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Abstract We study the existence and computation of equilibrium in large games
with strategic complementarities. Using monotone operators defined on the space of
distributions partially ordered with respect to the first-order stochastic dominance, we
prove existence of a greatest and least distributionalNash equilibrium. In particular, we
obtain our results under a different set of conditions than those in the existing literature.
Moreover, we provide computable monotone distributional equilibrium comparative
statics with respect to the parameters of the game. Finally, we apply our results to
models of social distance, large stopping games, keeping up with the Joneses, as well
as a general class of linear non-atomic games.

Keywords Large games · Distributional equilibria · Supermodular games · Games
with strategic complementarities · Computation of equilibria · Non-aggregative
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1 Introduction

Beginning with the seminal work of Schmeidler (1973) and Mas-Colell (1984), there
has been a great deal of work in the economic literature focusing on games with a
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continuum of players.1 In a separate, yet related set of papers, researchers have turned
their attention to the question of the existence of equilibrium comparative statics
in large games with strategic complementarities (henceforth LGSC) between player
actions or “traits” [e.g., seeGuesnerie and Jara-Moroni (2011) orAcemoglu and Jensen
(2010, 2013)]. The latter strand of work focused primarily on non-atomic, aggregative
games, in which payoffs of individual players were affected by an aggregate of actions
of other players in the game (or a vector of aggregates). In such games, the questions
of equilibrium existence, its computation, and equilibrium comparative statics could
be simplified to a great extent.2

As we show in this paper, there are classes of large games with a continuum of
players in which the payoff of an individual agent depends inherently on the entire
distribution of actions and characteristics of other players. Such games cannot be ana-
lyzed using the “aggregative games” toolkit. In particular, none of these results in the
existing literature that provide positive answers for existence, computation, or com-
parative statics of equilibria can be applied to such distributional games. Finally, the
importance of studying large non-aggregative games with “traits” or diverse personal
characteristics has been highlighted, among others, by the recent papers of Khan et al.
(2013a, b). In these papers, the authors stress the cardinality of traits as a key factor
not only to verify conditions of equilibrium existence, but also to use large games in
the study of actual economic problems.

In this paper, we ask a number of questions. First, can the methods used to verify
the existence of equilibrium in games with strategic complementarities (with a finite
number of players; henceforth GSC) be extended to a general class of games with a
continuum of players? If this is possible, can one develop conditions for equilibrium
comparative statics results and what will be their nature? Finally, can we develop a
theory of computable equilibrium comparative statics for these games?

We begin our analysis in Sect. 2, where we provide new sufficient conditions under
which there exists a distributional equilibrium of a LGSC with complete information.
In addition, we provide a sharp order-theoretic characterization of the set of equilibria.
This characterization plays a central role in developing results on equilibrium com-
parative statics, as well as when providing an explicit iterative method for computing
extremal equilibria. Specifically, by applying constructive results from the literature
on order continuous operators, we are able to relax some key continuity conditions on
payoffs which are typically required for equilibrium existence in the existing literature
that seek to apply standard topological arguments (e.g., continuity inweak topologies).

Moreover, this approach provides constructive methods for computing the extremal
equilibria by their successive approximation starting from the extremal elements of the
space of all feasible distributions of player actions and “traits”. To our knowledge, there
are no similar results in the existing literature on computation of extremal equilibria

1 For example, see Khan et al. (2013a, b), and the references within.
2 Actually, inmany large aggregative gameswith strategic complementarities, the existence and equilibrium
comparative statics questions can be obtained using the standard tools from the theory of game of strategic
complementarities with a finite number of players (as in the seminal work of Topkis 1979; Vives 1990;
Milgrom and Roberts 1990). However, these tools are not applicable in more general classes of LGSC. See
Balbus et al. (2015a) for a discussion.
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in LGSC. This result proves to be central in identifying sufficient conditions for the
existence of computable equilibrium comparative statics with respect to parameters
of a game.

The central point this paper makes is, although the tools used for a study of equi-
librium in GSC and LGSC are similar in a very broad methodological sense, the
particulars of the methods are significantly different. This dissimilarity arises due
to the inherent infinite-dimensional structure of large games. In the framework we
develop, joint strategies of players as well as equilibria are defined in terms of proba-
bility distributions. Since, in general, sets of probability distributions are not lattices,
themethods applied in the analysis forGSCdo not applywhen seeking to construct and
characterize equilibria for LGSC. For example, even though it is possible to provide
conditions under which the set of distributional equilibria has greatest and least ele-
ment, the set of distributional equilibria is, in general, not a complete lattice.3 Rather,
at most, we are able to show that whenever the best responses of players are functions,
the set of distributional equilibria is a chain complete partially ordered set (but not
necessarily a complete lattice).4

Additionally, the measurability issues induced by the infinite-dimensional speci-
fication of LGSC create significant impediments in determining the existence of an
equilibrium of the game, let alone characterizing the natures of equilibrium monotone
comparative statics. An alternative approach to the measurability issue was recently
proposed by Yang and Qi (2013). In this paper, the authors restrict attention to equi-
libria in strategies that are monotone with respect to traits/characteristics. Their key
assumption that the set of traits/characteristics is a chain allows them to apply the
results from the existing literature on monotone games.5 In general, such specializa-
tion is not needed. Rather, we show in this paper for our general specification of a
LGSC one does not need to impose significant restrictions on the set of equilibrium
strategies, nor the class of games under consideration (aside from measurability).
Importantly, in this paper, we also distinguish the need for sufficient complementari-
ties for the existence of a monotone operator on the space of distributional strategies,
as opposed to requiring this existence argument be associated with monotone best
responses (in names/traits). We show, for a constructive theory of LSGC, we only
need a monotone operator; not monotone equilibria. In fact, in Sect. 3 we apply our
methods to economic problems in which strategies of players are non-monotone with
respect to players characteristics. As a result, both the techniques used and the results
obtained in our paper differ in many important dimensions from the environments
studied in Yang and Qi (2013) and Bilancini and Boncinelli (2016).

3 A complete lattice is a partially ordered set (X,≥) such that, for any subset Y ⊆ X , the supremum and
infimum of Y (with respect to ≥) belongs to X .
4 A partially ordered set (henceforth a poset) X is chain complete (henceforth CPO), if for an arbitrary
chain C ⊆ X , supremum of C and infimum of C are each in X . If this completeness condition holds only
for countable chains, we say that X is countably chain complete (henceforth CCPO).
5 Aswe discuss in a related paper (seeBalbus et al. 2015c), the results ofYang andQi (2013) require stronger
conditions on the traits/characteristics space than those imposed in their paper. See a counterexample in
Sect. 2 of Balbus et al. (2015c).
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The remainder of the paper is organized as follows. In Sect. 2, we provide our main
results on the existence of distributional equilibrium, as well as our results on com-
putable equilibrium comparative statics. We also discuss the relationship between our
results, and those in the existing literature. In Sect. 3, we show how our results can be
applied to Akerlof’s social distance model, large optimal stopping games, keeping up
with the Joneses, as well as a general class of linear non-atomic supermodular games.
Finally, in the “Appendix”, we introduce the requisite mathematical terminology used
in the paper, as well as some important auxiliary results.

2 Distributional equilibria in large games

Let Λ be a compact, perfect Hausdorff topological space of player characteristics.6

Endow Λ with the Borel σ -field L and a regular probability measure λ vanishing at
each singleton.7 Let A ⊆ R

m(m ∈ N) be an action set endowed with the natural
product order and Euclidean topology.8 By Ã : Λ → 2A we denote a correspondence
that assigns a sets of feasible actions Ã(α) ⊆ A to each player α ∈ Λ.

By A we denote a family of Borel subsets on A. Let R denote the set of regular
probability measures defined over L ⊗ A, with the marginal distribution on Λ equal
to λ.9 Endow Λ × A with a partial order ≥p that satisfies:10

(α′, a′) ≥p (α, a) ⇒ a′ ≥ a.

Observe the partial order ≥p and any action a ∈ A induce a partial order on Λ, say
≥a

p, defined as follows: α ≥a
p α′ if and only if (α, a) ≥p (α′, a). Additionally, assume

that, for each a ∈ A and α ∈ Λ, a closed interval of the form
{
α′ ∈ Λ : α′ ≥a

p α
}

belongs to L. This clearly holds if all closed intervals
{
(α′, a′) : (α′, a′) ≥p (α, a)

}

belong to L ⊗ A, for all pairs (α, a).

6 A topological space is perfect, if all of its elements are accumulation points.
7 Observe that it does not imply that λ is a non-atomic measure (see Lemma 12.18 in Aliprantis and Border
2006). Moreover, given that Λ is perfect, Theorem 12.21 in Aliprantis and Border (2006) implies that
such measure exists. In fact, the assumption that Λ is perfect is crucial. For example, let Λ be a set of
ordinals [0, ω1] where ω1 is the first uncountable number. Let L be the order topology, while measure
λ vanishes at each singleton. Then, all closed sets not containing ω1 are countable. Hence, whenever we
take any neighborhood of ω1, its complement is λ-null set. Therefore, any neighborhood of ω1 has a full
measure, while λ({ω1}) = 0. Each probability measure vanishing at a singleton is not regular. In addition,
all successors are isolated points.
8 We assume that the dimension of the action space is finite. See Sun and Zhang (2015) for a discussion
on non-atomic games with infinite-dimensional action spaces.
9 The measure is regular, if λ(X) < ∞, for any compact set X ∈ L, and if it is both outer regular and
tight. Additionally, note that since Λ is a compact Hausdorff space, any tight measure is at the same time
inner regular. Therefore, any regular measure is both inner and outer regular, hence, normal.
10 Clearly, if Λ is an ordered set, this implication is satisfied whenever ≥p is a product order. However,
the implication may also be satisfied if the order is such that (α′, a′) ≥p (α, a) iff (α = α′) and (a′ ≥ a).

In particular, this allows us to study the case where the set of players has only trivial orders.
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Endow R with the first-order stochastic dominance partial order and denote it
by 
P .11 By Lemma A1 (see the “Appendix”), pair (R,
P ) constitutes a partially
ordered set.12 Let

D :=
{
τ ∈ R : τ(

Gr( Ã)
) = 1

}
,

where Gr( Ã) is the graph of correspondence Ã, denote the set of all feasible distribu-
tions. EndowDwith theweak topology and consider a payoff function r : Λ×A×D →
R. We define a game by Γ := (

(Λ,L, λ), A, Ã, r
)
.13

Definition 1 (Distributional equilibrium) A distributional equilibrium of the game Γ

is a probability measure τ ∗ ∈ D such that:

τ ∗({
(α, a) : r(α, a, τ ∗) ≥ r(α, a′, τ ∗), for all a′ ∈ Ã(α)

}) = 1.

2.1 The main result

Our initial interest is to determine sufficient conditions for the existence of a distribu-
tional equilibrium of a LGSC. We impose the following assumptions:

Assumption 1 Assume that

(i) mapping Ã is weakly L-measurable correspondence taking values that are com-
plete sublattices of R

m14;
(ii) for λ-a.e. player α ∈ Λ, function r is quasisupermodular over A and has single

crossing differences in (a, τ ) on A × D;15

11 That is, we have τ ′ 
P τ if and only if
∫

f (α, a)dτ ′(α, a) ≥ ∫
f (α, a)dτ(α, a), for any increasing

(with respect to ≥p), bounded, and measurable function f :Λ × A → R+.
12 The set of all isotone with respect to ≥p and measurable functions f :Λ × A → R separates the
points in Λ × A. To see this, take any (α1, a1) and (α2, a2). Assume a1 is no greater then a2. Define
f (α, a) = χ{a′∈A : a≥a2}(a). Clearly, function f is isotone with respect to ≥p . Finally, it is L ⊗ A-
measurable, as 0 = f (α1, a1) �= f (α2, a2) = 1. Let a1 = a2 = a and α1�

a
pα2. Then, by our assumption

on ≥p , all points of the form (α1, a) and (α2, a) may be separated by the indicator of {α′ :α′ ≥a
p α2}.

13 Unlike Mas-Colell (1984), who characterized players by their payoff functions only, in our specification
the space of characteristics is equivalent to the measure space (Λ,L, λ). Nevertheless, once we define
r(α, a, τ ) := α(a, τ ), where Λ := {

α : (a, τ ) → α(a, τ ) is a continuous function
}
, our framework

embeds the one proposed by Mas-Colell (1984). Alternatively, we can interpret α as a fixed trait, just like
we do in Sect. 3. See also Khan et al. (2013a, b), who analyze games with traits.
14 We use symbols

∨
and

∧
to denote the sup and inf of an underlying set, induced by the corresponding

partial order. We refer to these selections as the “extremal” selections. A sublattice Y of X is complete
whenever, for any subset C ⊆ Y,

∨
C := sup(C) and

∧
C := inf(C) belong to Y , where the sup/inf

operators
∨
/
∧

are defined with respect to the induced order of X . Thus, the extremal elements of a
complete sublattice are greatest and least elements. Moreover, since Ã(α) ⊆ R

m is a complete sublattice,
correspondence Ã is compact-valued (e.g., see Theorem 2.3.1 in Topkis 1998).
15 Suppose that (X, ≥X ) is a lattice and (Y, ≥Y ) is a partially ordered set. We say that function f : X → R

is quasisupermodular over X if, for any x, x ′ in X, f (x) ≥ f (x ∧ x ′) implies f (x ∨ x ′) ≥ f (x ′), and
f (x) > f (x ∧ x ′) implies f (x ∨ x ′) > f (x ′). Moreover, function g : X × Y → R has single crossing
differences in (x, y) on X × Y whenever, for any x ′ ≥X x in X and y′ ≥Y y in Y, g(x ′, y) ≥ g(x, y)
implies g(x ′, y′) ≥ g(x, y′), and g(x ′, y) > g(x, y) implies g(x ′, y′) > g(x, y′).

123



Ł. Balbus et al.

(iii) for any τ ∈ D, function (α, a) → r(α, a, τ ) is Carathéodory.16

In order to proceed with our result on the existence of a distributional equilibrium,
we define the best response correspondence m : Λ × D → 2A by:

m(α, τ ) := argmax
a∈ Ã(α)

r(α, a, τ ),

with its greatest selection m : Λ × D → A, where m(α, τ ) := ∨
m(α, τ ). Similarly,

denote the least selection m : Λ × D → A, where m(α, τ ) := ∧
m(α, τ ). Define the

upper distributional operator T :D → D by:

(
T τ

)
(G) := λ

({
α ∈ Λ : (α,m(α, τ )

) ∈ G
})

, for any G ∈ L ⊗ A.

Similarly, using the least best reply m(α, τ ), we can define the lower distributional
operator T .

First, we characterize the monotonicity properties of the two operators.

Lemma 1 Operators T and T are well defined and 
P-increasing.

Proof We prove the result for operator T . Using an analogous argument, we can show
that the lemma is also true for T .

Claim 1: Operator T is well defined. Since r is continuous and quasisupermodular
on A, by Theorem 4 inMilgrom and Shannon (1994),m(α, τ ) is a complete sublattice
of A, for any α ∈ Λ and τ ∈ D. In particular, setm(α, τ ) is non-empty andm(α, τ ) :=∨

m(α, τ ) is well defined, for any α ∈ Λ and τ ∈ D.
Next, we show that correspondencem has an increasing measurable selector. Given

that function r is Carathéodory, for all τ ∈ D, and correspondence Ã is weakly
measurable, by Theorem 18.19 in Aliprantis and Border (2006), correspondence m is
L-measurable, for any τ ∈ D. As m(·, τ ) maps a measurable space into a metrizable
space, it is also weakly measurable (see Theorem 18.2 in Aliprantis and Border 2006).

Let πi : Rm → R, be a projection defined by πi (x1, . . . , xi , . . . , xm) := xi , for
any (x1, . . . , xm) ∈ R

m . Note that, m(α, τ ) = (ā1, . . . , ām), where we denote āi :=
maxa∈m(α,τ ) πi (a). Since the projection πi is a continuous function, for any i =
1, . . . ,m, while correspondence m(·, τ ) is weakly measurable, by Theorem 18.19
in Aliprantis and Border (2006), function m(α, τ ) is λ-measurable. Therefore, by
Himmelberg’s Theorem (e.g., Lemma 18.4 in Aliprantis and Border 2006), function
m(·, τ ) is L-measurable, for any τ ∈ D.

In order to complete the first part of the proof, we need to show for any τ ∈ D, the
measure (T τ) belongs toD. Clearly, (T τ)

(
Gr( Ã)

) = 1. Hence, it suffices to show that
(T τ) is normal and regular. To see this, recall that as the marginal distribution of (T τ)

over Λ is equal to λ, it is regular. Moreover, since the marginal distribution of (T τ)

over metrizable A is a bounded Borel measure, by Theorem 12.5 in Aliprantis and
Border (2006), it is regular. Therefore, by Lemma A2 (see the “Appendix”), measure
(T τ) is regular.

16 That is, the function (α, a) → r(α, a, τ ) is continuous on A and L-measurable.
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Claim 2: Operator T is 
P-isotone. Since, for λ-a.e. α ∈ Λ, function r has single
crossing differences in (a, τ ) on A × D, by Theorem 4 in Milgrom and Shannon
(1994), correspondence m is isotone in the strong set order on D, for λ-a.e. α ∈ Λ. In
particular, this implies that function m increases on D, for λ-a.e. α ∈ Λ. As a result,
for λ-a.e. α ∈ Λ, we have m(α, τ ′) ≥ m(α, τ ), whenever τ ′ 
P τ . We show that
(T τ ′) 
P (T τ). For any increasing and measurable function f : Λ × A → R,

∫

Λ×A
f (α, a)d

(
T τ ′)(α, a) =

∫

Λ

f
(
α,m(α, τ ′)

)
dλ(α)

≥
∫

Λ

f
(
α,m(α, τ )

)
dλ(α) =

∫

Λ×A
f (α, a)d

(
T τ

)
(α, a),

where the first and last equality follows from the definition of T , while the inequality
is implied by monotonicity of f and m(α, ·). ��

Our next result characterizes the order structure of the partially ordered set (D,
P ).
The next lemma follows from Proposition A1 (see the “Appendix”).

Lemma 2 (D,
P ) is a chain complete poset.

With these two lemmas in place, we are ready to state the main theorem of the
paper. Let δ and δ denote a greatest and a least elements of set D.

Theorem 1 Under Assumption 1

(i) there exists a greatest and a least distributional equilibrium of Γ ;
(ii) if T = T (i.e., if the best response correspondence is a function), then the set of

distributional equilibria is a chain complete poset.17

Denote greatest and least equilibrium of Γ by τ ∗ and τ ∗, respectively. If for any
countable chain {τn} ⊆ D such that τn → τ , we have r(α, a, τn) → r(α, a, τ ):

(iii) τ ∗ = lim
n→∞ T

n
(δ) and τ ∗ = lim

n→∞ T n(δ).

Proof We present the argument via a number of claims.
Claim 1: The greatest fixed point of T is a distributional equilibrium of Γ . By

Lemma 2, the pair (D,
P ) is a chain complete poset. By Lemma 1, T is a well-
defined, 
P -isotone operator that maps D into itself. Therefore, by Theorem A1 (see
the “Appendix”) we conclude that the set of fixed points of operator T is non-empty
and has a greatest element, denoted by τ ∗. Clearly, τ ∗ ∈ D. Moreover, we have:

τ ∗({
(α, a) : a ∈ m(α, τ ∗)

}) ≥ τ ∗({
(α, a) : a = m(α, τ ∗)

}) = 1,

which implies τ ∗ is a distributional equilibrium ofΓ . By a dual argument, we can show
that the least fixed point of operator T , denoted by τ ∗, is a distributional equilibrium
of Γ .

17 Conditions under which the best response correspondence is a function are well known. For example,
whenever correspondence Ã is convex-valued and the payoff function r is strictly quasi-concave on A.

123



Ł. Balbus et al.

Claim 2: τ ∗ is a greatest distributional equilibrium of Γ . Let τ be any equilibrium
of the game. By the definition of distributional equilibria, we have:

1 = τ
({

(α, a) : a ∈ m(α, τ )
}) ≤ τ

({
(α, a) : a ≤ m(α, τ )

})
.

Therefore, τ is concentrated over the set E := {
(α, a) : a ≤ m(α, τ )

}
. Take any

increasing function f : Λ × A → R. Then,
∫

Λ×A
f (α, a)dτ(α, a) =

∫

E
f (α, a)dτ(α, a)

≤
∫

Λ

f
(
α,m(α, τ )

)
dλ(α) =

∫

Λ×A
f (α, a)d

(
T τ

)
(α, a),

where the inequality follows from the definition of E and the final equation is implied
by the definition of T . Therefore, (T τ) 
P τ . Since T is
P -isotone, by Theorem A2
(see the “Appendix”), we have that τ ∗ 
P τ . Hence, τ ∗ is a greatest distributional
equilibrium of Γ . Again, by a dual argument, we can show that τ ∗ is the least distri-
butional equilibrium of Γ .

Observe Claims 1 and 2 prove statement (i) of Theorem 1. Statement (ii) is directly
implied by Theorem A1 (see the “Appendix”). Since the set of fixed points of operator
T = T = T is a chain complete poset, the set of distributional equilibria of Γ is also
chain complete.

In the remainder of the proof we assume that, for any countable chain {τn} ⊆ D
such that τn → τ , we have r(α, a, τn, s) → r(α, a, τ, s).

Claim 3: Operator T is monotonically inf-preserving. Let {τn} ⊆ D be a monoton-
ically decreasing sequence with infimum τ . By Lemma 2, we have τ ∈ D. Moreover,

r
(
α,m(α, τn), τn

) ≥ r(α, a, τn).

Since m(α, τn) belongs to Ã(α) which is compact, the limit of this sequence, denoted
by m∗, exists and belongs to Ã(α). By continuity of r , we have r(α,m∗, τ ) ≥
r(α, a, τ ), for all a ∈ Ã(α). Therefore, m∗ ∈ m(α, τ ) and

m∗ ≤ m(α, τ ). (1)

As τn 
P τ , for all n, by monotonicity of m, we have m(α, τ ) ≤ m(α, τn) and

m(α, τ ) ≤ lim
n→∞m(α, τn) = m∗. (2)

Combining (1) and (2) implies m(α, τ ) = limn→∞ m(α, τn). Therefore, T is mono-
tonically inf-preserving. By a dual argument, we show that T is monotonically
sup-preserving.

Claim 4: τ ∗ = limn→∞ T
n
(δ). By Claim 3, operator T is monotonically inf-

preserving. Moreover, it is also 
P -isotone. Therefore, by Theorem A2 we conclude
that T

n
(δ) → τ ∗. Analogously, by a dual argument, we can show that τ ∗ =

limn→∞ T n(δ). ��
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We next turn to the question of monotone comparative statics of the set of dis-
tributional equilibria of a LGSC. In particular, our concern is not only to prove the
existence of distributional comparative statics, but also to provide sufficient conditions
that would allow for their computation. Given our generalization of Markowsky’s
Theorem (see Theorem A4 in the “Appendix”), we are able to characterize the order
structure of the set of fixed points of sup- and inf-preserving maps defined over count-
ably chain complete posets.

Before stating our next result, we need to introduce some additional notation. Con-
sider a parameterized version of our large game

Γ (s) := (
(Λ,A, λ), A(·, s), Ã(·, s), r(·, s)),

for each s ∈ S, where the space of parameters (S,≥S) forms a partially ordered set.
We impose the following assumptions of Γ (s).

Assumption 2 For any s ∈ S, suppose that

(i) correspondence Ã(·, s) and function r(·, s) obey Assumption 1;
(ii) for all α ∈ Λ, mapping s ⇒ Ã(α, s) increases in the strong set order;18

(iii) for λ-a.e. α, function r has single crossing differences in (a, s) on A × S;
(iv) for any countable chain {τn} ⊆ D, τn → τ implies r(α, a, τn, s) → r(α, a, τ, s).

Under the above assumption, we can prove the following equilibrium monotone
comparative statics result.

Corollary 1 Under Assumption 2, for any s ∈ S, there exist a greatest and a least
distributional equilibrium ofΓ (s), denoted by τ ∗(s) and τ ∗(s) respectively.Moreover,
functions s → τ ∗(s) and s → τ ∗(s) are increasing.

The above corollary follows from Theorems 1 and A4 (see the “Appendix”).

2.2 Remarks and discussion

In this subsection, we discuss three issues. First, we compare our results to the related
work in the existing literature concerning distributional equilibria in large games.
Then, we discuss how the structure of the set of equilibria in LGSC differs from the
one in GSC (with a finite number of players). Finally, we relate our results to the
literature on monotone equilibrium comparative statics in games with a continuum of
players.

Theorem 1 establishes the existence of distributional equilibria under a different set
of assumptions than in Mas-Colell (1984) or in other related papers in the literature
that followed. In particular, we do not require for the payoff function r to be weakly
continuous with respect to distributions τ onD. Instead, we endow sets Λ × A andD

18 Suppose that (X, ≥X ) is a poset, while (Y, ≥Y ) is a lattice. Correspondence F : X → 2Y is ascending
in the strong set order if, for any x ′ ≥X x in X and y ∈ F(x), y′ ∈ F(x ′), we have y ∧ y′ ∈ F(x) and
y ∨ y′ ∈ F(x ′). Clearly, the above definition implies that correspondence F is sublattice-valued.
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with a partially ordered structure, impose the quasisupermodularity and single crossing
differences conditions on the payoff function, and require the set of feasible actions of
players is a complete sublattice of R

m . In this sense, our approach allows to analyze
games with discontinuous payoffs.19 See also Rath (1996), Carmona and Podczek
(2014) or Prokopovych and Yannelis (2017).

Second, our main theorem establishes the existence of extremal distributional equi-
libria which, aside from generalizing some of the results for GSC, allows us to develop
the order-theoretic characterization of distributional equilibria. Furthermore, under
stronger continuity conditions on payoffs, it provides a method of computing the equi-
librium comparative statics (as well as extremal distributional equilibria at any fixed
parameter). Additionally, given Theorem 1(ii), in a special case we provide an order-
theoretic characterization of the entire set of distributional equilibria. Therefore, this
result highlights some aspects of the existence theorems obtained for GSC via various
versions of Tarski’s Theorem (see Veinott 1992; Zhou 1994).

However, it is worth mentioning that, unlike in GSC, we do not expect the set of
distributional equilibria in LGSC to be a complete lattice. In fact, given Theorem 1(ii),
we can at most expect that the set is a chain complete poset. The reason for this weaker
characterization of equilibrium is very simple. In general, although the action set A
is a complete lattice, the set of distributions over A is not.20 As a result, instead
of applying the result of Tarski (1955), we must appeal to an alternative result by
Markowsky (1976).21

Our approach suggests a direct method for computing particular distributional equi-
libria of a game as well as their monotone comparative statics (compare with Chapter
4.3 in Topkis 1998). Under sufficient order-continuity conditions imposed on payoffs,
in order to compute the extremal distributional equilibria, one needs to calculate the
order-limit of a sequence generated by the upper and the lower distributional operator
T and T . The sequences are generated by iterating downward (respectively upwards)
from greatest (respectively least) element of the chain complete poset (D,
P ). Given
that operators T and T are monotonically inf- and sup-preserving, the order-limits
of our iterations are attainable in a countable number of steps. Hence, they are com-
putable.22 Nevertheless, in order to obtain the computability result, we require that
payoffs are weakly continuous on the space of distributions D. Unlike in the orig-
inal result by Mas-Colell (1984), the weak continuity assumption in not critical
for existence of an equilibrium; rather, we only need this condition for the com-
putation/successive approximation of the extremal equilibria and their computable
comparative statics.

19 For example, our methods allow to analyze large games of Bertrand competition in which the demand
function is discontinuous due to product substitutability. Observe that this class of games cannot be analyzed
under the assumptions imposed by, e.g., Rath (1996).
20 For example, consider set of distributions on A ⊆ R

m ,m ≥ 2, ordered by first-order stochastic dom-
inance ordering. In this case, it is well known that the space of probability measures on A is not a lattice
(see Kamae et al. 1977); rather, it is only a CPO.
21 It is worth noting that Theorem 11 of Markowsky (1976) characterizes chain complete posets using their
fixed-point property relative to increasing mappings. In this sense, Markowsky (1976) provides a converse
to Theorem A1, just as Davis (1955) provides a converse to Tarski’s Theorem.
22 See the “Appendix” for a discussion of monotonically sup- and inf-preserving mappings.
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Finally, the only result concerning the existence of equilibrium comparative statics
for large games, of which we are aware, is presented by Acemoglu and Jensen (2010).
Their approach to equilibrium comparative statics is very similar to ours, as they
impose conditions guaranteeing that the joint best response mapping has increasing
selections with respect to the parameters of the game (see Definition 3 in their paper).
However, there are differences. First of all, as they concentrate on aggregative games,
where players best respond to the average/mean action of other players, the class of
games in which they obtain the result is quite different (andmore restrictive) than ours.
In particular, our framework includes their class of games, but also allows for more
general specifications of large games. Second, in case of a single dimensional action
space A, Acemoglu and Jensen (2010) manage to show the comparative statics of the
extremal (aggregative) equilibria without the single crossing property between player
actions and aggregates. This constitutes an extension of our results in the case of one
dimensional action spaces. However, once the space of actions is multidimensional,
Acemoglu and Jensen (2010) require that payoffs have increasing differences in the
action of a player and the aggregate, which is stronger than the ordinal notion of single
crossing differences that we use. Finally, in order to show existence of an aggregate
equilibrium Acemoglu and Jensen (2010) use the topological fixed-point theorem of
Kakutani. This makes the issues of equilibrium comparative statics and computability
of equilibrium difficult to address. On the other hand, our use of order-theoretical
fixed-point results allows to address both issues directly.

We conclude this subsection with some remarks on generality of our results.

Remark 1 In his original paper, Mas-Colell (1984) focused on anonymous games in
which the payoff function depended on the marginal distribution over the action space.
In particular, the characteristics of agents were not taken into consideration by the
players. Hence, the term anonymous. In other words, the reward function took the form
of r(α, τ ) := r̃(α, τA), for some function r̃ , where τA is the marginal distribution of τ

over the set of actions A. It bears mentioning that our framework embeds anonymous
games as a special case. Clearly, using a simple transformation τA(·) = τ(Λ × ·), we
can always construct payoffs that depend on τA, rather than τ .

Remark 2 After a careful read of the proof of Theorem 1, it is easy to see that the the-
orem consists of two separate results. The first one states that the greatest fixed point
of operator T constitutes the greatest distributional equilibrium of Γ . The second one
argues that the least fixed point of operator T is the least equilibrium of the game.
As long as the two operators are well defined, the two results hold simultaneously.
However, if only one of them exists, it is still possible to show that there is either
the greatest or the least equilibrium of the game, using the same argument as in the
proof of Theorem 1. In particular, this allows us to analyze the class of superextremal
games, introduced by Shannon (1990), LiCalzi andVeinott (1992), andVeinott (1992),
in the large framework. That is, whenever we allow for the payoff function to exhibit
a weaker form of complementarity then quasisupermodularity/lattice superextremal
and single crossing property/interval-crossing differences. For example, in LiCalzi
and Veinott (1992), the notion of a join (respectively, meet) superextremal and join
(meet) upcrossing differences is introduced. In this case, best replies in our games
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for Ã will be join (meet) sublattice-valued (rather than sublattice-valued in the lat-
tice superextremal/quasisupermodular case with interval-crossing differences/single
crossing property). In this case of weaker forms of complementary, appealing to the
work of LiCalzi and Veinott (1992), we can guarantee that that the upper (the lower)
distributional operator exists. Hence, there is greatest (least) equilibrium of the game.
Moreover, the monotone comparative statics of the equilibrium, established in Corol-
lary 1, also apply.23

Remark 3 In Sect. 3 that follows, we concentrate on applications which are inherently
infinite-dimensional. That is, we can discuss examples in which players take into
account the entire distribution τ in order to evaluate their payoffs. Nevertheless, there
are numerous applications in which agents interact with each other via an aggregate
(e.g., see Acemoglu and Jensen 2010; Guesnerie and Jara-Moroni 2011). The results
presented in this paper are still applicable to this subclass of games. However, they
can be strengthened in this particular framework.24 Suppose that the payoff function
r(α, a, g) depends on an aggregate value g, of players characteristics and actions.
Suppose that g is an element of some complete latticeG.Moreover, let g be determined
by function h :D → G, which is increasing on D.25 Define an operator � :G → G
by �(g) := h

(
T g

)
, where

(
T g

)
(H) = λ

({
α : (

α,m(α, g)
) ∈ H

})
, for some H ∈ L ⊗ A,

whilem(α, g) = ∨
argmaxa∈ Ã(α)

r(α, a, g).WheneverAssumption 1 is satisfiedwith
r having single crossing differences in (a, g) on A×G, it is easy to show that operator
� is well defined and isotone. Since G is a complete lattice, we can apply Tarski’s
Theorem to show that the operator has a greatest fixed point g∗. This implies that there
is a greatest distributional equilibrium of the game

(
T g∗). Similarly, we may prove

the existence of a least equilibrium.

Remark 4 Following the tradition of Schmeidler (1973), it is possible to define an
equilibrium of a LGSC in terms of strategy profiles, rather than distributions. In this
framework, a strategy profile is a function f : Λ → A that assigns an action f (α) ∈
Ã(α) to agent α ∈ Λ. Moreover, we find it desirable to restrict our attention to L-
measurable functions.

To see how could we adapt our techniques to the above concept of equilibrium,
define a set of L-measurable functions f : Λ → A by F . Endow the space with the
pointwise order.26 Therefore, the payoff function is r : Λ × A × F → R.

23 In the “superextremal” variant of the superextremal class of payoffs (with upcrossing differences),
LiCalzi and Veinott (1992), Veinott (1992) prove the existence of monotone selections in best reply maps;
an open question is if they are measurable. Our results do not generalize directly to this case.
24 We thank one anonymous referee of this journal for recommending us this application.
25 Let G ⊂ R

n . One example of an aggregator may be h = (h1, . . . , hn), where hi :D → R is defined by
hi (τ ) := ∫

Λ×A fi (α, a)dτ(α, a), for some increasing fi :Λ × A → R, i = 1, . . . , n.
26 That is, we say that function f ′ dominates f in the pointwise order if f ′(α) ≥ f (α), for all α ∈ Λ.
Note, this is a different ordering, than the one discussed in our main result.
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Under similar conditions to those stated in Assumption 1, it is possible to provide
an analogous characterization of the set of equilibria, including the existence of a
greatest and a least elements of the equilibrium set. However, the method of proving
the result is different. In particular, we are forced to use a different fixed-point result
in our argument, as the Markowsky’s Theorem is no longer applicable.

The reasonwe need to refer to a different argument is implied by the fact that, unlike
the space of distributions, the set of bounded Borel-measurable functions endowed
with the pointwise order is not a chain complete poset. In fact, the set is a σ -complete
lattice, which means that only countable subsets of F (see Example 2.1 in Heikkilä
and Reffett 2006).

Therefore, the set is a countable chain complete. Clearly, this follows from the very
definition ofmeasurability,which need not be preserved under uncountable operations.
The lack of the strong form of completeness of the joint strategy set forces us to use
the Tarski–Kantorovich theorem (see Theorem A2 in the “Appendix”) in order to
prove the existence of an equilibrium in the sense of Schmeidler (1973). This, on the
other hand, requires additional order-continuity assumptions on the payoff function.27

Recall in case of distributional equilibria, the continuity conditions were only required
for the approximation of the extremal equilibria and themonotone comparative statics,
but not for equilibrium existence. Nevertheless, our order-continuity assumptions are
weaker thanweak continuity assumed in the existing literature (e.g., seeKhan 1986).28

Moreover, ourmethods allow for the iterative approximation of the extremal equilibria,
and their monotone comparative statics.

3 Applications

In this section, we present several economic applications of the methods. In each
example, our emphasis is on non-aggregative large games.

3.1 Social distance model

To motivate the results in our paper, we begin by considering distributional equilibria
in a version of the social distance model described originally by Akerlof (1997).
The model studies the distribution of social ranks/statuses over a large number of
heterogeneous individuals. Consider a continuum of agents distributed over a compact
interval X ⊂ R, where a location of an individual agent is denoted by x ∈ X . Let
Y ⊂ R be the set of all possible positions in the society (e.g., social statuses/ranks),
where Y is compact and convex. Each individual is characterized by an identity y ∈ Y ,
which determines the social status/rank to which the agent aspires. We shall refer to
the location-identity pair (x, y) as the characteristic of an agent.

27 Formally, we require that the payoff function preserves the limits of monotone sequences in F . This
guarantees that the extremal best response selections are monotonically inf- and sup-preserving—a feature
required for the application of Tarski–Kantorovich theorem.
28 Since order-continuity has to be verified only with respect to all sub-chains of the original set, it is easy
to provide an example of payoff functionals that are order-continuous, but not weakly continuous.
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Suppose that the distribution of characteristics across the population is determined
by a probabilitymeasureλ, defined over theBorel-field of X×Y .We assume that every
agent knows his own characteristic (x, y), as well as the distribution of characteristics
across the population. In this game, we study how agents determine their optimal
individual choice of social status a ∈ Y, given their location x ∈ X and identity
y ∈ Y .

In this model, the payoff of an individual is determined as follows. First of all, every
agent aims to attain a status/rank that is in proximity to his true identity y. Therefore,
the agent will suffer a penalty, whenever his social status a does not match to his true
identity y. Moreover, the further away the actual status is from the true identity, the
more disutility the agent receives.

Second of all, the individual payoff is affected by interactions with other agents
in the game. Assume the players meet at random. Whenever an agent meets another
player, he suffers a disutility if his social status a differs from the social status a′ of
the other individual. The disutility increases the greater is the distance between the
two statuses. This incorporates a form of peer pressure or conformism to the game.

Let u, v : R → R be continuous, decreasing functions. In addition, assume that v

is concave. Consider an agent characterized by (x, y) who chooses a status a ∈ Y .
Whenever the agent meets another individual with a social status a′ ∈ Y , his utility is
given by:

u
(|a − y|) + v

(|a − a′|).
As both functions u and v are decreasing, the objective of every player is to choose an
action as close as possible to their true identity y and the identity a′ of the other player.
Moreover, given concavity of function v, the further away is the status of the agent
from the social rank of the other player, the steeper are the changes in the disutility.

In order to make our notation compact, denote Λ := X ×Y , with a typical element
α = (x, y). Suppose that the frequency of interactions of the agent with other individ-
uals is governed by a probability measure μα , defined over the product Borel-field of
Λ. Therefore, for any setU = Ux ×Uy , whereUx ⊂ X andUy ⊂ Y , value μα(U ) is
the probability of encountering an agent with a characteristic (x ′, y′) ∈ Ux ×Uy . We
assume that the measureμα depends on α = (x, y), as both the location x of the agent
and his aspirations y may determine the frequency of interactions with other members
of the population. The more distant the locations of two agents, the less frequent their
interaction. Analogously, agents with similar aspirations are more likely to meet.

Let τ be a probability measure defined over the Borel-field of Λ × Y . Suppose that
the marginal distribution of τ over Λ is λ. Denote the set of all such measures by D.
Clearly, τ is a probability distribution of player characteristics and social ranks (α, a).
Hence, for any Borel sets U ⊆ Λ and A ⊆ Y , value τ(U × A) denotes the measure
of agents with characteristic α ∈ Λ and a ∈ A.

Given the notation, we define the decision problem faced by a typical agent in the
game. The objective of a player is to choose his social status a ∈ Y that maximizes
his expected payoff given by

r(α, a, τ ) := u
(|a − y|) +

∫

Λ

∫

Y
v
(|a − a′|)dτ(a′|α′)dμα(α′),
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where α = (x, y) and τ(·|α′) is the distribution of actions of other players in the
population conditional on α′ ∈ Y . Therefore, the payoff of an agent is the sum of
utilities that he receives from individual interactions with other agents. According to
the above definition, the social status of an individual cannot be contingent on the
social statuses of other agents, but has to be chosen ex-ante before any interaction
occurs.29

Formally, since the set of feasible actions is common for all agents and constantly
equal to Y , Assumption 1(i) is satisfied. By assumption, function v is concave and
decreasing. Therefore, Lemma A4 (see the “Appendix”) implies that v(|a − a′|) has
increasing differences in (a, a′). It is easy to show that this is sufficient for payoff
function r(α, a, τ ) to have increasing differences in (a, τ ) on Y × D, whenever the
set of distributions D is ordered with respect to the first-order stochastic dominance

P . Hence, Assumption 1(ii) is also satisfied. Finally, given that functions u and v

are continuous, and assuming that function α → μα is measurable, Assumption 1(iii)
also holds.

By Theorem 1, we conclude there exist a greatest and least distributional equilibria
of the game. Furthermore, as function r(α, a, τ ) satisfies the order-continuity on D,
which allows for the iterative approximation of the extremal equilibria. Moreover,
since agents care about the status of other players as well as their own true identity,
the extremal equilibria are trivial only in some special cases. That is, in general it is
not the case that, in the greatest (the least) equilibrium of the game, the measure of
agents choosing the greatest (the least) possible social status is equal to 1. Therefore,
the approximation methods are useful in determining and computing the distributional
equilibria.

An inherent feature of the above example is that agents need to observe the entire
distribution of characteristics and actions of other players in order to evaluate their
payoffs. In particular, the externality in the game cannot be summarized by an aggre-
gate of actions of players as in Acemoglu and Jensen (2013), as each player’s payoff
does depend on average distance to their neighbors, rather then distance to the aver-
age neighbor. Moreover, since the set of probability distributions is not a lattice, the
externality in the game cannot be formulated as a “lattice externality” (see Guesnerie
and Jara-Moroni 2011).

Notice that payoffs in this game inherently depend on the joint distribution of player
types and actions. Moreover, as the frequency of interactions between individuals
depends both on their location and level of aspirations, it is imperative that players
have a complete information about the composition of agents in the game. In particular,
this implies that the game cannot be reduced to an anonymous large game, in which
only themarginal distribution over actions is taken into account by the players. In other
words, as characteristics of other players affect consumer payoffs directly, the (semi-
anonymous) equilibrium of the game has to be defined in terms of a joint distribution
over characteristics and actions.

29 One interpretation of the game is as follows. With probability μα({α′}) player α meets an individual
with a characteristic α′. Then, with probability τ({a′}|α′) player α′ chooses action a′. This allows agent α
to calculate his expected payoff. In this sense, we can think of this as an interim game. However, we do not
analyze ex-post “matching” of agents.
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Moreover, note the space of characteristics is not a chain (i.e., is not totally ordered).
In fact, it is crucial that the space of characteristics is a subset of the two dimensional
real space, as both the location and the true identity of an agent affect his decision.
As it was stressed by Akerlof (1997) or Akerlof and Kranton (2000), both the neigh-
borhood effect (the players’ location) and the family background effect (the players’
true identity) are the two key factors in determining the social interaction and the dis-
tribution of equilibrium social distance. However, this means that the space of player
characteristics is not a chain. Therefore, the developments of Yang and Qi (2013)
cannot be applied in the above framework (see also Balbus et al. 2015c).

3.2 Linear non-atomic supermodular games

The previous example is a special case of a larger class of games that we call linear
non-atomic supermodular games. Assume a measure space of player characteristics
denoted by (Λ,L, λ). As in Sect. 2, let the set of all possible actions be A, and the
correspondence mapping the characteristics of agents into the set of feasible strategies
be denoted by Ã. In addition, we introduce a poset of parameters denoted by (S,≥S).
In the class of linear non-atomic supermodular games, all the agents in the population
interact with each other individually. Therefore, the player’s ex-post payoff is a sum
of utilities from every separate interaction.

More specifically, suppose the payoff from a single interaction is determined by
function u : Λ × S × A × A → R. That is, an agent with characteristic α ∈ Λ,
given parameter s ∈ S and action a ∈ Ã(α), yields u(α, s, a, a′) units of utility from
an individual interaction with an agent playing a′ ∈ A. As previously assumed, the
frequency of interactions with other players will depend on the trait of a given player.
Hence, for any α ∈ Λ, there is a non-atomic probability measure μα defined over L.
Hence, for any measurable groupU ∈ L, μα(U ) denotes the probability that an agent
with characteristic α will meet an individual with a characteristic belonging to U .

Let τ ∈ D be a distribution of characteristics and actions in the population. Given
the description, the interim payoff of an agent with α ∈ Λ is

r(α, s, τ, a) :=
∫

Λ

∫

A
u(α, s, a, a′)dτ(a′|α′)dμα(α′).

Clearly, in order for the payoff to be well defined, we require that function u(α, s, a, ·)
is A-measurable for any α, s, and a.

Assume the function u isL-measurable, continuous and supermodular with respect
to a, and has increasing differences in (a, a′), for any s ∈ S. Moreover, letμα be mea-
surable as a function of α. Given Theorem 1, any such linear non-atomic supermodular
game has a greatest and a least distributional equilibrium, which can be approximated
using our iterative method.

Assume for any α ∈ Λ and a′′ ≥ a in Ã(α), the family of functions {Δα(·, a′)}a′∈A,
whereΔα(s, a′) := u(α, s, a′′, a′)−u(α, s, a, a′), obey the signed-ratiomonotonicity
(see Quah and Strulovici 2012). Then, the function r(α, s, τ, a) has single crossing
differences in (a, s) on A× S. By Corollary 1, the greatest and the least distributional
equilibrium of the game increases with respect to the deep parameter s.
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The key feature of the above class of games is that the payoff function is linear with
respect to measure τ . Therefore, it is weakly continuous on the space of probability
measures. This implies that the additional order-continuity assumption imposed prior
to Theorem 1(iii) is always satisfied. Hence, no additional assumptions have to be
imposed in order for the result to hold.

3.3 Large stopping games

We next turn to an optimal stopping time example. Suppose that a continuum of agents
are deciding how long should each one participate in an investment project that lasts
at most T periods. Each period t, each agent takes part in the investment, from which
she receives a profit of π(t,m), where m is the measure of agents participating in
the project at time t . We assume π(t,m) may take both positive and negative values;
however, it is increasing inm. In otherwords, themore agents participate in the project,
the higher are the profits (or, lower are the losses) to every individual agent. Finally,
whenever the agent is not participating at the project, her payoff is equal to zero.

In the following analysis, we concentrate solely on the case where time is discrete.
Define the set of time indices by {1, 2, . . . , T }. Suppose the time at which the agent
joins the project is determined exogenously and that it defines the characteristic of an
agent. Hence, α ∈ Λ, where Λ := {1, 2, . . . , T }. The distribution of characteristics
across agents is determined by some measure λ over Λ. Hence, λ(α) is the measure
of agents that join the project at time α. Endow Λ with a natural order.

Since the time at which agents join the investment is given exogenously, they can
only decide when to leave the investment. Assume that agents can leave the project
only once (i.e., just like in a standard optimal stopping game). Given this, an action of a
player is equivalent to a time index at which the agent decides to leave the investment.
Using our notation, the set of all possible actions A is equivalent to the set of time
indices Λ.30 Moreover, the correspondence mapping agents characteristics into the
set of feasible actions is defined by Ã(α) := {α, . . . , T }.

Assume the distribution of characteristics and actions for the population is given by
τ ∈ D. Therefore, for any (α, a) ∈ Λ× A, τ ({(α, a)}) is the measure of agents joining
the investment at time α and leaving at time a. Define function F :D × Λ → [0, 1]
as

F(τ, t) := τ
({

(α, a) : α ≤ t ≤ a
})

.

In other words, F(τ, t) is a measure of agents participating in the project at time t .
Note that function F(τ, ·) is not a probability distribution nor a cumulative distribution.
Clearly, the sum of its values might not be equal to one and it need not be monotone.

Given the notation, we define the payoff of an agent α ∈ Λ by

r(α, a, τ ) :=
a∑

t=α

π
(
t, F(τ, t)

)
,

30 We shall differentiate the notation of these two sets in order to avoid confusion.
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The objective of every agent is to maximize r(α, τ, a) with respect to a ∈ Ã(α).
To show the above game obeys Assumption 1, we first show that function F(τ, ·) is

pointwise increasing as themeasures τ ∈ D shifts upwardwith respect to thefirst-order
stochastic dominance. Consider any τ ′ and τ in D such that τ ′ 
P τ . By definition
of the first-order stochastic dominance, this implies that for any (α, a) ∈ Λ × Λ, we
have

τ ′({
(α′, a′) : (α′, a′) ≤ (α, a)

}) ≤ τ
({

(α′, a′) : (α′, a′) ≤ (α, a)
})

.

Since τ ′ and τ belong toD, their marginals over the space of characteristics Λ are the
same. Therefore, τ ′({(α′, a′) : a′ ≤ a}) ≤ τ({(α′, a′) : a′ ≤ a}). Then,

F(τ, t) := τ
({

(α, a) : α ≤ t ≤ a
}) ≤ τ ′({

(α, a) : α ≤ t ≤ a
}) =: F(τ ′, t),

for any t ∈ Λ. The above property is sufficient for the payoff r to have increasing
differences in (a, τ ) on A × D. Clearly, since function π(t, ·) is increasing,

r(α, a′, τ ) − r(α, a, τ ) =
a′∑

t=a

π
(
t, F(τ, t)

)

≤
a′∑

t=a

π
(
t, F(τ ′, t)

) = r(α, τ ′, a′) − r(α, τ ′, a),

for any α ∈ Λ and a′ ≥ a in A. To complete the argument, note as the space of
characteristics and actions is finite, the payoff function is trivially continuous onΛ×A.
Therefore, Assumption 1 is satisfied. Moreover, once we assume that function π(t, ·)
is continuous for any t ∈ Λ, the payoff function is order-continuous with respect
to τ . By Theorem 1, we conclude the game has a greatest and a least distributional
equilibrium which can be approximated using our iterative methods.

Finally, we are able to determine the comparative statics of the extremal equilibria.
Assume each period, the payoff function is parameterized by a deep parameter s
belonging to a poset (S,≥S). Hence, each period the agent that participates in the
investment receives π(t, s,m), where m is the measure of players taking part in the
project at the given time. Suppose π(t, ·,m) is an increasing function for any t ∈ Λ

and m ∈ [0, 1]. Clearly, for any α and τ ,

r(α, s, a, τ ) :=
a∑

t=α

π
(
t, s, F(τ, t)

)
,

has increasing differences in (a, s) on A × S. By Corollary 1, this is sufficient to
conclude that the extremal equilibria are increasing functions of s.

As in the model of social distance, in order to define payoffs in the above game, it
is imperative to specify the joint distribution over player characteristics and actions.
Clearly, given that the number of agents currently present in the market is determined
by the number of agents who have already arrived and those who have not yet left, both
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the arrival time (i.e., the characteristic) and the stopping time (i.e., the action) of other
players have to be taken into account while evaluating the payoff of each individual.

3.4 Keeping up with the Joneses

We finish with an application of our results to large economies with peer effects.
Consider an economy consisting of a continuum of consumers. Every consumer in the
economy is characterized by their initial wealth m ≥ 0, and a number i ∈ [0, 1]. In
our framework, the number i will correspond to the relative social position to which
the agent refers to when choosing her consumption level. We formalize the notion in
the remainder of this subsection.

Let the set off all possible values of wealth m be a compact subset M of R+,
where

∨
M := m̄. Let Λ := M × [0, 1], and α = (m, i) be one of its elements. The

distribution of characteristics is determined by a measure λ over the product Borel-
field L of λ.

There are two markets in the economy: the consumption goodmarket and the labor
market. Every agent is endowed with m units of the initial wealth, expressed in units
of the consumption good, and one unit of time that can be devoted either to labor
or leisure. Given the normalized price of consumption p = 1 and wage w > 0, the
budget set is

B(m, w) =
{
(a, n) ∈ R+ × [0, 1] :m + w ≥ a + wn

}
,

where by (a, n) we denote a pair of consumption a and leisure n. Note that the set of
feasible consumption levels in our framework is given by A = [0, m̄ + w].

Apart from the consumption and leisure, every agent takes into account the relative
level of her consumption to other agents in the economy. Number i ∈ [0, 1], charac-
terizing the consumer, denotes the quantile of the distribution of consumption in the
population that the agent is treating as a reference point when choosing her consump-
tion. In other words, the higher is the agent’s consumption above the i th quantile of
the distribution, the better. This feature of the model incorporates the keep up with the
Joneses effect, but in a heterogenous manner. Thus, each agent is characterized by a
different i .

Assume that the distribution of characteristics and consumption in the economy is
defined by a probability measure τ over Λ × A. Let

q(τ, i) := min
{
a′ ∈ A : τ

({
(α, a) ∈ Λ × A : a ≤ a′}) ≥ i

}
.

Hence, q(τ, i) is the i th quantile of the distribution of consumption, given τ . This
implies that the game cannot be reduced to aggregative one.

Every consumer is endowed with a pair of utilities u : R+ × [0, 1] → R+ and
v : R → R. We assume both functions are continuous, increasing, and concave. Given
the distribution of consumption τ , the objective of every agent is to solve

max
(a,n)∈B(m,w)

u(a, n) + v
(
a − q(τ, i)

)
.
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When choosing her consumption and leisure, agent takes into account their direct effect
summarized by function u, as well as the utility yielded from the relative consumption.

Note that in the above framework, we model the social status differently than in
the example discussed in Sect. 3.1. Since agents’ utility depends positively on the
difference between their consumption and a certain quantile of the distribution of con-
sumption, the social status is defined relatively to the mass of agents that consume
less than the given player. We consider this to be a good approximation of the con-
sumer choice, when social class concerns are taken into consideration—agents want
their consumption to dominate the consumption of a certain fraction of the popula-
tion.

Given monotonicity of u and v, the budget constraint is always binding. Hence, we
have n = (m + w − a)/w, for any optimal solution (a, n). This allows us to reduce
the number of variables in the consumer optimization problem. Given the condition,
the payoff of the consumer can be expressed by

r(α, a, τ ) := u
(
a, (m + w − a)/w

) + v
(
a − q(τ, i)

)
,

where α = (m, i), while the set of feasible strategies is Ã(α) = [
0, (w + m)/w

]
.

Hence, given τ , the objective is to maximize r(α, a, τ ) with respect to a ∈ Ã(α).
In order to apply our main result to the above example, we need to show it satisfies

the conditions of Assumption 1. Clearly, set A is a lattice, while correspondence Ã is
continuous and complete lattice valued. By assumptions imposed on functions u and
v, function r is continuous in a and measurable with respect to the characteristic α.
Therefore, it suffices to show that is has single crossing differences in (a, τ ).

First, note that the quantile function q(·, i) is increasing on (D,
P ), for any i . Take
any a′ ≥ a in Ã(α) and τ ′ 
P τ in D. Then,

r(α, a′, τ ) − r(α, a, τ ) = v
(
a′ − q(τ, i)

) − v
(
a′ − q(τ, i)

)

≤ v
(
a′ − q(τ ′, i)

) − v
(
a′ − q(τ ′, i)

) = r(α, a′, τ ′) − r(α, a, τ ′),

where the inequality is implied by monotonicity of q(·, i) and Lemma A3 (see the
“Appendix”). Hence, function r(α, τ, a) has increasing differences in (a, τ ) . There-
fore, the above example satisfies the conditions stated in Assumption 1 and our results
follow.

The above observation implies that the game presented above admits a greatest
and a least distributional equilibrium. Moreover, our results allow to determine some
equilibrium comparative statics. First of all, as function q(τ, ·) is increasing in i , it is
easy to show that objective r function has increasing differences in (a, i). This implies
that the greatest and the least distributional equilibria shift in the first-order stochastic
sense as the characteristic i increases for all agents. Hence, the marginal distribution
over equilibrium consumption increases stochastically with individual aspirations i .

Analogously, whenever we assume consumption is a normal good, we can show
that equilibrium consumption increases stochastically with respect to the profile of
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the initial wealth m.31 Therefore, the higher is the initial wealth m of each agent, the
greater is the marginal distribution of equilibrium consumption in the economy.

Our approach to status and conspicuous consumption differs in several ways from
the one presented in Hopkins and Kornienko (2004, 2009). First of all, our notion
of status is defined as a level of consumption chosen by the individual relatively to a
particular quantile of the distribution of consumption in the economy. Therefore, value
q(τ, i) determines a benchmark, expressed in units of consumption, that the consumer
is using to evaluate her status. In contrast, Hopkins and Kornienko (2004) define status
a measure of agents whose consumption is lower than the consumer’s. In particular,
unlike in our case, the above notion implies that the steeper is the distribution of
consumption in the economy, the higher is the marginal utility the agent receives from
attaining higher status. In our case, changes in utility from status depend only on the
benchmark quantile q(τ, i). See also Gavrel and Rebière (2017).

Our specification of status allows us to analyze problems in which heterogeneity
in aspiration levels plays a significant role. In contrast to Hopkins and Kornienko
(2004), every agent in our economy is characterized both by the initial wealth m as
well as the parameter i . Despite the heterogeneity, employing the tools introduced
in the preceding sections allows us to determine existence of extreme equilibria and
some comparative statics of the equilibrium outcome. On the other hand, the analysis
of Hopkins and Kornienko (2004) requires for agents to be symmetric (up to the level
of initial wealth). Clearly, their approach has many advantages. In particular, they are
able to determine existence of a unique equilibrium of the game and provide some
important comparative statics results. However, this comes at the cost of reducing
heterogeneity (and semi-anonymity) in the economy.
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A Appendix

In the following section, we present several auxiliary results used in the arguments
supporting our main theorems. First, we present a theorem byMarkowsky (1976). See
Theorem 9 of his paper for the original reference.

Theorem A1 (Markowsky’s fixed-point theorem) Let F : X → X be increasing, and
X be a chain complete poset. Then, the set of fixed points of F is a chain complete

31 Following Quah (2007), it suffices to assume that function u is concave and supermodular.
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poset. Moreover, x := ∨ {
x : x ≤ F(x)

}
and x := ∧ {

x : x ≥ F(x)
}
constitute a

greatest and a least fixed point of F respectively.

In many cases, we are referring to a constructive version of Markowsky’s Theorem.
The Tarski–Kantorovich fixed-point theorem is one such theorem. We now provide
a generalization of the Tarski–Kantorovich result that additionally provides a fixed-
point comparative statics results in the spirit of Veinott (1992) version of Tarski’s
theorem. See also Balbus et al. (2015b), where it was originally stated and proved. For
a monotone sequence {xn}∞n=0, let

∨
xn := sup

n∈N
xn and

∧
xn := inf

n∈N xn .

By Fn(x), we denote the nth orbit (or iteration) of function F from point x ∈ X . That
is, Fn(x) := F ◦ F ◦ · · · ◦ F(x).

Definition 1 Function F : X → X is monotonically sup-preserving (monotonically
inf-preserving) if, for anymonotone sequence {xn}∞n=0, we have F

( ∨
xn

) = ∨
F(xn)

(respectively F
( ∧

xn
) = ∧

F(xn)). F is monotonically sup/inf-preserving if and
only if it is both monotonically sup- and inf-preserving.

It is worth mentioning a monotonically sup- or inf-preserving function is necessar-
ily increasing. The Tarski–Kantorovich Theorem (see Theorem 4.2 in Dugundji and
Granas 1982) states the following.

Theorem A2 (Tarski–Kantorovitch fixed-point theorem) Let X be a countably chain
complete poset with the greatest and the least element denoted by x and x respectively.
Let Φ denote the set of fixed points of function F : X → X. Then,

(i) if F is monotonically inf-preserving,
∧

Fn(x) is a greatest fixed point of F;
(ii) if F is monotonically sup-preserving,

∨
Fn(x) is a least fixed point of F.

Next, we present two new theorems that can be developed using the Tarski–
Kantorovitch fixed-point theorem. First, we characterize the set of fixed point of
function F . The second result provides the monotone comparative statics of the set.

Theorem A3 Let X be a countably chain complete poset, F : X → X amonotonically
sup/inf-preserving function, and Φ is the set of fixed points of F. Then, set Φ is a non-
empty countably chain complete poset with a greatest and a least element denoted
by

φ̄ :=
∨

{x : F(x) ≥ x} and φ :=
∧

{x : F(x) ≤ x} .

Theorem A4 Let X be a countably chain complete poset with greatest and least
element, T be a poset, and F : X ×T → X be an increasing function such that F(·, t)
is monotonically inf-preserving (monotonically sup-preserving) on X, for all t ∈ T .
Moreover, denote the greatest (the least) fixed point of F(·, t) by φ̄(t) (φ(t)), for some

t ∈ T . Then, function t → φ̄(t) (t → φ(t)) is increasing.
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See Balbus et al. (2015b) for the proofs of Theorems A3 and A4. Next, we prove
a space of regular measures defined over a compact support and endowed with the
first-order stochastic dominance order is a chain complete poset. Suppose (X,≥) is a
partially ordered set, where X is a compact space endowedwith Hausdorff topologyX
and a Borel σ -fieldB. ByC(X)we denote the set of continuous, real-valued functions
on X . Let M(X) be the set of isotone, measurable, and bounded real-valued functions
over X . We say a measure μ first-order stochastically dominates a measure ν, denoted
μ 
P ν, whenever

∫

X
f dμ ≥

∫

X
f dν, for all f ∈ M(X).

Let R be a set of regular measures over X .

Lemma A1 If M(X) separates the points of X, then (R,
P ) is an ordered space.

Proof Clearly
P is reflexive and transitive.We now need to show it is antisymmetric.
Assume μ 
P ν and ν 
P μ. Then.

∫

X
f dμ =

∫

X
f dν, for all f ∈ M(X). (3)

Clearly, set M(X) − M(X) is a Riesz subspace of C(X) and contains a constant
function.32 Therefore, by the Stone-Weierstrass Theorem (see Aliprantis and Border
2006, Theorem 9.12) M(X) − M(X) is uniformly dense on C(X). In particular,
condition (3) is satisfied for all f ∈ C(X).

Take any two closed subsets F and F ′ of X such that F ∩ F ′ = ∅, while μ(F ∪ F ′)
and ν(F∪F ′) are arbitrarily close to 1. Clearly, since X is compact and Hausdorff, any
closed set is compact. Since the two measures are regular (hence, tight) such subsets
exist. Let an arbitrary ε > 0 be such thatμ(F∪F ′) > 1−ε and ν(F∪F ′) > 1−ε. As
X is compact and Hausdorff, by Urysohn’s Lemma (see Aliprantis and Border 2006,
Lemma 2.46), it is possible to construct a continuous function f : X → [0, 1] that
satisfies f (x) = 1, for x ∈ F , and f (x) = 0, for x ∈ F ′. Since

∫
X f dμ = ∫

X f dν,
we obtain

ν(F) ≤ ν(F) +
∫

Fc∩F ′c
f dν =

∫

X
f dν

=
∫

X
f dμ = μ(F) +

∫

Fc∩F ′c
f dμ ≤ μ(F) + ε.

Analogously, we can show thatμ(F) ≤ ν(F)+ε. Given that ε is arbitrary, this implies
that μ(F) = ν(F), for any closed (hence, compact) F ⊆ X . Since the measures are
tight, this implies that μ = ν. ��

Given the above preliminary result, we may proceed with our characterization of
the ordered space of regular measures.

32 See Aliprantis and Border (2006, p. 646, footnote 5).
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Proposition A1 (R,
P ) is a chain complete poset.

Proof of Proposition A1 Let {τt } be a decreasing chain. Recall M(X) is the set of
isotone, measurable, and bounded real-valued functions over X . Define T : M(X) →
R,

T ( f ) := inf
t

{∫

X
f (s)dτt (s)

}
,

and for antitone functions f ∈ −M(X)

T ( f ) = − inf
t

{∫

X
− f (s)dτt (s)

}
= sup

t

{∫

X
f (s)dτt (s)

}
.

Note that, T is a functional on M(X) that preserves addition and multiplication by a
positive scalar. It can be extended to the vector subspace M(X)− M(X) as follows. If
f = g−h, for g, h ∈ M(X), then T ( f ) = T (g)−T (h), which iswell defined. Indeed,
if f ∈ M(X) − M(X), then f = g − (g − f ), for g ∈ M(X) and f − g ∈ M(X).
Hence,

inf
t

∫

X
g(x)dτt (x) = lim

t

∫

X
g(x)dτt (x),

as well as

inf
t

∫

X
g(x)τt (dx) = lim

t

∫

X
f (x) − g(x)τt (dx).

Since T is isotone,
|T ( f )| ≤ ‖ f ‖∞, (4)

while the inequality may hold as T (1) = 1. By the Banach Extension Theorem, there
exists an extension T̂ of T for all elements in C(X) that satisfy (4). By the Riesz
Representation Theorem (see Aliprantis and Border 2006, Theorem 14.12) there is a
unique regular measure τ such that

T̂ ( f ) =
∫

X
f (s)dτ(s),

for all f ∈ M(X). Moreover, by condition (4), it is a probability measure. Clearly, τ
is a lower bound of the chain {τt }. We need to show it is the greatest lower bound in
R.

We prove our claim by contradiction. Suppose there is another measure τ0 which
is a lower bound of {τt }, but it is not dominated by τ . Then, there exists a function
f ∈ M(X) such that

∫
X f dτ0 >

∫
X f dτ . As τ0 is a lower bound of {τt }, we have

T ( f ) = inf
t

{∫

X
f (s)dτt (s)

}
≥

∫

X
f dτ0 >

∫

X
f dτ = T ( f ),

which yields a contradiction. Hence, τ is the greatest lower bound of {τt }. Similarly,
we can prove the thesis for increasing chains. ��

Next, we present an auxiliary result that is used in the proof of Lemma 1.
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Lemma A2 Let X and Y be Hausdorff topological spaces endowed with σ -fields BX

and BY respectively. Let μ be a finite measure on BX ⊗ BY . Whenever the marginals
of μ on X and Y are regular measures, then μ is a regular measure.

Proof By Theorem 12.4 in Aliprantis and Border (2006), it is sufficient to show that
measure μ is tight. Define

E :=
{
V ∈ BX ⊗ BY : μ(V ) = sup

{
μ(K ) : K ⊆ V, K is compact

}}
.

By the standard argument (see the proof of Theorem 12.5 in Aliprantis and Border
2006), E is a σ -field. We need to show that E includes sets of the form Ux × Uy ,
with Ux ∈ BX and Uy ∈ BY . Since the marginals of μ are tight, hence for given
ε > 0, there are compact sets Kx ⊂ Ux and Ky ⊂ Yy such that μx (Ux\Kx ) < ε/2
and μy(Uy\Ky) < ε/2, where μx and μy denote the marginals of μ on X and Y ,
respectively. Then,

μ
(
(Ux ×Uy)\(Kx × Ky)

) ≤ μ
(
(Ux\Kx ) × Y

) + μ
(
X × (Y\Ky)

)
< ε.

Hence, Ux ×Uy ∈ E . ��
Finally, we present one result applied in Sect. 3.1.

Lemma A3 Let f : X → R be a concave function over a convex subset X ⊆ R.
Define Y := {(x, s) ∈ R

2 : (x − s) ∈ X}. Then, function g : Y → R, where g(x, s) :=
f (x − s), has increasing differences in (x, s) on X × X.

Proof of Lemma A3 Since f is concave, for any x ′ ≥ x , and s′ ≥ s, we have

f (x ′ − s′) − f (x − s′)
(x ′ − s′) − (x − s′)

≥ f (x ′ − s) − h(x − s)

(x ′ − s) − (x − s)
,

which implies that f (x ′ − s′) − f (x − s′) ≥ f (x ′ − s) − f (x − s). ��
Lemma A4 Let f : X → R, where X ⊆ R+ is convex, be a decreasing and concave
function. Let Y := {(x, s) ∈ R

2 : |x − s| ∈ X}. Then, function g : Y → R, defined by
g(x, s) := f (|x − s|) has increasing differences in (x, s).

Proof of Lemma A4 First, we prove function h : X → R, h(x) := f (|x |), is concave.
Take any x ′, x ∈ X and α ∈ [0, 1]. Then

f (|αx + (1 − α)x ′|) ≥ f (α|x | + (1 − α)|x ′|) ≥ α f (|x |) + (1 − α) f (|x ′|),

where the first inequality is implied by the triangle inequality and monotonicity of f ,
while the second follows from concavity of f . The rest is implied by Lemma A3. ��
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