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1 Introduction

Over the last decades there has been a growing interest in the characterization of solu-

tions to dynamic collective decision problems (see Marglin (1963) and Feldstein (1964)

for early references). Indeed, evaluating public investments, policy proposals, conducting

environmental cost-bene�t analysis or simply making collective household decisions in-

evitably concerns a group of individuals or the whole society. A central challenge in such

collective decision problems is the heterogeneity of individual preferences, most notably

with respect to evaluation of future consumption streams. Such problems were recently

analyzed by Becker (2012), Chiappori and Mazzocco (2017), Feng and Ke (2018), Millner

and Heal (2018) or Ebert, Wei, and Zhou (2020) in various theoretical, experimental or

empirical, settings.

Gollier and Zeckhauser (2005) or, later, Zuber (2011) and Jackson and Yariv (2015),

demonstrated that the collective or non-dictatorial group preferences over sequences of

consumptions are typically time-inconsistent. As a consequence, a planned consumption

path may not be executed in the future unless some form of commitment (devices) is

available. Notably, this is so even when each individual dynamic utility is time consistent,

but agents di�er in their discount factors only. This �nding not only questions the validity

of the representative household assumption in dynamic macro-models but also requires

to answer a more fundamental problem of de�ning, characterizing and computing the

relevant decision rules in such settings.

In view of the above observation, two dominant solution strategies have been pro-

posed. First, economists may focus on Pareto-optimal allocations. Such an approach was

advocated and analyzed by Gollier and Zeckhauser (2005) or Alcala (2018) to name just

a few recent contributions. Indeed, following the approach of Lucas and Stokey (1984)

with appropriately chosen Negishi weights a (set) of sequential solutions can be character-

ized. Alternatively, economists studied time-consistent solutions under these inherently

time-inconsistent preferences.1 Speci�cally, when lacking suitable commitment devices a

1Both approaches su�er from well know predicaments. Pareto-optimal solutions typically require
in�nite memory and are not stationary nor Markovian (on the minimal state space), while time-consistent
solutions, upon existence, are typically only constrained optimal.
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form of intergenerational equilibrium is imposed so that the future generations do not

have incentives to deviate from the planned consumption path.2 Following that approach

Drugeon and Wigniolle (2016, 2020) proposed a Markov stationary solution concept and

characterized its implied allocations using a �rst order approach. While they did not com-

plete a general existence argument, they provided a comprehensive account for various

examples involving logarithmic or CIES preferences and Cobb-Douglas technologies. Gen-

erally, however, it is well known from the literature on various forms of (quasi-)hyperbolic

discounting that such �rst order characterization is often not available due to missing

continuity or concavity of the continuation values (see e.g. Harris and Laibson (2001) or

Chatterjee and Eyigungor (2016) more recently). Moreover, as demonstrated by Caplin

and Leahy (2006), e.g., a time-consistent solution may be non-existent in models with

changing preferences. This is particularly challenging when restricting attention to a

class of stationary strategies. To circumvent this problem, restore existence and validity

of the �rst order-characterization some forms of noise or stochastic transitions were intro-

duced to smooth the (expected) continuation values (see, e.g., Harris and Laibson (2001)

or Balbus, Re�ett, and Wo¹ny (2015)).

In this paper we also follow that approach and consider a stochastic environment with

transitions characterized by the convexity of the distribution functions. Under this condi-

tion, in particular, we prove the existence of a time-consistent decision rule in Markovian

policies (section 2) under standard assumptions on preferences. This result is new and gen-

eralizes earlier existence results known for a class of bequest games or (quasi)-hyperbolic

discounting. As a matter of fact, the decision rules we consider are characterized by

monotone and Lipschitz continuous aggregate investment policies and the same concerns

individual consumption policies. We next provide su�cient conditions for the validity of

the (generalized) �rst-order approach3 (section 3). When doing so we extend the earlier

results of Drugeon and Wigniolle (2020) on heterogeneous agents economies and Harris

and Laibson (2001) and Balbus, Re�ett, and Wo¹ny (2018) on related quasi-hyperbolic

2A separate line of research discussed also possible decentralization mechanisms of such equilibrium
allocations (see, e.g., Herings and Rohde (2006), Luttmer and Mariotti (2007) or Dziewulski (2015)).

3See Harris and Laibson (2001) for a classic reference to generalized �rst-order equations for a quasi-
hyperbolic discounting problem.

3



discounting. This extension is signi�cant as the collective decision problem we consider

does not possess any stationary structure. Finally, we propose a novel method to approxi-

mate the constructed stationary decision rule by a sequence of equilibria of bequest games

with paternalistic altruism (section 4). We thus propose a method to approximate the se-

quence of �rst order conditions of the collective household model. This is related to recent

contribution of Galperti and Strulovici (2017) on non-paternalistic altruism and extends

the results of Balbus, Re�ett, and Wo¹ny (2020) on single-agent behavioral discounting

models to collective decision problems.

2 De�nition and existence

Time is discrete and horizon in�nite. Consider a dynamic maximization problem of a

collective household with two individuals.4 Instantaneous utility functions of both indi-

viduals are given by u1 and u2, and we assume both discount the future utility streams

exponentially with discount factors given by δ1 and δ2 respectively. The �rst individual is

more patient with 1 > δ1 > δ2 > 0. Without loss of generality, the weights of both utilities

in the collective household preferences are 1 and η > 0 . Suppose that the initial state5 is

s ∈ [0, S̄] := S ⊂ R. We interpret it as an asset holding or an aggregate production level.

The utility of the collective household is then the following:

Us ((c1,t, c2,t)
∞
t=0) := Es

{
∞∑
t=0

(δ1)tu1(c1,t) + η
∞∑
t=0

(δ2)tu2(c2,t)

}
,

where ci,t ≥ 0 is the i-th individual consumption in period t. Consumption choices are

constrained by output / asset level st, i.e. c1,t + c2,t ≤ st, and we assume that st is a

Markov chain controlled by (c1,t, c2,t)
∞
t=0, such that state st+1 is drawn from distribution

Q(·|st − c1,t − c2,t). Here Es denotes an expectation operator induced by the random

vector (st, c1,t, ct,2)∞t=0 with an initial state given by s ∈ S.
4Generalizations to any �nite number of individuals are straightforward.
5Here we assume bounded state space and necessarily bounded reward space. The generalization of

our approach to unbounded state space and unbounded above utility functions can be developed using
results on local contractions (Rincon-Zapatero and Rodriguez-Palmero, 2003).
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We now focus on a dynastic representation of this collective household problem. That

is, suppose that the initial generation (date-0) with state s has a utility Us ((c1,t, c2,t)
∞
t=0)

while generation's τ utility is given by: Usτ ((c1,t, c2,t)
∞
t=τ ). Preferences of a sequence of

generations are hence time-invariant, non-stationary and time-inconsistent :

Us ((c1,t, c2,t)
∞
t=0) = Es

∞∑
t=0

(δ1)t

(
u1(c1,t) + η

(
δ2

δ1

)t
u2(c2,t)

)
.(1)

Indeed, it is clear from the above formulation that within-period aggregate preferences are

non-stationary with the weight of the impatient individual converging to zero with t. As

a result, optimal solutions to (1) are time-inconsistent as they are based on the promise to

increase the relative weight of the patient consumer in the future but since the problem

is time-invariant such promise cannot be executed unless some form of commitment is

imposed.6

For this reason, from now on we seek a time-consistent solution to such a time-

inconsistent problem. In particular we concentrate on solutions in stationary Markovian

strategies, i.e., where each period consumption and investment decisions are (the same)

functions of the current period state only. Such solutions are of particular interests,

whenever future generations have short memory and are allowed to modify the planned

consumption / allocation paths or re-optimize them according to their current preferences.

Indeed, when lacking appropriate commitment devices, the current generation does not

have tools to enforce the planned continuation path and a form of intergenerational equi-

librium or time-consistency is required to ensure that the plan is implemented or actually

followed.

Characterizing time-consistent solutions in such an environment is non-trivial. In

particular, the available methods known from the literature on related quasi-hyperbolic

discounting are not applicable here as the sequence of aggregate period preferences do not

possess any stationary structure. More explicitly, existence results in stationary strate-

gies in models of quasi-hyperbolic discounting heavily use the fact that (i) preferences

6We refer the reader to Nowak (2010) who studies a related dynamic, noncooperative game with
internally cooperating generations.
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non-stationarity is summarized by two parameters (β and δ) and (ii) the beliefs of each

generation on its preferences from the next period are stationary. Such a structure is

unequivocally not available in the collective household problem that is addressed in this

paper.7

To proceed, we start with some typical assumptions on preferences.

Assumption 1. Each ui : S → R is continuous, strictly increasing and strictly concave.

Generation 0 decides on a total consumption level c0 ∈ [0, s] and allocation (c1,0, c2,0)

such that c0 = c1,0 + c2,0. Then

u1(c1,0) + ηu2(c2,0) ≥ u1(c1) + ηu2(c2) for any c1, c2 ≥ 0 such that c1 + c2 = c0.

We start with a characterization of the optimal division of c0 among both consumers.

Lemma 1. Assume 1. Then c1,0 and c2,0 are uniquely determined. Moreover, they are

increasing and Lipschitz continuous functions of c0.

Proof. It follows from Lemma 10 by taking f1 = u1 and f2 = ηu2.

By Assumption 1 and Lemma 1, generation 0 allocations can be hence determined by

c1,0 = β(c0) and c2,0 = γ(c0), where β and γ are both increasing and Lipschitz continuous

functions. In fact, in the stationary solution, all generations t would follow the same

policy and c1,t = β(ct), c2,t = γ(ct) for selected ct ∈ [0, st]. Anticipating on that solution,

we may alternatively de�ne the date-0 utility as follows:

Us ((ct)
∞
t=0) = Us ((β(ct), γ(ct))

∞
t=0)(2)

= Es

∞∑
t=0

(δ1)t

(
u1(β(ct)) + η

(
δ2

δ1

)t
u2(γ(ct))

)
.

For c ∈ S, let us then de�ne

(3) ut(c) := u1(β(c)) + η

(
δ2

δ1

)t
u2(γ(c)).

7Some progress has been made with respect class of models with generalized quasi-hyperbolic dis-
counting and upper-semicontinuous strategies (see Balbus, Re�ett, and Wo¹ny (2020)).
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In the above, ut is hence the instantaneous utility each generation assigns to the con-

sumption t-periods ahead, obtained according to anticipated decision rules β and γ of the

following generations. We proceed with a characterization of ut.

Lemma 2. Assume 1. The function u0 is continuous, strictly increasing and strictly

concave; for any t ≥ 1, the function ut is continuous and strictly increasing.

Proof. For u0 the result follows from Lemma 10. For ut it follows from the de�nition of

γ and β.

Suppose now that the aggregate consumption plan is h : S 7→ S, where h is Borel

measurable and h(s) ∈ [0, s]. That is, after observing the state st, the current generation

t chooses ct = h(st) and allocates c1,t = β(h(st)) and c2,t = γ(h(st)). Put

V (h) (s) = Es

∞∑
t=0

(δ1)tut (h(st)) .

Let U be the continuation value, i.e.,

U (h) (s) := Es

∞∑
t=1

(δ1)t−1ut (h(st)) .

We can then write

V (h) (s) = u0(h(s)) + δ1

∫
S

U (h) (s′)Q(ds′|s− h(s)),

where the discounting of this criterion is based upon the most patient agent and its lack of

standard recursivity results from the discrepancy between U and V . With that notation

in mind, we are now ready to introduce our equilibrium concept.

De�nition 1. The measurable pro�le h∗ : S 7→ S is a Stationary Markov Perfect Equi-

librium (SMPE) if, for any s ∈ S,

V (h∗)(s) = max
c∈[0,s]

{
u0(c) + δ1

∫
U(h∗)(s′)Q(ds′|s− c)

}
.
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That is, the SMPE policy h∗ is the best response to the value U(h∗) that is itself

generated by the anticipated use of that same policy h∗ by the whole sequence of future

generations. This is a strong equilibrium concept that implies time-consistency in our

setting and thus allows to sustain investment s − h∗(s) and consumptions β(h∗(s)) and

γ(h∗(s)) in any period.

We will now proceed to verify the existence of such a SMPE. As this is typically

the case in the literature, our construction is based on a �xed point argument. When

doing so one �rst needs to choose an appropriate (compact and convex) function space

that is mapped (by the best-response) into itself. It has been known, however, since at

least Leininger (1986) that the selection of such a domain is a di�cult task in a class of

dynamic games due to the �vicious circle� of the strategy space. That problem is also

present here. Indeed and more explicitly, whenever the consecutive generations use, e.g.,

concave policies it is generally not clear whether the best response maps back into that

space of concave policies. In the current collective household problem, with a lack of the

principle of optimality, such a condition is even more restrictive, as this is both aggregate

consumption and investments that would need to be concave. The same di�culty emerges

for best responses to continuous policies of the following generations. As the continuation

value function is not generally concave (see lemma 2), it is di�cult to ensure that the

best response is indeed continuous as a function of the current state. While some progress

has been recently made in the literature by restricting attention to a class of increasing

and upper (or lower) semi-continuous policies endowed with the weak topology (see, e.g.,

Balbus, Ja±kiewicz, and Nowak (2015)), the following example makes clear that such an

approach is of limited use8 in the deterministic collective household problem.

Example 1. Let S = [0, s̄], with large enough s̄ > 1. For any s ∈ S and bundle

(c1, c2) ∈ S2 such that c1 + c2 ∈ [0, s] let u1(c1) :=
√
c1/
√

2 and u2(c2) =
√
c2/
√

2.

8Observe that example 1 is not per se a counterexample to existence of SMPE. It rather illustrates how
the general approach using the �xed point argument may fail when applied to the case of a deterministic
transition.
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Furthermore, η = 1, δ1 = 4/5, δ2 = 1/5. Clearly

u0(c) = max
c1,c2≥0 s.t. c1+c2≤c

{u(c1) + ηu(c2)} =
√
c,

and β(c) = γ(c) = c/2. Let deterministic transition by given by F (i) =
√
i. Then,

ut(c) = u1(β(c)) + η

(
δ2

δ1

)t
u2(γ(c)) =

1

2

√
c

(
1 +

(
1

4

)t)
.

Consider a consumption policy h(s) = s for s < 1 and h(s) = 0 for s ≥ 1. Observe that

this corresponds to an increasing and upper semi-continuous investment policy. We show

that the �rst generation has no best response to h, when the current state is s = 17.

Indeed, if i < 1 then the next state is
√
i, still less than 1, hence the next generation

consumes everything and the �rst generation payo� is

f(i) := u0(17− i) + δ1u1(F (i)) =
√

17− i+
1

2
4
√
i.

If i ≥ 1, the next state is
√
i, still greater than 1, and the same goes for all future

generations, each consuming nothing. In such case the payo� is

f(i) := u(17− i) =
√

17− i.

Observe that, for i < 1,

f ′(i) = − 1

2
√

17− i
+

1

8
4
√
i3
> − 1

2
√

16
+

1

8
= 0,

hence f increases on [0, 1) before reaching the limit

lim
i↑1

f(i) =
√

16 +
1

2
=

9

2
.

But f(1) =
√

16 = 4 < 9
2
and f decreases on [1, s̄]. Hence there is no best response to

such h and the �xed point approach to equilibrium construction cannot be applied.
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A similar (counter)example can be constructed whenever the next generations use an

(increasing) investment policy that is lower semi-continuous. Indeed, let the consumption

policy by given by h(s) = s for all s ≤ 1 and h(s) = s/2 for s > 1. Let s = 4. If i ≤ 1

then
√
i ≤ 1 as well and the next generation consumes everything. The resulting payo�

is:

f(i) := u0(s− i) + δ1u1(F (i)) =
√

4− i+
1

2
4
√
i.

If i > 1 then
√
i > 1 and the next and second generation invests

√
i/2 and consumes

the same amount; the third generation however inherits
√√

i/2 ≤ 1 and hence consumes

everything. Hence the current generation payo� is:

f(i) =
√

4− i+
1

2

√
1

2

√
i+

1

2

√√
1

2

√
i

((
4

5

)2

+

(
1

5

)2
)
.

Again, it can be easily showed (see appendix for a graphical exposition) that there is no

argument maximizing f on [0, 4].

In the view of the above discussion and (counter)example, we now present a di�erent

set of assumptions that allows to circumvent the illustrated problems. We start by consid-

ering a function space CM of continuous and monotone aggregate consumption policies

such that investment is also increasing:

CM :=

{
h : S → S | h is continuous, increasing and s.t. s→ s−h(s) is increasing

}
.

In fact, consumption policies in CM are Lipschitz continuous.

Consider also the V space of implied values:

V :=

{
v : S → R | v is continuous, increasing, with 0 < v <

u1(S̄) + ηu2(S̄)

1− δ1

}
.

Endow then both CM and V with the sup-norm topology, i.e., ‖f‖∞ := sups∈S |f(s)|.

Key assumptions are now going to be introduced on the stochastic transition Q.
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Assumption 2. For any v ∈ V , the function i→
∫
S
v(s′)Q(ds′|i) is continuous, increas-

ing and concave.

Assumption 2 builds from three distinct properties on Q. A Feller property is �rst im-

posed on Q so that the expected value is continuous. Second, stochastic monotonicity on

Q guarantees that this expected value is increasing in investment i. And third, stochastic

concavity implies that this expected value is concave as a function of investment.9 All

three conditions are required to hold relative to v ∈ V .

We shall now clarify the status of this stochastic convexity assumption, �rst by a

remark that illustrates how if may fail to be satis�ed for a deterministic transition and

then by giving an explicit example of a stochastic transition satisfying this assumption.

Remark 1 (Necessity of the stochastic transition). Observe that the stochastic convexity

of Q in Assumption 2 rules out deterministic transitions. Indeed, it is straightforward to

product counterexamples of expected values that are not concave in i relative to values

in V if Q is deterministic. Moreover, as showed in Example 1 existence of SMPE in the

collective household model under deterministic transition is generally not guaranteed.

Example 2. An example of transition Q satisfying Assumption 2 is available by simply

considering a weighted average of two measures λ2 and λ1, namely Q(·|i) := g(i)λ2(·) +

(1 − g(i))λ1(·), where λ2 and λ1 are measures on S, with λ2 �rst order stochastically

dominating λ1 and a function g : S → [0, 1] which is continuous, increasing and concave.

For v ∈ V , let the operator T ht (v)(s) be de�ned as follows:

T ht (v)(s) = ut(h(s)) + δ1

∫
S

v(s′)Q(ds′|s− h(s)).

For the sequence v = (vt)
∞
t=1 ∈ V ∞, we further de�ne T h(v)(s) = (T ht (vt+1)(s))∞t=1. Endow

V ∞ with the following norm:

‖v‖κ =
∞∑
t=1

‖vt‖∞
κt−1

,

9This last condition onQ was introduced in, e.g., moral hazard models by Rogerson (1985) or stochastic
games by Amir (1996).
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where κ ∈ (1, 1/δ1).

It is �rst easy to see that, by Assumptions 1 and 2, T h is a contraction in this norm

and has a unique �xed point vh = (vht )∞t=1. This is summarized in the following lemma.

Lemma 3. Assume 1 and 2. For any h ∈ CM , T h : V ∞ 7→ V ∞, and it is a contraction

mapping with a δ1κ-contraction constant. As a result, T h has a unique �xed point vh =

(vht )∞t=1.

Moreover, U(h)(s) = vh1 (s). From the de�nition of T ht (v)(s), an extra continuity

remains to be completed:

Lemma 4. Assume 1 and 2. The mapping (h, v) ∈ CM × V ∞ 7→ T h(v) is continuous.

Parallelly verifying the continuity of U :

Lemma 5. Assume 1 and 2. The operator U : CM 7→ V is continuous.

Finally, and from the Arzela-Ascoli Theorem (see chapter 7 in Kelley (1991)), it is

clear that:

Lemma 6. CM is compact in the sup norm.

De�ne then, on CM , a best response BR operator by

BR(h)(s) := arg max
c∈[0,s]

{
u0(c) + δ1

∫
S

U(h)(s′)Q(ds′|s− c)
}
.

By Lemma 2 and under Assumption 2, BR(h) is well de�ned for any h. We �rst check,

whether it maps the set CM into itself.

Lemma 7. Assume 1 and 2. Then BR : CM → CM .

We are now ready to state our main existence result:

Theorem 1. Assume 1 and 2. There exists a SMPE, that is there exists h∗ ∈ CM such

that h∗ = BR(h∗).
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We now characterize stochastic steady states, i.e., invariant distributions implied by

transition Q and equilibrium policy h∗ (and related β(h∗(·)) and γ(h∗(·)). Let h∗ ∈ CM

be a SMPE and consider the process (st)t such that s0 = s, and for all t ≥ 0, st+1 is a

random variable whose distribution is Q(·|st−h∗(st)). Let M (S) be the set of probability

measures on S endowed with the standard �rst order stochastic dominance. By δs denote

a delta Dirac measure concentrated on s. De�ne Λ : M (S) 7→M (S) by:

Λ(µ)(·) :=

∫
S

Q(·|s− h∗(s))µ(ds).

Corollary 1 (Monotone transition dynamics). Let h∗ ∈ CM be a given SMPE. Then:

1. The set of invariant distributions of the process st+1 ∼ Q(·|st−h∗(st)) is a complete

lattice.

2. The sequence of (µn)∞n=1, where µn+1 = Λ(µn) with µ0 = δS̄, is convergent to the

greatest invariant distribution of Λ, say µ̄.

3. Moreover, for any s0 ∈ S the sequence (µn)∞n=1 where µn+1 = Λ(µn) with µ0 =

lim supk Λk(δs0) is convergent to the invariant distribution of Λ.

Proof. Recall that M (S) is a complete lattice with a smallest element δ0 and a greatest

element δS̄ (see Kamae, Krengel, and O'Brien (1977)). By Theorem 1, Λ is increasing

on M (S). By Tarski �xed point theorem, Λ has a complete lattice of �xed points. Λ is

also weakly continuous. Hence, by Tarski-Kantorovitch theorem (see, e.g., theorem 1.2 in

Dugundji and Granas (1982)) Λn(δS̄) is convergent to the greatest invariant distribution µ̄.

The last point follows from Olszewski (2021) theorem applied to monotone and continuous

mapping Λ on a complete lattice M (S).

Observe that the expected allocations associated with the invariant distribution, e.g.,

µ̄ are c∗1 =
∫
S
β(h∗(s′))µ̄(ds′) and c∗2 =

∫
S
γ(h∗(s′))µ̄(ds′). Conditions for uniqueness of

invariant distributions can also be developed using standard arguments (see e.g. Futia

(1982)).
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3 Generalized Euler equations and the �rst-order char-

acterization

We now aim to characterize SMPE using (generalized) Euler equations. To proceed, �rst

observe that Theorem 1 proves existence of SMPE in CM , a set of Lipschitz continuous

functions with Lipschitz constant 1. This implies that h∗ ∈ CM is a.e. di�erentiable. To

proceed, we need, however, some further di�erentiability assumptions on ui(·).

Assumption 3. Each ui is twice continuously di�erentiable, (ui)′′(c) < 0 for c > 0, and

limc→0(ui)′(c) =∞

Recalling that u0(c) := maxc1,c2 u
1(c1) + ηu2(c2) s.t. c1 + c2 = c, we then obtain for

c > 0:

(u1)′(β(c)) = η(u2)′(c− β(c)) = η(u2)′(γ(c)).

We immediately have:

Lemma 8. Assume 1 and 3. Then u0 is twice continuously di�erentiable and β and

γ are interior and continuously di�erentiable. As a result any ut is also continuously

di�erentiable.

Its proof follows from Lemma 10. Indeed, let c > 0 and from the envelope theorem:

u′0(c) = (u1)′(β(c)) = η(u2)′(γ(c)).

Hence and by the Implicit Function Theorem both β′ and γ′ exist and

γ′(c) =
(u1)′′(β(c))

(u1)′′(β(c)) + η(u2)′′(γ(c))
.
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Clearly β′(c) + γ′(c) = 1 and:

u′t(c) = (u1)′(β(c))β′(c) + η

(
δ2

δ1

)t
(u2)′(γ(c))γ′(c)

= u′0(c)− η

[
1−

(
δ2

δ1

)t]
(u2)′(γ(c))γ′(c).

The previous relation will be particular useful in our generalized Euler equation. It allows

to control the e�ects of the current investment on utilities of the next generations. The

time-consistency problem is also visible in the above equation. Indeed, unless η = 0 or

δ2 = δ1, u
′
t(c) 6= u′0(c), and the corrective factor needs to be applied in the Euler equation

to account for changing preferences. Now de�ne:

FV (x) :=

∫
S

V (s′)Q(ds′|x),

F ′V (x) :=
d

dx

∫
S

V (s′)Q(ds′|x).

Moreover, note that since U(h∗) ∈ V and FU(h∗) is bounded and concave hence a.e.

di�erentiable. To proceed on F ′V (x), we need an extra assumption:

Assumption 4. For any V ∈ V , the function FV is twice continuously di�erentiable on

the interior of S and limi→0 FV (i) =∞.

We illustrate the above assumption in the following example.

Example 3. Continue Example 2 and consider g that is twice continuously di�erentiable

and satisfy the Inada condition. Then Assumption 4 is satis�ed.

Recalling the de�nition of F ′V (x), consider then the following �rst order condition for

interior SMPE h∗:

(4) u′0(h∗(s)) = δ1F
′
U(h∗)(s− h∗(s)).

Clearly, the right hand side of the above condition involves the derivative of the con-

tinuation value U(h∗). The principle of optimality being not applicable due to time-

15



inconsistency, the di�erentiability of U(h∗) requires a di�erentiable h∗. The latter just fol-

lows from Lemma 10, and thus Assumptions 1 and 2, with f1 = u0 and f2(·) = δ1FU(h∗)(·).

This is asserted in the following statement, whose proof we omit.

Theorem 2. Under Assumptions 1, 2, 3 and 4, there exists a SMPE h∗ that is di�eren-

tiable on the interior of S.

In what follows we characterize further the expression F ′U(h∗)(s−h∗(s)). For this reason

we need a (di�erentiable) density representation for Q.

Assumption 5. There exists a measure ρ : S × S 7→ R such that

(i) For i ∈ S \ {0}, Q(A|i) =
∫
A
ρ(i, s′)ds′.

(ii) For any i ∈ S \ {0}, ρ(i, ·) is a density of a probability measure with respect to the

standard measure, i.e.
∫
S
ρ(i, s′)ds′ = 1;

(iii) For Lebesgue a.e. s ∈ S, R(i, s) =
∫ s

0
ρ(i, s′)ds′ is twice continuously di�erentiable

at any i > 0 and s 7→ supi∈(0,s] R
′
1(i, s) is integrable where R′1(i, s) := ∂R(i, s)/∂i;

In the following derivations we repeatedly use the following result on integration by

parts.

Lemma 9. Let V ∈ V :

(i) V ′ exists almost everywhere and V (s) =
∫ s

0
V ′(s′)ds′ for any s ∈ S.

(ii)
∂

∂i

∫
S

V (s)ρ(i, s)ds = −
∫
S

V ′(s)R′1(i, s)ds.

Let h∗ be a SMPE and let us also de�ne:

v∗t (s) := Es

∞∑
τ=t

δτ−t1 uτ (h∗(sτ )) ,

I∗t (s) = −
∫
S

(v∗t )
′(s′)R′1(s− h∗(s), s′)ds′,
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whenever the derivative exists. Recall further that:

(5) I∗1 (s) = F ′U(h∗)(s− h∗(s)).

The next theorem together with equations (4) and (5) constitute our �rst order charac-

terization of a di�erentiable SMPE h∗.

Theorem 3. Under Assumptions 1, 2, 3, 4 and 5, each I∗t is well de�ned and obeys:

I∗t (s) = −
∫
S

u′t(h
∗(s′))(h∗)′(s′)R′1(s− h∗(s), s′)ds′(6)

− δ1

∫
S

I∗t+1(s′)(1− (h∗)′(s′))R′1(s− h∗(s), s′)ds′.

Proof. We show it is di�erentiable in s. Observe that v∗t is the �xed point of the contrac-

tion mapping T h
∗

:= (T h
∗

t )∞t=1 such that T h
∗

: V ∞ 7→ V ∞ and is de�ned as follows:

T h
∗

t (v)(s) = ut(h
∗(s)) + δ1

∫
S

vt+1(s′)ρ(s− h∗(s), s′)ds′.

By Theorem 2 it follows that h∗ is di�erentiable and by Assumption 5 the second term on

the right hand side is di�erentiable for any vt+1 ∈ V . Hence v∗t is di�erentiable for any t.

By Lemma 9 for any i > 0 we have

(7)
d

di

∫
S

v∗t+1(s′)ρ(i, s′)ds′ = −
∫
S

(v∗t+1)′(s)R′1(i, s′)ds′.

Combining de�nition of v∗t , T
h∗ , equation (7) and Theorem 2

(v∗t )
′(s′) = u′t(h

∗(s′))(h∗)′(s′)− δ1(1− (h∗)′(s′))

∫
S

(v∗t+1)′(s′′)R′1(s′ − h∗(s′), s′′)ds′′

= u′t(h
∗(s′))(h∗)′(s′) + δ1(1− (h∗)′(s′))I∗t+1(s′).

Multiplying both sides above by −R′1(s− h∗(s), s′) and integrating over ds′, the equation

(6) holds.

Remark 2 (Relations to quasi-hyperbolic discounting). The generalized Euler equation
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characterization of di�erentiable h∗ (as speci�ed in equations (4), (5) and (6)) requires a

comment with respect to related characterizations for SMPE in a class of quasi-hyperbolic

discounting models. Harris and Laibson (2001) and more recently Balbus, Re�ett, and

Wo¹ny (2018) obtained a FOC of the di�erentiable equilibrium investment policy in such

models under strong assumptions on the stochastic transition. Relative to the �rst order

characterization in quasi-hyperbolic discounting models, the one considered in the collec-

tive household problem is signi�cantly more complicated. Indeed, equation (6) constructs

an in�nite sequence of the derivatives (I∗t )t that are necessary to compute I∗1 , i.e. the

right hand side of the FOC (4). This is in stark contrast to the quasi-hyperbolic dis-

counting models where such construction is not necessary10 due to the assumption that

the preferences in the quasi-hyperbolic discounting model form the next period on are

exponentially discounted by δ and hence stationary. This di�erence results from the in-

herently non-stationary structure of the collective household model, where further within

period preferences (ut)t are governed by (3).

To circumvent this non-stationarity complication, in section 4 we will provide a way

to approximate sequences of (I∗t )t using FOCs for equilibria in a constructed sequence of

bequest games.

4 Bequest games, altruism and approximation

We now provide an algorithm to approximate SMPE by considering a sequence of the

corresponding bequest games with paternalistic altruism restricted to �nite (but growing)

number of the consecutive generations.

For this reason consider an in�nite horizon, bequest game with one period ahead

paternalistic altruism. We refer the reader to the classic Phelps and Pollak (1968) paper.11

That is, each generation t derives utility from own consumption ct and consumption of the

next generation ct+1 and evaluates both using the following preferences: u0(ct)+δ1u1(ct+1).

Assume �rst that each ut is de�ned as in equation (3). Each period generation inherits

10See e.g. page 307 in Balbus, Re�ett, and Wo¹ny (2018) for a direct comparison.
11But see also Leininger (1986), Amir (1996), Nowak (2006), Balbus, Re�ett, and Wo¹ny (2013) or

Balbus, Ja±kiewicz, and Nowak (2015) for some related contributions.
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output / state st and a stochastic state transition is governed as before by st+1 ∼ Q(·|st−

ct). We assume 1 and 2 and are now seeking for a SMPE h∗1 ∈ CM such that for any

s ∈ S we have:

h∗1(s) ∈ arg max
c∈[0,s]

{
u0(c) + δ1

∫
S

u1(h∗1(s′))Q(ds′|s− c)
}
.

Under Assumptions 1 and 2 and by Theorem 1, this existence result is available.

Next, we consider a similar game but with two period ahead paternalistic altruism, i.e.

where each generation derives utility from own consumption ct and consumption of the two

consecutive generations ct+1, ct+2 and evaluates them according to: u0(ct) + δ1u1(ct+1) +

δ2
1u2(ct+2). As before, assuming 1 and 2 we can show existence of SMPE h∗2 ∈ CM , i.e.,

h∗2(s) ∈ arg max
c∈[0,s]

{
u0(c) + δ1

∫
S

[
u1(h∗2(s′))

+ δ1

∫
S

u2(h∗2(s′′))Q(ds′′|s′ − h∗2(s′))

]
Q(ds′|s− c)

}
.

Next, for any h ∈ CM and n ∈ N, let

Un(h)(s) := Es

(
n∑
t=1

(δ1)t−1ut(h(st))

)
.

Continuing as above we can consider a sequence of bequest games with n-period ahead

paternalistic altruism and for each consider a SMPE h∗n ∈ CM . That is

h∗n(s) ∈ arg max
c∈[0,s]

{
u0(c) + δ1

∫
S

Un(h∗n)(s′)Q(ds′|s− c)
}
.

Its existence is guaranteed by the arguments similar to the one used in the construction

of Theorem 1. We conclude with the following result:

Theorem 4. For any n ∈ N there exists h∗n ∈ CM , a SMPE in the model with n period

ahead paternalistic altruism. The sequence (h∗n)n has a converging subsequence, whose

limit h∗ ∈ CM is a SMPE of the collective household problem (according to De�nition 1).

This is our main approximation result. It shows how a sequence of equilibria in such a
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family of the bequest games can be used to approximate the equilibrium of the collective

household model as analyzed in this paper. We now present its proof and later discuss

its implications on the generalized Euler equation characterization.

Proof. The proof of existence is similar to the one of Theorem 1, the only di�erence being

that we apply Lemma 11 that establishes the continuity of the operator Un : CM 7→ V .

So the equilibrium h∗n ∈ CM exists for any n. Observe that:

Un(h)(s) :=
n∑
t=1

(δ1)t−1Es(ut(h(st)))(8)

=
n∑
t=1

(δ1)t−1

∫
S

ut(h(s′))Qt
h(ds

′|s)

for every h ∈ CM and n ∈ N. Here Qt
h is the standard t− step transition probability

generated by h, that is Q1
h(·|s) := Q(·|s − h(s)) and for t ≥ 1 we apply by the standard

Chapman-Kolmogorov equations (see chapter 4.2 in Ross (1997)):

Qt+1
h (·|s− h(s)) =

∫
S

Qt
h(·|s′)Q(ds′|s− h(s)).(9)

We claim that if hn ⇒ h and sn → s, then Qt
hn

(·|sn) → Qt
h(·|s) weakly for every t. For

t = 1, it follows directly by Assumption 2. Suppose that this thesis holds for some t.

Then for any continuous and bounded function f and any sequence s′n such that s′n → s′

as n→∞ we have

∫
S

f(s′′)Qt
hn(ds′′|s′n)→

∫
S

f(s′′)Qt
h(ds

′′|s′).

As a result, by Assumption 2 we have

∫
S

f(s′′)Qt
hn(ds′′|·) ⇒

∫
S

f(s′′)Qt
h(ds

′′|·).

Hence, by induction hypothesis, (9) (and Corollary 15.7 in Aliprantis and Border (2006))

the thesis holds for Qt+1, hence for all t. As a result, since by Assumption 1 and Lemma

10, ut(hn(·)) ⇒ ut(h(·)), hence, by (8) and by the Dominated Convergence Theorem
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Un(hn)(sn) → U(h)(s) as n → ∞. Now, passing to subsequences if necessary suppose

h∗n ⇒ h∗. Hence

lim
n→∞

(
u0(h∗n(s)) + δ1

∫
S

Un(h∗n)(s′)Q(ds′|s− h∗n(s))

)
(10)

= u0(h∗(s)) + δ1

∫
S

U(h∗)(s′)Q(ds′|s− h∗(s)).

Observe that for all n ∈ N and c ∈ [0, s] we have

u0(h∗n(s)) + δ1

∫
S

Un(h∗n)(s′)Q(ds′|s− h∗n(s)) ≥ u0(c) + δ1

∫
S

Un(h∗n)(s′)Q(ds′|s− c).(11)

Taking the limit in (11), by (10) we conclude that

u0(h∗(s)) + δ1

∫
S

U(h∗)(s′)Q(ds′|s− h∗(s)) ≥ u0(c) + δ1

∫
S

U(h∗)(s′)Q(ds′|s− c),

for any c ∈ [0, s].

Observe that we can also use the generalized FOCs for such an approximation. Indeed

under Assumptions 3, 4 and 5, each h∗n ∈ CM , i.e., each SMPE of the bequest game with

n period ahead altruism, can be characterized by the following FOC:

u′0(h∗n) = δ1F
′
w∗n

(s− h∗n(s)),

where w∗n(s) := Es
∑n

τ=1(δ1)τuτ (h
∗
n(sτ )) and F ′w∗n(s − h∗n(s)) can be computed using a

�nite sequence of (I∗t )nt=1 using equation (6) and taking I∗n+1 ≡ 0. This proposes a way to

approximate the FOCs of the collective household equilibrium using a sequence of FOCs

of the approximating sequence of bequest games.
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A Appendix

A.1 Auxiliary results

We start by continuing example 1 and presenting the graph depicting lack of the argument

maximizing f on [0, 4] for h(s) = s for all s ≤ 1 and h(s) = s/2 for s > 1 and s = 4.

Figure 1: Payo� f from Example 1 as a function of i ∈ [0, 4].

We �rst establish a general purpose technical lemma that is repeatedly used in our

paper.

Lemma 10. Let f1 and f2 be increasing, concave functions on [0,∞) and let at least one

of them be strictly concave. Let a(s), b(s) be such that

f ∗(s) = f1(a(s)) + f2(b(s)) = max {f1(c1) + f2(c2) : c1 ≥ 0, c2 ≥ 0, c1 + c2 = s} .

Then

(i) Both a and b are uniquely determined, increasing and Lipschitz continuous functions

(with a constant 1);
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(ii) f ∗ is strictly concave and continuous whenever both f1 and f2 are strictly concave;

(iii) If f1 and f2 are twice continuously di�erentiable on (0,∞), lims↓0 f
′
1(s) = lims↓0 f

′
2(s) =

∞, and f ′′1 (s) < 0 for s > 0, then a and b are di�erentiable at any s > 0 and

a(s) ∈ (0, s), the same for b(s). As a result f ∗ is twice continuously di�erentiable

on (0,∞).

Proof. Proof of (i). Since f1 and f2 are increasing, concave and at least one of them is

strictly concave both a and b are uniquely determined. Next we prove monotonicity. On

the contrary suppose that a is not increasing, i.e. there is are 0 ≤ s1 < s2 such that

a1 := a(s1) > a(s2) := a2 ≥ 0. Put ∆ := a1 − a2. Then ∆ > 0. We have then

0 ≤ f1(a1 −∆)− f1(a1) + f2(∆ + s2 − a1)− f2(s2 − a1)

< f1(a1 −∆)− f1(a1) + f2(∆ + s1 − a1)− f2(s1 − a1)

= f1(a2) + f2(s1 − a2)− f1(a1)− f2(s1 − a1) ≤ 0.

This is a contradiction, as a is optimal and hence f1(a2)+f2(s1−a2) ≤ f1(a1)+f2(s1−a1).

As a result we obtain that a is increasing. Similarly we prove b is increasing. The rest of

the proof that both a and b are Lipschitz with 1 is standard.

Proof of (ii). We show f ∗ is strictly increasing. Let us continue notations for s1, s2, a1,

and a2 from (i). If a1 = a2, then the thesis is done. By (i) we may assume a1 < a2. Then

the function

f ∗(s1) < f1(a1) + f2(s2 − a1) ≤ f ∗(s2).

Hence f ∗ is strictly increasing. Now we show the strict concavity: Let α ∈ (0, 1), sα =

αs1 + (1− α)s2, and a
α = αa1 + (1− α)a2. By strict concavity of f1 and f2 we have

f ∗(sα) ≥ f1 (aα) + f2 (sα − aα)

> α (f1 (a1) + f2 (s1 − a1)) + (1− α) (f1 (a2) + f2 (s2 − a2))

= αf ∗(s1) + (1− α)f ∗(s2),
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and hence f ∗ is strictly concave.

Proof of (iii). It is routine to verify a(s) ∈ (0, s) and the same for b for any s > 0 and

the function a(s) solves the equation

f ′1(c)− f ′2(s− c) = 0(12)

with respect to c. Observe that

f ′′1 (c) + f ′′2 (s− c) < 0(13)

for any c ∈ (0, s). Observe both f ′′1 and f ′′2 are not positive and f ′′1 (c) < 0 for any

c ∈ (0, s). hence the strict inequality in (13) holds for a neighborhood of c = a(s).

By Implicit Function Theorem and (12) we obtain the di�erentiability of a at any s > 0.

Consequently b is di�erentiable and by Envelope Theorem (f ∗)′(s) = f ′1(a(s)) holds, hence

f ∗ has the second derivative

(f ∗)′′(s) = f ′′1 (a(s))a′(s).

A.2 Proofs

Proof of Lemma 3. Let v ∈ V ∞. It is easy to see that by Assumptions 1 and 2, T ht (v)

is a continuous function, and T h : V ∞ 7→ V ∞. We show that, T h is a contraction with
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respect to the metric induced by the norm ‖ · ‖κ. Let v1, v2 ∈ V ∞.

‖T h(v1)− T h(v2)‖κ =
∞∑
t=1

‖T ht (v1
t+1)− T ht (v2

t+1)‖∞
κt−1

≤ δ1

∞∑
t=1

‖v1
t+1 − v2

t+1‖∞
κt−1

≤ δ1κ

∞∑
t=1

‖v1
t − v2

t ‖∞
κt−1

= δ1κ‖v1 − v2‖κ.

�

Proof of Lemma 4. Let v, v′ ∈ V ∞ and de�ne

φt(·) :=

∫
S

vt(s
′)Q(ds′|·).

By Assumption 2 it follows that φt is concave and continuous. Hence

T h
′

t (v′)(s)− T ht (v)(s) = ut(h
′(s))− ut(h(s)) + δ1

∫
S

(v′t+1(s′)− vt+1(s′))Q(ds′|s− h′(s))

+ δ1(φt+1(s− h′(s))− φt+1(s− h(s))).

Hence

‖T h′(v′)(s)− T h(v)‖κ ≤
∞∑
t=1

|ut(h′(s))− ut(h(s))|
κt−1

(14)

+ δ1κ

(
‖v′ − v‖κ +

∞∑
t=1

φt(s− h′(s))− φt(s− h(s))

κt−1

)
.

Since ut and φt are concave and vanishing at 0, hence are subadditive. Hence, by (14) we

have

‖T h′(v′)(s)− T h(v)‖κ ≤
∞∑
t=1

ψt(‖h′ − h‖∞)

κt−1
+ δ1κ‖v′ − v‖κ,(15)
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where ψt(i) = ut (i) + δ1κφt (i) for i ∈ S. We have

‖ψ‖∞ ≤ (u1(S̄) + ηu2(S̄))

(
1 +

κδ1

1− δ1

)
,

and any ψt is continuous at 0. Hence and by Weierstrass criterion for uniform convergence

(Theorem 7.10 in Rudin (1964)), if h′ ⇒ h then

∞∑
t=1

ψt(‖h′ − h‖)
κt−1

→ 0.

Hence and by (15), ‖T h′(v′)(s) − T h(v)‖κ → 0 as ‖v′ − v‖κ → 0 and ‖h′ − h‖∞ → 0.

Hence T h(v) is continuous as a function of h and v. �

Proof of Lemma 5. Observe that for h, h′ ∈ CM we have

||vh′ − vh||κ = ||T h′(vh′)− T h(vh)||κ

≤ ||T h′(vh′)− T h′(vh)||κ + ||T h′(vh)− T h(vh)||κ

≤ δ1κ||vh
′ − vh′||κ + ||T h′(vh)− T h(vh)||κ,

where the last inequality follows from Lemma 3 that any of T h
′
is a contraction mapping

δ1κ. Hence

||vh′ − vh||κ ≤ 1

1− δ1κ
||T h′(vh)− T h(vh)||κ.

To �nish the proof, using Lemma 4 we only need to take the limit h′ ⇒ h above. Then,

for any t, vh
′
t → vht . Since v

h′
1 = U(h′) and vh1 = U(h), hence U(h′) ⇒ U(h). �

Proof of Lemma 7. By Lemma 3 it follows that for h ∈ CM , U(h) ∈ V . Now apply

Lemma 10 by setting u0 for f1, and δ1

∫
S
U(h)(s′)Q(ds′|i) for f2. Then clearly a(s) from

Lemma 10 is BR(h)(s), and b(s) is s 7→ s−BR(h)(s). Hence BR(h)(s) and s−BR(h)(s)

are both increasing, and BR(h) ∈ CM . �

Proof of Theorem 1. By Lemma 6 CM is compact and clearly convex subset of the

set of bounded continuous functions. By Lemma 7, we conclude that BR maps CM into
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itself. We show that BR is a continuous operator on CM . Equivalently we show CM has

a continuous graph. Fix s and put

Π(c, h) := u0(c) + δ1

∫
S

U(h)(s′)Q(ds′|s− c).

Let hn ⇒ h and assume BR(hn)(s) → y as n → ∞. By Lemma 5, U(hn) ⇒ U(h), and

by Feller property Q(·|s− hn(s))→ Q(·|s− h(s)) weakly as n→∞. Hence we have

Π(BR(hn)(s), hn)→ Π(y, h) and Π(c, hn)→ Π(c, h)(16)

for arbitrary c ∈ [0, s]. By de�nition of BR(hn) we have

Π(c, hn) ≤ Π(BR(hn)(s), hn).(17)

Combining (16) and (17)

Π(c, h) ≤ lim
n→∞

Π(c, hn) ≤ lim
n→∞

Π(BR(hn), hn) = Π(y, h).

Since Π(·, h) has a unique maximum, hence y = BR(h). As a result, BR is continuous on

CM, hence by Schauder-Tychonof Theorem, there is at least one �xed point h∗ = BR(h∗).

�

Proof of Lemma 9. Integrating by parts (Theorem 18.19 in Hewitt and Stromberg

(1965))∫
S

V (s)ρ(i, s)ds = V (S̄)R(i, S̄)− V (0)R(i, 0)−
∫
S

V ′(s)R(i, s)ds

= V (S̄)−
∫
S

V ′(s)R(i, s)ds.

By Assumption 5 we can di�erentiate the equation above with respect to i and then obtain

the thesis. �

The next lemma is used in the proof of our approximation theorem.

Lemma 11. Assume 1 and 2. For any n ∈ N, the operator Un : CM 7→ V is continuous.

27



Proof. Observe that for h ∈ CM , Un(h) = (T h)n(0) (the n-th composition of 0). For

n = 1 the thesis is obvious. Suppose that it is true for n and we only need to check the

thesis for n+ 1. Let h, h′ ∈ CM

||Un+1(h′)− Un+1(h)||κ = ||T h′(Un(h′))− T h(Un(h))||κ

≤ ||T h′(Un(h′))− T h′(Un(h))||κ + ||T h′(Un(h))− T h(Un(h))||κ

≤ δ1||Un(h′)− Un(h)||κ + ||T h′(Un(h))− T h(Un(h))||κ,

(18)

where the last inequality follows from Lemma 3 that any of T h
′
is a contraction mapping

δ1κ. Now we take a limit h′ ⇒ h. By induction hypothesis it follows that ||Un(h′) −

Un(h)||κ → 0. By Lemma 3 it follows that ||T h′(Un(h))− T h(Un(h))||κ → 0. As a result,

the left hand side in (18) tends to 0.
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