptions are obviously satisfied. Suppose

that a′ ≤ a′′ and t′ ≼ t′′. Then it follows directly from the definition of first-

order stochastic dominance and the definition of F that F (a′, t′) ≤ F (a′, t′′).

To complete the proof we must show that F (a′, t′′) ≤ F (a′′, t′′). We will

show that (a′)(k) ≤ (a′′)(k), where a(k) denotes the k-th lowest coordinate of

a, and this will complete the proof. Indeed, if the k−1 lowest coordinates of

a′ are the same as the k−1 lowest coordinates of a′′, then (a′)(k) is the lowest

of the remaining n− k+ 1 coordinates of a′, and (a′′)(k) is the lowest of the

corresponding n− k + 1 coordinates of a′′. Then, (a′)(k) ≤ (a′′)(k), because

a′ ≤ a′′ in the coordinate-by-coordinate ordering. Otherwise, (a′′)(l) for an

l < k, is the coordinate of a′′ corresponding to one of the n− k + 1 highest

coordinates of a′. This coordinate of (a′′) is higher than the coordinate

of a′ it corresponds to, and so (a′′)(l) ≥ (a′)(k). This completes the proof,

because (a′′)(k) ≥ (a′′)(l) by definition.

We finally illustrate by an example that our approach allows for com-

parative statics beyond of what is covered in our results. More specifically,

one may be interested how different initial opinions affect the opinions in

the long-run. So, consider a group of agents N = {1, 2, 3} who share their

opinions a0 ∈ [0, 1]3. Suppose that the weights assigned to the other agents
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are represented by the matrix

W =


0.4 0.3 0.3

0.1 0.3 0.6

0.1 0.6 0.3

 .

Note that this time agents assign weights by identity not according to the

ranking of opinions, that is, the entry in column j and row i of the matrix

represents the weight assigned by agent i to the opinion of agent j.

Consider the aggregation induced by the median. For example, a1 =

F (a0) = (0.6, 0.6, 0.6) for a0 = (0.6, 0.6, 0.6) and a1 = F (a0) = (0.6, 0.4, 0.6)

for a0 = (0.8, 0.6, 0.4). The median aggregator satisfies the conditions re-

quired by of Cerreia-Vioglio et al. Actually, the aggregator was used as an

example in their paper.

When a0 = (0.6, 0.6, 0.6), then a = a = (0.6, 0.6, 0.6). When a0 =

(0.8, 0.6, 0.4), then ak,1 = ak,1 = (0.6, 0.4, 0.6) for odd k and ak,1 = ak,1 =

(0.6, 0.6, 0.4) for even k. Thus, lim infk=∞ ak,1 = (0.6, 0.4, 0.4) and

lim supk=∞ ak,1 = (0.6, 0.6, 0.6). For γ ≥ 2, a1,γ = a1,γ = (0.6, 0.4, 0.6); and

for k ≥ 2, ak,γ = (0.4, 0.4, 0.4) and ak,γ = (0.6, 0.6, 0.6). So, lim infk=∞ ak,γ =

(0.4, 0.4, 0.4) and lim supk=∞ ak,γ = (0.6, 0.6, 0.6). This yields a = (0.4, 0.4, 0.4)

and a = (0.6, 0.6, 0.6).

Therefore we conclude that if the initial opinions change from (0.6, 0.6, 0.6)

to (0.8, 0.6, 0.4), then the opinions of all agents go down in the long-run.

Intuitively, the reason is that the opinions of agent 1 are less influential

than the opinions of agent 3.

6.2 Network effects in a Bertrand competition

Our second application concerns firm specific network effects in oligopolistic

markets with differentiated products. We refer the reader to Katz and

Shapiro (1985) for a motivation and framework for studying networks effects
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in the Cournot industry.22 In contrast to their paper, we analyze industries

described by Bertrand price competition.

We start with a simple algebraic illustration. Consider a 2-player Bertrand

competition with differentiated products. Suppose the demand of firm i fac-

ing competitor j is given by: di(pi, pj) = zi−0.5pi+δipj. Assume δi ∈ (0, 1).

Marginal costs are equal to c1 and c2. Profit function of each company is

given by: πi(pi, pj) = (zi − 0.5pi + δipj)(pi − ci). The best responses of

each company are given by: BRi(pj) = zi + δipj + 0.5ci and the unique

Nash equilibrium is (pNE
1 , pNE

2 ), where: pNE
i = zi

1−δ1δ2
+

δizj
1−δ1δ2

+ 0.5
δicj+ci
1−δ1δ2

.

Computing the equilibrium outputs (qNE
1 , qNE

2 ) we obtain:

qNE
i = 0.5

zi
1 − δ1δ2

+ 0.5
δizj

1 − δ1δ2
+ 0.5

ci
1 − δ1δ2

[δ1δ2 − 0.5] + 0.25
δicj

1 − δ1δ2
.

For the moment, for simplicity, we set ci = cj = 0.

Following the literature that studies the industry viability in the pres-

ence of network externalities we now analyze quantity dynamic as a func-

tion of firm specific network effects. To do that let us assume that the

market size parameters (zi, zj) in the demand function are increasing func-

tions of own expected production levels (ai, aj). This can be a result of

a demand side economies of scale driven, e.g., by the snob or bandwagon

effects. We start from a simple example where zi := gi(ai) for some increas-

ing function gi : R+ → R+. The Bertrand equilibrium production levels

(for zero marginal costs) are now as follows: qNE
1 = 1

2
g1(a1)
1−δ1δ2

+ 1
2
δ1g2(a2)
1−δ1δ2

,

qNE
2 = 1

2
g2(a2)
1−δ1δ2

+ 1
2
δ2g1(a1)
1−δ1δ2

. The own network effect g1(a1) increases di-

rectly Nash equilibrium output qNE
1 , while a competitor’s network effect

(g2(a2)) increases firm 1 Nash equilibrium output only indirectly via equi-

librium prices in a Bertrand competition. We will call it a spillover ef-

fect. We impose the rational expectation equilibrium (REE) condition

22 See also Amir et al. (2021) for a comparison of industry and firm-specific network

effects.
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requiring that in REE ai = qNE
i , i.e. the expected and realized produc-

tion levels coincide for both firms. Network / production size dynam-

ics starting from given a0 = (a01, a
0
2) is given by iterating on function

f(ak1, a
k
2) :=

(
1
2

g1(ak1)

1−δ1δ2
+ 1

2

δ1g2(ak2)

1−δ1δ2
, 1
2

g2(ak2)

1−δ1δ2
+ 1

2

δ2g1(ak1)

1−δ1δ2

)
. The REE are fixed

points of f .

The results of our paper can be directly applied to conduct comparative

statics of the firm specific network effects dynamics for any pair of monotone

functions (g1, g2). For example:

Proposition 2. For any initial a0 production level, the long-run bounds:

a and a of the adaptive sequences are increasing in parameters (δ1, δ2) ∈

(0, 1)2. That is, higher product substitutability leads to higher long-run net-

work effects and hence production levels. If a0 is the REE for (δ1, δ2) then

for any higher parameters (δ′1, δ
′
2) we have a0 ≤ a(δ′1, δ

′
2).

The above proposition follows directly from Theorem 3 when we observe

that f is monotone in a and δ1, δ2. It is also intuitive, the higher the

parameters of product substitutability, the higher the spillover effects of

the network effects and hence the higher the long-run realized production

levels. If marginal costs (c1, c2) are non-zero we also conclude:

Proposition 3. The long-run bounds: a and a are increasing in marginal

costs c1, c2, provided δ1δ2 ∈ (0.5, 1).

The condition δ1δ2 ∈ (0.5, 1) means that the spillover effects are high

enough to assure that an increase in marginal costs, e.g in c1, leads to an

increase of equilibrium output qNE
i of both firms i = 1, 2. This is a sufficient

condition for long-run production bounds to be increasing in marginal costs.

We finish this example with a numerical illustration which shows that

our long-run bounds are often computable.
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Numerical example Suppose g1(a) = g2(a) = 2(a − (a − 1)(a − 0.5)a)

for a ∈ Z = [0, 1.14] with δ1 = 0.02, δ2 = 0.05 and c1 = c2 = 0. These

functions guarantee multiplicity of REE, which is a common feature of

oligopoly models with network effects. Indeed, in our example there are

3 stable REE: (0, 0), (0.04645, 1.0045) and (1.0386, 1.0823). Dynamics of

network externalities in this model has an intuitive interpretation. Let us

start with Picard iterations (γ = 1). If both firms start with small levels of

a0 = (a01, a
0
2) such iterative dynamics will lead to stable REE (0, 0) and the

industry will not be viable. If both start with large levels of (a01, a
0
2) (e.g.

above 0.5) the iterative dynamics will converge to a greatest REE. There

is an intermediate case as well, if the first firm starts from a small but

the second from a large level, e.g. (0.4, 0.48), the dynamics converges to

the assymetric equilibrium (0.04645, 1.0045) where one firm dominates the

market while the competitor has a small market share. Industry viability

depends also on the considered learning process, i.e. for the initial point

a0 = (0.2, 0.48) although for γ = 1 the industry dynamics converges to

(0, 0), for any γ ≥ 2 the lower bound is a = (0, 0) and the upper bound is

a = (0.04645, 1.0045). The reason for this is a fact that f(a0) is not ordered

with respect to a0 and the sequence (ak,γ)∞k=0 is not monotone.

Theorem 3 can be also applied to more general (than linear) demand and

costs functions, in particular these that generate multiple Nash equilibria

in the underlying Bertrand competition, provided the analyzed monotone

correspondence F possesses the greatest and the least selections. Also,

more general forms of network effects are allowed, e.g. direct network

externalities of firm j on a demand of firm i, captured by including aj as

an additional argument of function gi.
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6.3 Distributional dynamics and long-run income distribu-

tion in monotone economies

We first provide an algebraic illustration of our techniques applied to a

distributional comparative statics in the spirit of Camacho et al. (2018)

(Section 6) and then apply our techniques to obtain general monotone com-

parative statics of the long-run income dynamics in monotone economies.

Distributional income dynamics Consider a continuum of agents of size

1, where each individual is characterized by its wealth or income. Nor-

malize wealth / income on [0, 1] with a standard order. In this algebraic

example, we model a distribution of wealth / income in the population us-

ing a family of beta distributions23 Be(x, y) with shape parameters (x, y).

For example Be(1, 1) is the uniform distribution on [0, 1]. Assume that

(x, y) ∈ [ϵ, A− ϵ]2 for some small ϵ > 0, and large enough A > ϵ. Suppose

that processes in the economy (a summary of earnings, innovations, ma-

terialization of risks but also governmental policies like taxes or subsidies,

etc.) affect the wealth / income distribution via function f . In particular,

let X := {Be(x, y) : (x, y) ∈ [ϵ, A− ϵ]2}, and let f : X → X be defined,

e.g., as follows f(Be(x, y)) := Be(A−y, A−x). Endow X with the first or-

der stochastic dominance. It is well known that the distribution Be(x′, y′)

stochastically dominates Be(x, y) if x′ > x and y > y′. As a result, f is

an increasing mapping. The set of fixed points of f is a set of invariant

measures under this map that represent the stable income / wealth distri-

bution. Such fixed points are given by: {Be(x,A−x) : x ∈ [ϵ, A−ϵ]}. This

is totally ordered set with the least element Be(ϵ, A − ϵ) and the greatest

element Be(A− ϵ, ϵ).

23 A density of Be(x, y) is ρ(w;x, y) = 1
ξ(x,y)w

x−1(1 − w)y−11[0,1](w), where ξ(x, y)

is the normalized constant. It is well known, ξ(x, y) = Γ(x)Γ(y)
Γ(x+y) , where Γ(a) :=∫∞

0
wa−1e−wdw for every a > 0.
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Figure 1: Cycles and long-run distribution dynamics for a family of beta distri-

butions.

Now illustrate our results by studying distributional income / wealth

dynamic {µk,γ}∞k=0 governed by f . For given x0, let µ0 := Be(x0, x0).

Then for any odd k, µk,1 = Be(A − x0, A − x0) and for even k, µk,1 =

Be(x0, x0). As a consequence, µ = Be(min(x0, A − x0),max(x0, A − x0)),

and µ = Be(max(x0, A−x0),min(x0, A−x0)). In particular, for x0 < A/2,

µ = Be(x0, A − x0) and µ = Be(A − x0, x0), and for x0 > A/2, µ =

Be(x0, A− x0) and µ = Be(A− x0, x0).

For example, take A = 8 and µ = Be(2.5, 2.5). We get µk,1 = Be(5.5, 5.5)

for odd k, and µk,1 = Be(2.5, 2.5) for even k. We get µ = Be(2.5, 5.5) and

µ = Be(5.5, 2.5). Both are fixed points of f . Figure 1 illustrates the itera-

tions.

Comparing long-run income distributions in monotone economies Our

results can be applied to the comparative statics of long-run distributions of

output or income associated with more abstract infinite horizon stochastic

growth models with nonconvexities. Let the production or income available

at period t be yt ∈ Y , where Y = [0, Ȳ ] ⊂ R+. Agent selects a consumption
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level ct ∈ [0, yt], with the remaining resources it = zt − ct allocated as an

investment. The evolution of income is given by yt+1 = f(it, zt+1) where f

is a continuous, strictly increasing production function and zt+1 is a random

shock drawn each period from distribution π over a finite set Z. For sim-

plicity, we assume full depreciation. The temporal utility is given by a con-

tinuous, strictly increasing and strictly concave function u : Y → R. The

agent’s objective then is to maximize her expected discounted payoffs over

an infinite horizon, given an initial state y0 ∈ Y and discount β ∈ (0, 1).

Denote the value of this optimization problem by v∗(y0). This problem

admits a recursive representation, where v = v∗ is the unique solution to

the Bellman equation: v(z) = maxi∈[0,y] u(y − i) + β
∫
Z
v(f(i, z′))dπ(z′).

Let the policy correspondence be given by H∗(y, β) = arg maxi∈[0,y] u(y−

i)+β
∫
Z
v(f(i, z′))dπ(z′). Since u is strictly increasing and strictly concave,

the objective has strictly increasing differences in (i; y, β). Then, by an

application of the Topkis (1998) Theorem (e.g., Theorem 2.8.4), the pol-

icy correspondence24 H∗ is a nonempty and jointly strongly increasing in

(y, β).

Let M(Y ) denote a set of measures on Y endowed with the first-order

stochastic dominance and the weak convergence of measures. M(Y ) is

a complete lattice25. For a measurable set B ⊂ Y define the stochastic

income transition with Q(B|i) :=
∫
Z

1B(f(i, z′))dπ(dz′). For any selector

hβ(·) ∈ H∗(·, β), define the associated adjoint Markov operator: Λhβ
µ(B) =∫

Y
Q(B|hβ(y))µ(dy) and the associated adjoint Markov correspondence:

Λµ(B) = {Λhβ
µ(B)}hβ∈H∗(·,β). Since H∗ is strongly increasing, Λ is strongly

increasing26 on M(Y ).

We can now apply our Theorem 3 to characterize the iterative monotone

comparative statics of the stationary income distributions.

24Recall, since f is not necessarily concave in i the policy is not necessarily unique.
25See, for example, Kamae et al. (1977)).
26See Huggett (2003) Theorem 1.
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Proposition 4. When β1 ≤ β2, for any initial measure µ0 ∈ M(Y ), the

lower (resp., upper) bounds for long-run income distribution dynamics are

increasing, i.e. µ(β1) ≤ µ(β2) (resp., µ(β1) ≤ µ(β2)), and from any station-

ary equilibrium at the discount rate β1, say µβ1, we conclude that iterations

on Λβ2 from µβ1 satisfy µβ1 ≤ µ(β2).

We remark that a similar reasoning can be applied to study the sta-

tionary equilibrium distribution in large dynamic economies in the spirit of

Bewley or Huggett/Aiyagari models without aggregate risk. Indeed, inter-

preting µ as a distributions of income over Y in some large economy, we

can study monotone comparative statics of stationary or invariant income

distributions after the monotone exogenous shock to the policy function

h in the income fluctuation problem of the shocks governed by Q for any

initial income distribution µ0.

In addition, our results extend the stationary equilibrium comparative

statics for monotone economies based upon the work of Hopenhayn and

Prescott (1992), Huggett (2003), and Acemoglu and Jensen (2015).

6.4 Comparing recursive equilibria in dynamic models with

indeterminate equilibria

We finally show how to apply our results to obtain monotone comparative

statics of (minimal state space) recursive equilibria (RE) in macroeconomic

models with multiplicities.27

Consider a simple stochastic OLG economy with production. There is

a continuum of identical agents born each period who live for two periods.

In the first period of life, they are endowed with a unit of time which

they supply inelastically to the firm at the prevailing wage w(s), and they

consume and save. In the second period of life, they consume their savings

27 See Coleman (1991) and Mirman et al. (2008) for motivation and other references.
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which are subjected to a stochastic return r(s′). Here s and s′ denote

vectors of aggregate state variables in the current and the following periods.

Preferences are time separable with discount rate β ∈ (0, 1) and are given

by u(c1) + βv(c2), where consumption when young (resp., old) is denoted

by c1 (resp., c2), and u : R+ → R and v : R+ → R are smooth, strictly

increasing, strictly concave, with limc→0+ u′(c) = ∞ = limc→0+ v′(c).

The reduced-form technology is given by f(k, n)e(K,N, z) where f is

a technology transforming private inputs of capital and labor (k, n), and

the externality e(K,N, z) is a total factor productivity that depends on

per capital aggregates of capital and labor (K,N) and a shock z ∈ Z =

[zl, zh] ⊂ R++ which is drawn each period from a first-order Markov process

with stationary transition π(z, z′) that satisfies a Feller property. We let

f satisfy typical assumptions, namely: it is constant returns to scale, in-

creasing (but increasing strictly with each argument for the positive input

of the other), weakly concave jointly (but strictly concave with each argu-

ment separately for the positive input of the other) and twice continuously

differentiable. Moreover r(k, z) := f1(k, 1)e(K, 1, z) is decreasing in k and

increasing in K for K > 0,28 limk→0+ r(k, z) = ∞, limk→0+ r(k, zmax)k = 0;

w(k, z) := f2(k, 1)e(k, 1, z) is increasing in k with limk→0+ w(k, z) = 0; both

r and w are increasing in z for all k. Finally, f(0, 1)e(0, 1, z) = 0 for any

z and there exists a maximal sustainable capital stock29 denoted by kmax.

Many examples of technologies that satisfy these assumptions can be given

(see, e.g., Datta et al. (2018)). Further, under these assumptions, we can

restrict attention to compact state spaces for capital X ⊂ R+.

Anticipating that n = 1 = N and k = K in any RE, and denoting the

28 This model is known to have multiple equilibria. Recall f1(k, 1)e(K, 1, z) under

our assumptions is mixed monotone in (k,K), i.e., decreasing in k and increasing in K.

This is a critical feature that creates the possibility for equilibrium indeterminacy (i.e.

a continuum of equilibria) in this class of models (see Santos (2002) and Datta et al.

(2018) for discussion).
29∀k ≥ kmax and ∀z ∈ Z, F (k, 1, k, 1, z) ≤ kmax.
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aggregate vector of state variables by s = (K, z) ∈ S = X×Z, we consider

the existence of RE in a class of investment functions W with pointwise

partial orders. In particular, let W = {h : S → R+, 0 ≤ h ≤ w, h(k, z)

increasing in k, and measurable}.

Together with π, h ∈ W describes the law of motion for the aggre-

gate variables. Taking this, a young agent solves: maxy∈[0,w(s)] u(w(s) −

y) +β
∫
Z
v(r(h(s), z′)y)π(z, dz′), Let ŷ(s;h) be the optimal solution to this

household problem for h ∈ W . The optimal solution is unique under our

assumptions.

Labor and capital markets are competitive hence by profit maximiza-

tion, in an RE, w(K, z) = f2(K, 1)e(K, 1, z) and r(K, z) = f1(K, 1)e(K, 1, z).

An RE of this economy in the space W is a law of motion h∗ ∈ W and

policy function y∗ ∈ W such that y∗(s) = ŷ(s;h∗) = h∗(s) ∈ W for each

s ∈ S++ whenever h∗(s) > 0. Here S++ := X++ × Z with X++ ⊂ R++.

Market clearing is implied by the formulation of the household problem.

Now, consider the question of capital deepening in the discount rate β

to the set of RE in this economy. Define a nonlinear operator Fβ on W as

follows: for h(s) > 0, h ∈ W, let Fβh(s) be the unique y solving:

u′(w(s)−y)−β

∫
Z

v′(f1(h(s), 1)e(y, 1, z′)y)f1(y, 1)e(h(s), 1, z′)π(z, dz′) = 0,

(8)

with Fβh(s) = 0, whenever h(s) = 0 in any state s. Therefore, any function

h∗
β ∈ W is an RE law of motion if and only if it is a non-zero fixed point of

the operator Fβ in W . It is easy to prove Fβ is a monotone operator on W.

Further, under our assumptions, it can be show there exists a continuous

h0 ∈ W such that ∀h ≥ h0 > 0, Fβh > h0 on S++.30 Let A = W ∩ [h0, w],

and endow A with its relative pointwise partial order ≤ .

Observe that Theorem 3 does not guarantee existence of RE. To see that

30 See McGovern et al. (2013) Proposition 2. In fact, h0 ∈ W is continuous jointly in

(k, z).
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the set of RE is non-empty in the analyzed economy observe that (A,≤) is

a sigma-complete lattice and Fβ : A → A is an order-continuous self map,

hence, there exists an RE by an application of a Tarski-Kantorovich fixed

point theorem.31

Applying Theorem 3 to the operator Fβ we obtain:

Proposition 5. For any initial h0 ∈ A and β1 ≤ β2, we have: (i) the

lower bounds for RE satisfy h(β1) ≤h
¯

(β2) and the upper bounds satisfy

h(β1) ≤ h(β2), (ii) taking initially any RE h∗
β1

∈ A but iterating on Fβ2 we

also have h∗
β1

≤ h(β2).

We conclude with two remarks about Proposition 5. First, in the in-

terpretation, this proposition says that even in the presence of a possible

continuum of RE in (A,≤), from any initial RE h∗
β1

∈ A of the less“patient”

economy, the iterative process of computing the RE for the more patient

economy is bounded below by h∗
β1

∈ A.

Second, in dynamic stochastic equilibrium models with uncountable

shocks the analyzed function space A (with the pointwise partial orders)

is only sigma-complete. Hence, none of the results of Echenique (2002,

2004) can be applied. Yet, based on Theorem 3, we obtain a result on

iterative monotone comparative statics of (monotone and measurable) RE.

If the shocks are discrete, then the space (A,≤) is a complete lattice and

by Tarski’s theorem the set of RE on (A,≤) is a nonempty complete lattice

for each β. The novelty of applying Theorem 3 in such settings is that it

provides a monotone comparative statics of the long run (adaptive learning)

bounds, and not only the comparative statics of extremal RE.

Applications of Theorem 3 can also be proposed in macroeconomic mod-

els with infinitely lived agents as well as with equilibrium indeterminacies

(see for example Benhabib and Farmer (1994) and Datta et al. (2018)).

31 RE also exist (see Morand and Reffett (2007)) in subsets of W , where the elements

of these subsets are additionally (i) lower or (ii) upper semicontinuous in k.
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Even in nonconvex, nonoptimal dynamic economies, where the optimal

household decisions are correspondences, Theorem 3 can be applied to ob-

tain similar iterative monotone comparative statics result as these corre-

spondences satisfy conditions of Theorem 3 under standard assumptions.32

A Appendix

Proof to Theorem 2. We will show that a ≥ a∗; the proof that a ≤ a∗ is

analogous. Let a ≪ a∗. Since (ak,γ)∞k=0 is an adaptive sequence, ak,γ > a

for large enough values of k. Therefore,
∧
l≥k

al,γ ≥ a for large enough values

of k, what implies that lim infk a
k,γ ≥ a. This is true for all γ. Since a is

the limit of the decreasing sequence (lim infk a
k,γ)∞γ=1, we obtain that a ≥ a.

Since this is true for all a ≪ a∗, we have that a ≥ sup{a ∈ A : a ≪ a∗}.

By condition (4), we obtain that a ≥ a∗. Finally, a ≥ a∗, a ≤ a∗ and a ≤ a

deliver the result.

Proof to Lemma 1 For n = 0 by definition and for n > 1 by induction we

have: for any 1 ≤ j ≤ γ we have anγ+j,γ = f(
∧
{anγ+k,γ : k = 0, 1, . . . , j −

1}). Since
∧
{anγ+k,γ : k = 0, 1, . . . , j−1} ≤

∧
{anγ+k,γ : k = 0, 1, . . . , j−2},

we have anγ+j,γ = f(
∧
{anγ+k,γ : k = 0, 1, . . . , j − 1}) ≤ f(

∧
{anγ+k,γ :

k = 0, 1, . . . , j − 2}) = anγ+j−1,γ for j ≥ 2 by the monotonicity of f .

Thus the sequence (anγ+j,γ)γj=1 is decreasing. As a consequence, anγ+j,γ =

f(
∧
{anγ+j−1,γ, anγ,γ}) for any 1 ≤ j ≤ γ. This yields the lemma.
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