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Chapter 1

Multivariable Calculus

1.1 Derivative of f : R→ Rp

Definition 1 Let f be a mapping of an interval J into Rp. We assume that
the interval has more than one point, but the interval may contain its end
points. We say that f is differentiable at a number t in its interval of defini-
tion if limh→0

f(t+h)−f(t)
h

exists, in which case this limit is called the derivative of
f at t and is denoted by f ′(t).
We say that f is differentiable (on J) if it is differentiable at every t ∈ J , and in
that case, f ′ is a mapping of J into Rp.
If f has p continuous derivatives, we say f is of class Cp.
If f is infinitely differentiable, we say that f is C∞.

Remark 1 f : J → Rp can be represented by coordinate functions,
f(t) = (f1(t), . . . , fp(t)) and f(t+h)−f(t)

h
=
(
f1(t+h)−f1(t)

h
, . . . , fp(t+h)−fp(t)

h

)
.

The limit can be taken componentwise, and consequently f is differentiable if and
only if each coordinate function is differentiable, and then
f ′(t) = (f ′1(t), . . . , f ′p(t)).
One usually views a map f such as above as a parametrized curve in Rp.

Examples: Let f(t) = (cos(t), sin(t)) parametrizes the circle. We have f ′(t) =
(−sin(t), cos(t)).
Let f(t) = (cos(t), sin(t), t). Then f(t) describes a spiral. Its projection in the
plane of the first two coordinates is of course the circle.

The examples give a curve in R2 and R3 respectively.

To distinguish such curves from those given by an equation like x2 + y2 = 1
we also call them parametrized curves. If f is a differentiable curve, then the
derivative f ′ is called the velocity of the curve. The second derivative f ′′, if it
exists, is called the acceleration of the curve.

Proposition 1 Let f and g from J → Rp, if f and g are differentiable at t, then
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so is f + g and (f + g)′(t) = f ′(t) + g′(t).
If f : J → Rp and g : J → Rp are differentiable at t, let f · g be defined by
(f · g)(t) = f(t) · g(t). Then:
(f · g)′(t) = f(t) · g′(t) + f ′(t) · g(t).

Proposition 2 (Chain rule) Let J1, J2 be intervals. Let f : J1 → J2 and
g : J2 → Rp be maps. Let t ∈ J1. If f is differentiable at t and g is differentiable
at f(t), then g ◦ f is differentiable at t and
(g ◦ f)′(t) = g′(f(t))f ′(t).

1.2 Derivative of f : Rn → R

1.2.1 Partial Derivatives

Definition 2 Let U be an open set of Rn, and let f : U → R be a function. We
define its partial derivative at a point x = (x1, . . . , xn) ∈ U by
∂f
∂xi

(x) = limh→0,h 6=0
f(x+hei)−f(x)

h
= limh→0,h 6=0

f(x1,...,xi+h,...,xn)−f(x1,...,xn)
h

if the
limit exists.
ei = (0, . . . , 1, . . . , 0) is the unit vector with the i-th component being equal to 1
and all others equal to 0. Note that f(x+hei) is well defined if h is small enough
since U , the domain of f , is open and x belongs to U .

Remark 2 We see that ∂f
∂xi

is an ordinary derivative which keeps all variables
fixed but not the i-th variable. In particular, we know that the derivative of a
sum, and the derivative of a constant times a function follow the usual rules, that
is ∂f+g

∂xi
= ∂f

∂xi
+ ∂g

∂xi
and ∂cf

∂xi
= c ∂f

∂xi
for any constant c.

Example: If f(x, y) = 3x3y2 then ∂f
∂x

(x, y) = 9x2y2 and ∂f
∂y

(x, y) = 6x3y. Of
course we may iterate partial derivatives. In this example, we have ∂2f

∂x2
(x, y) =

18xy2, ∂
2f
∂y2

(x, y) = 6x3 and ∂2f
∂x∂y

(x, y) = 18x2y,
∂2f
∂y∂x

(x, y) = 18x2y.
Observe that the two last iterated partials are equal. This is not an accident, and
is a special case of the following general theorem.

Theorem 1 (Schwarz) Let f be a function on an open set U ∈ R2. Assume
that the partial derivatives ∂f

∂x
, ∂f
∂y
, ∂2f
∂x∂x

, ∂2f
∂y∂y

, ∂2f
∂x∂y

, ∂2f
∂y∂x

exist and are continuous.
Then ∂2f

∂x∂y
= ∂2f

∂y∂x
.

Definition 3 We define the gradient of f at any point x at which all partial
derivatives exist to be the vector ∇f(x) =

(
∂f
∂x1

(x), . . . , ∂f
∂xn

(x)
)
.

Definition 4 We define the Hessian matrix of f at any point
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x = (x1, . . . , xn) by

H(f, x) =


∂2f
∂x21

(x) ∂2f
∂x1∂x2

(x) ... ∂2f
∂x1∂xn

(x)
∂2f

∂x2∂x1
(x) ∂2f

∂x22
(x) ... ∂2f

∂x2∂xn
(x)

...
... . . . ...

∂2f
∂xn∂x1

(x) ∂2f
∂xn∂x2

(x) ... ∂2f
∂x2n

(x)


Remark on higher order partial derivatives

Let f be a function on an open set U of Rn. We may take iterated partial

derivatives (if they exist) of the form
(

∂
∂x1

)i1
. . .
(

∂
∂xn

)in
f where i1, . . . , in are

integers ≥ 0. It does not matter in which order we take the partials (provided
they exist and are continuous) according to the Schwarz’s theorem. If ci0...in are

numbers, we may form finite sums
∑
ci1...in

(
∂
∂x1

)i1
...
(

∂
∂xn

)in
which we view as

applicable to functions which have enough partial derivatives. More precisely, we
say that a function f on U is of class Cp, for some integer p ≥ 0, if all partial

derivatives
(

∂
∂x1

)i1
...
(

∂
∂xn

)in
f exist for i1, . . . , in ≤ p and are continuous. It is

clear that the functions of class Cp form a vector space, that is the sum of two
functions of class Cp is of class Cp and the product of a function of class Cp by
a real number is a function of class Cp.. Let i1, . . . , in be integers ≥ 0 such that
i1 + . . .+ in = r ≤ p.
Let Fp be the vector space of functions of class Cp. (For p = 0, this is the vector

space of continuous functions on U .) Then any monomial
(

∂
∂x1

)i1
...
(

∂
∂xn

)in
may

be viewed as a linear map Fp → Fp−r given by f 7→
(

∂
∂x1

)i1
...
(

∂
∂xn

)in
f .

We say that f is of class C∞ if it is of class Cp for every positive integer p.

If f is of class C∞, then
(

∂
∂x1

)i1
...
(

∂
∂xn

)in
f is also of class C∞.

1.2.2 Reminder on Euclidean algebra

Orthogonal spaces

Definition 5 (u1, . . . , un) is an orthogonal basis of Rn if (u1, . . . , un) is a basis
of Rn and ui · uj = 0 for all (i, j), i 6= j.

(u1, . . . , un) os an orthonormal basis of Rn if (u1, . . . , un) is an orthogonal basis
of Rn and ‖ui‖ = 1 for all i.

The canonical basis of Rn is orthonormal.

Proposition 3 Let B = (u1, . . . , un) be an orthonormal basis of Rn and let x
and y be two vectors of Rn. Let (ξ1, . . . , ξn) be the coordinates of x is the basis B
and (ζ1, . . . , ζn) be the coordinates of y in the basis B. Then, for all i, ξi = x · ui,
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ζi = y · ui and

x · y =
n∑
i=1

ξiζi and ‖x‖ =

√√√√ n∑
i=1

ξ2
i

Let E be a linear subspace of Rn and (u1, . . . , up) a basis of E. One can
built an orthogonal basis of E, (v1, . . . , vp), starting from (u1, . . . , up) using the
Gram-Schmidt orthogonalisation method as follows:
v1 = u1;
v2 = u2 − v1·u2

‖v1‖2v1

...
vk = uk − v1·uk

‖v1‖2v1 − v2·uk
‖v2‖2v2 − . . .− vk−1·uk

‖vk−1‖2
vk−1

...
vp = up − v1·up

‖v1‖2v1 − v2·up
‖v2‖2v2 − . . .− vp−1·up

‖vp−1‖2vp−1

From which, we deduces that all linear subspace of Rn has an orthogonal basis.

Exercise 1 Let (u = (1, 0, 1), v = (2,−1, 1), w = (−1,−1, 2)) be three vectors of
R3. Show that this is a basis of R3. Apply the Gram-Schmidt orthogonalisation
method to find an orthogonal basis of R3.

Same question with ((1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1)) in R4.

Let E be a linear subspace of Rn. The orthogonal complement of E denoted
E⊥is the set defined by:

E⊥ = {v ∈ Rn | ∀u ∈ E, u · v = 0}

Proposition 4 E⊥ is a linear subspace of Rn. E ∩ E⊥ = {0}.

Let (u1, . . . , up) be a basis of E, then

E⊥ = {v ∈ Rn | ∀i = 1, . . . , p ∈ E, ui · v = 0}

In other words, E⊥ is the kernel of the linear mapping f from Rn to Rp defined
by f(v) = (u1 · v, . . . , up · v).

Let E be a linear subspace of Rn and (u1, . . . , up) be an orthogonal basis of E.
we know that there exists (up+1, . . . , un) ∈ (Rn)n−p such that (u1, . . . , up, up+1, . . . , un)
is a basis of Rn. Using the Gram-Schmidt orthogonalisation method, we build
orthogonal basis of Rn (v1, . . . , vp, vp+1, . . . , vn) from (u1, . . . , up, up+1, . . . , un).
Since (u1, . . . , up) is an orthogonal basis of E, we remark thatv1 = u1, v2 = u2,
. . ., vp = up. So (vp+1, . . . , vn) are linearly independent vectors of E⊥ and they
are a basis of E⊥. So we conclude that

Proposition 5 1) E are E⊥ are complements in Rn, Rn = E⊕E⊥ and dimE⊥ =
n− dimE.
2) THe orthogonal complement of E⊥ is E: (E⊥)⊥ = E
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For all x ∈ Rn, there exists a unique pair (y, z) ∈ E×E⊥ such that x = y+ z.
y is the orthogonal projection of x on E, z is the orthogonal projection of x on
E⊥. They are denoted proj⊥E(x) and proj⊥E⊥(x).

Remark that proj⊥E(x) · proj⊥E⊥(x) = 0.

Proposition 6 1) The mappings proj⊥E are proj⊥E⊥ are linear;

2) The kernel of proj⊥E (resp. the range proj⊥E⊥) is E
⊥, the range of proj⊥E (resp.

the kernel of proj⊥E⊥) is E.

3) proj⊥E ◦ proj⊥E = proj⊥E.

4) proj⊥E + proj⊥E⊥ = Id.

We remark that all linear subspaces of Rn is the kernel of a linear mapping. We
can also represent a linear subspace E of Rn of dimension p by n−p independent
linear equations. Indeed, if (v1, . . . , vn−p) is a basis of E⊥, then

E = {x ∈ Rn | ∀j = 1, . . . , n− p, vj · x = 0}

Proposition 7 Let E and F be two linear subspaces of Rn. Then (E ∩ F )⊥ =
E⊥ + F⊥ and (E + F )⊥ = E⊥ ∩ F⊥. If E ⊂ F , then F⊥ ⊂ E⊥.

Let u be a non zero vector in Rn; we denote by u⊥ the orthogonal complement
of the line D generated by u: D = {tu | t ∈ R}. We remark that u⊥ is an
hyperplan, that is, a linear subspace of dimension n − 1 and the projections on
u⊥ and on D are defined as follows:

proj⊥u⊥(x) = x− x · u
‖u‖2

u et proj⊥D(x) =
x · u
‖u‖2

u

Linear mappings and inner product
Let f be a linear mapping from Rn to Rp. Let M its p × n matrix. in the

canonical basis of Rn and Rp. we denote by (`j)
p
j=1 the rows of the matrix M

which are vectors in Rn and by (ci)
n
i=1 the columns of M which are vectors in Rp.

The transpose of M denoted M t is the n × p matrix whose column vectors are
the row vectors of M .

For all x ∈ Rn, we have two ways to compute the image of x by f .

f(x) =
n∑
i=1

xici = (`j · x)pj=1

The transpose of f is the unique linear mapping f t from Rp to Rn satisfying
for all (x, y) ∈ Rn × Rp, y · f(x) = f t(y) · x.

The matrix of f t in the canonical basis is M t. We remark that the transpose
of the transpose of f is equal to f .

Proposition 8 Let f be a linear mapping from Rn to Rp.
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1) Kerf = (Imf t)⊥, Imf = (Kerf t)⊥;

2) Kerf t = (Imf)⊥, Imf t = (Kerf)⊥;

3) f and f t have the same rank, the dimension of their ranges are equal.

Properties of the symmetric matrices Let M be a n× n symmetric matrix,
that is,M is equal to its transpose,M t = M . M is the matrix of a linear mapping
f from Rn to Rn defined by the matrix-vector product f(x) = Mx. This linear
mapping satisfies y · f(x) = y ·Mx = M ty · x = My · x = f(y) · x and it is called
a symmetric linear mapping.

We recall the fundamental spectral theorem on the symmetric matrices. An
orthonormal basis of Rn is a basis B = (u1, . . . , un) such that ui · uj = 0 for all
(i, j) with i 6= j and ‖ui‖ = 1 for all i.

Theorem 2 Let f be a symmetric linear mapping on Rn and M its symmet-
ric matrix in the canonical basis. Then it exists an orthonormal basis B =
(u1, . . . , un) such that for all i, there exists a real number λi such that f(ui) = λiui.
In other words, the matrix of f in the basis B is diagonal and λi is the term on
the diagonal and on the ith row. Equivalently, we can say that there exists a n×n
matrix P such that P−1 = P t and P−1MP is a diagonal matrix.

Definition 6 Let M be a n× n symmetric matrix. Then M is

positive definite if all its eigenvalues are positive;

positive semi-definite if all its eigenvalues are non negative;

negative definite if all its eigenvalues are negative;

negative semi-definite if all its eigenvalues are non positive;

Proposition 9 Let M be a n × n symmetric matrix. If M is positive definite
(resp. negative definite), then M is invertible and its inverse is positive definite
(resp. negative definite).

From a symmetric n× n matrix M , we define a quadratic form q from Rn to
R and a bilinear symmetric form ϕ from Rn × Rn to R as follows:
q(x) = x ·Mx;
ϕ(x, y) = x ·My.

We note that q(x) = ϕ(x, x) and ∀(x, y, z) ∈ Rn × Rn × Rn, ∀t ∈ R,
- ϕ(x, y) = ϕ(y, x)

- ϕ(x+ z, y) = ϕ(x, y) + ϕ(z, y)

- ϕ(x, y + z) = ϕ(x, y) + ϕ(x, z)

- ϕ(tx, y) = ϕ(x, ty) = tϕ(x, y)

- q(tx) = t2q(x)

- q(x+ y) = q(x) + q(y) + 2ϕ(x, y)

- ϕ(x, y) = 1
4
(q(x+ y)− q(x− y))
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Remark 3 M is positive definite (resp. positive semi-definite, negative semi-
definite, negativedefinite) if and only if q(x) > 0 (resp. ≥ 0, ≤ 0, < 0) for all
x 6= 0. More precisely, if λ is the smallest eigenvalue of M and λ the largest
eigenvalue of M , then

λ‖x‖2 ≤ q(x) ≤ λ‖x‖2

Exercise 2 Let M be a p × n matrix. Let P be the p × p matrix defined by
P = MM t.
1) Show that P is a symmetric positive semi-definite matrix.
2) Show that if the rank of M is equal to p, then P is positive definite.

Let N be a n × n symmetric positive definite matrix. Same questions with
Q = MNM t.

Criterion for a positive definite symmetric matrix
If M is a 2× 2 symmetric matrix. M is positive definite if both trace and the

determinant are positive.
IfM is a n×n symmetric matrix. We denoteMp the p×p submatrix containing

the first p columns and the first p rows of the matrix M . M is postive definite if
the determinant of the matrices Mp with p = 1, . . . , n are positive.

M =


m11 m12 . . . m1n

m21 m22 . . . m2n
...

... . . . ...
mn1 mn2 . . . mnn

Mp =


m11 m12 . . . m1p

m21 m22 . . . m2p
...

... . . . ...
mp1 mp2 . . . mpp


Exercise 3 Let a ∈ R and q be a quadratic function define on R3 as:

q(x, y, z) = x2 + (1 + a)y2 + (1 + a+ a2)z2 + 2xy − 2ayz

1) Compute the bilinear form ϕ associated to q.
2) Give the matrix of q in the canonical basis of R3.
3) For which values of a, ϕ is positive definite?

Exercise 4 Let q be the quadratic form defined by its matrix in the canonical
basis:

M =

2 1 1
1 1 1
1 1 2


1) Compute the bilinear form ϕ associated to q.
2) Show that ϕ is positive definite?

1.2.3 Differentiable Functions

Definition 7 A function f : U → R, where U is an open set of Rn, is differ-
entiable at a point x if there exists a vector g ∈ Rn and a mapping ε defined
on an open set containing 0 such that f(x + h) = f(x) + g · h + ‖h‖ε(h) with
limh→0 ε(h) = 0.
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Proposition 10 Let f be a function U → R, where U is an open set of Rn. If
f is differentiable at a point x, then it is continuous at x.

Theorem 3 Let f be differentiable at a point x and let g be a vector such that
f(x+h) = f(x)+g ·h+‖h‖ε(h) with limh→0 ε(h) = 0. Then all partial derivatives
of f at x exist, and g = ∇f(x).
Conversely, assume that all partial derivatives of f exist in some open set con-
taining x and are continuous functions. Then f is differentiable at x.

Remark 4 Note that a function may have partial derivatives everywhere and
not being differentiable. For example:

f(x, y) =

{ xy
x2+y2

if (x, y) 6= (0, 0)

0 otherwise.

You can check that ∂f
∂x1

(x, y) and ∂f
∂x2

(x, y) are defined for all (x, y), included at
(0, 0), but f is not differentiable at (0, 0). It is not even continuous at the origin.

Definition 8 A function f from U an open set of Rn to R is differentiable on U
if it is differentiable at every point of U . It is continuously differentiable on U if
all partial derivatives are continuous on U .

Proposition 11 Let f and g be two differentiable functions from U an open set
of Rn to R. Then, for all x ∈ U , ∇(f + g)(x) = ∇f(x) + ∇g(x), ∇(fg)(x) =
f(x)∇g(x) + g(x)∇f(x) and for all c ∈ R, ∇(cf)(x) = c∇f(x).

Remark 5 Suppose f is defined on an open set U , and let ϕ : [a, b] → U be
a differentiable curve. Then we may form the composite function f ◦ ϕ given
by (f ◦ ϕ)(t) = f(ϕ(t)). We may think of ϕ as parametrization of a curve, or
we may think of ϕ(t) as representing the position on a curve at time t. If f(x)
represents, say, the value of the basket of commodities x, then f(ϕ(t)) is the value
of the commodities at time t of x = ϕ(t). The rate of change of the value along
the curve is then given by the derivative ∂f(ϕ(t))

∂t
. The chain rule which follows

gives an expression for this derivative in terms of the gradient, and generalises
the usual chain rule to n variables.

Theorem 4 Let ϕ : J → U be a differentiable function defined on some interval,
and with values in an open set U of Rn. Let f : U → R be a differentiable
function. Then f ◦ϕ : J → R is differentiable, and (f ◦ϕ)′(t) = ∇f(ϕ(t)) ·ϕ′(t).

1.2.4 Geometric properties of the gradient

From the chain rule, we deduce a geometric interpretation for the gradient.

Definition 9 Let x be a point of U and let v be a fixed vector. We define the di-
rectional derivative of f at x in the direction of v to be f ′(x, v) = limt→0,t6=0

1
t
(f(x+

tv)− f(x)).
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Remark 6 This means that if we let g(t) = f(x + tv) then f ′(x, v) = g′(0). By
the chain rule, g′(t) = ∇f(x+ tv) · v whence f ′(x, v) = ∇f(x) · v.

From this formula we obtain an interpretation for the gradient. We use the stan-
dard expression for the dot product, namely f ′(x, v) = ‖f(x)‖‖v‖cos(θ) where
θ is the angle between v and ∇f(x). Depending on the direction of the vector
v, the number cos(θ) ranges from −1 to 1. The maximal value occurs when v
has the same direction as ∇f(x), in which case for such unit vector v we obtain
f ′(x, v) = ‖∇f(x)‖‖v‖. Therefore we get an interpretation for the direction and
norm of the gradient:
The direction of ∇f(x) is the direction of maximal increase of the function f at x.
The norm ‖∇f(x)‖ is equal to the rate of change of f in its normalized direction
of maximal increase.

Example: Find the directional derivative of the function f(x, y) = x2y3 at
(1,−2) for v = 1√

10
(3, 1).

We have ∇f(x, y) = (2xy3, 3x2y2) and ∇f(1,−2) = (−16, 12). Hence the desired
directional derivative is f ′((1,−2), v) = (−16, 12). 1√

10
(3, 1) = 1√

10
(−36).

1.2.5 Tangent plane to a surface

Consider the set of all x ∈ U such that f(x) = 0; or given a number c, the set
of all x ∈ U such that f(x) = c. This set, denoted by Sc, is called the level
hypersurface at c. Let x ∈ Sc and assume again that ∇f(x) 6= 0.

It will be shown later as a consequence of the implicit function theorem that
given any direction v perpendicular to the gradient, there exists a differentiable
curve α : J → U defined on some interval J containing 0 such that α(0) = x and
α′(0) = v and f(α(t)) = c for all t ∈ J . In other words, the curve is contained
in the level hypersurface. Conversely, we see from the chain rule that if we have
a curve α lying in the hypersurface such that α(0) = x, then 0 = ∂f

∂t
(α(t)) =

∇f(α(t)).α′(t).
In particular, for t = 0, 0 = ∇f(α(0)).α′(0) = ∇f(x).α′(0). Hence the velocity
vector α′(0) of the curve at t = 0 is perpendicular to ∇f(x). From this re-
sult, we make the geometric conclusion that ∇f(x) is perpendicular to the level
hypersurface at x.

So we get the formal definition of the tangent plane to the level surface as
follows:

Definition 10 Let f be a differentiable mapping for U , an open subset of Rn,
to R. Let x ∈ U such that ∇f(x) 6= 0. Let c = f(x). The set Sc = {x′ ∈ U |
f(x′) = c} is the level surface of f at the level c. The tangent hyperplane of Sc
at x denoted TSc(x) is defined by:

TSc(x) = {u ∈ Rn | u · ∇f(x) = 0}

or, in other words, TSc(x) is the orthogonal space to ∇f(x).
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Note that we often consider a translation of the tangent plan which contains
the point x and which is defined as {u ∈ Rn | u ·∇f(x) = x ·∇f(x)}. Sometimes,
there is a confusion between the two plans.

Example: Let f(x, y, z) = x2 + y2 + z2. The surface S of points X = (x, y, z)
such that f(X) = 4 is the sphere of radius 2 centered at the origin. Let P =
(1, 1,

√
2). We have ∇f(x, y, z) = (2x, 2y, 2z) and so ∇f(P ) = (2, 2, 2

√
2). Hence

the tangent plane at P is given by the equation 2x+ 2y + 2
√

2z = 0.

Exercise 5 Let f be a differentiable function on Rn \ {0}, depending only on
the distance from the origin, that is, there exists a differentiable function g on
R++ such that f(x) = g(‖x‖) where ‖x‖ is the Euclidean norm. Show that

∇f(x) =
g′(‖x‖)
‖x‖

x.

1.2.6 Taylor Formula

By applying the result on the directional derivatives to the first order partial
derivatives, we obtain the following result:

Proposition 12 Let f be a C2 function from U , an open subset of Rn, to R. Let
x̄ ∈ U and u ∈ Rn. Let ϕ be the function from the open interval I containing 0
in R defined by ϕ(t) = f(x̄+ tu). then,

ϕ′′(t) = utHf (x̄+ tu)u =
n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
(x̄+ tu)uiuj

Using the Taylor-Lagrange development of ϕ, we obtain the following result
for f :

Proposition 13 Let f be a C2 function from U , an open subset of Rn, to R. Let
x and x′ be two elements of U such that the segment [x, x′] ⊂ U . Then, it exists
ξ ∈]x, x′[ such that:

f(x′) = f(x) +Df(x)(x′ − x) +
1

2
(x′ − x)tHf (ξ)(x

′ − x)

Using the continuity of the second order partial derivatives, we obtain the
following Taylor development:

Proposition 14 Let f be a C2 function from U , an open subset of Rn, to R.
Then, it exists a continuous function η from U × U to R such that:

f(x′) = f(x) +Df(x)(x′ − x) +
1

2
(x′ − x)tHf (x)(x′ − x) + ‖x′ − x‖2η(x′, x)

and η(x, x) = 0 for all x ∈ U .

Note that the continuity of η implies that for all x ∈ U , limx′→x η(x′, x) = 0.
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1.2.7 Euler’s formula

Definition 11 For any real number k, a real-valued function f defined on a cone
K1 of Rn is homogeneous of degree k if f(tx) = tkf(x1, . . . , xn) for all x ∈ K and
all t > 0.

Theorem 5 Let f(x) be a C1 function on an open cone K of Rn. If f is homo-
geneous of degree k, its first order partial derivatives are homogeneous of degree
k − 1.

Theorem 6 (Euler’s formula) Let f be a C1 homogeneous function of degree
k on an open cone K of Rn. Then for all x,

x1
∂f

∂x1

(x) + x2
∂f

∂x2

(x) + . . .+ xn
∂f

∂xn
(x) = kf(x)

or using the gradient
x · ∇f(x) = kf(x)

1.3 Derivative of f : Rn → Rp

1.3.1 The Frechet derivative as a linear map

Definition 12 Let U be an open subset of Rn and let x ∈ U . Let f be a
mapping from U to Rp . We shall say that f is (Frechet)-differentiable at x if
there exists a continuous linear map ϕ : Rn → Rp and a map η defined for all
sufficiently small h ∈ Rn, with values in Rp, such that limh→0 η(h) = 0 and
f(x+ h) = f(x) + ϕ(h) + ‖h‖η(h).

Remark 7 Setting h = 0 shows that we may assume that η is defined at 0 and
that η(0) = 0. The preceding formula still holds.
We view the definition of the derivative as stating that near x, the values of f
can be approximated by a affine map f(x) + ϕ(x′) with an error term described
by the limit property of η at 0.

Theorem 7 If f is (Frechet)-differentiable at x, then f is continuous at x.

Definition 13 If f is (Frechet)-differentiable at every point x of U , then we
say that f is (Frechet)-differentiable on U . In that case, the derivative Df is a
mapping from U to the space of continuous linear mappings L(Rn, Rp), and thus
to each x ∈ U , we have associated the linear map Df(x) ∈ L(Rn,Rp).

We shall now see systematically how the definition of the derivative as a linear
map actually includes the cases which we have been studied previously. We have
three cases:

1For all x ∈ K and for all t > 0, tx ∈ K.
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We consider a map f : J → R from an open interval J into R. Then Df(x) is
the linear mapping from R to R define by Df(x)(t) = f ′(x)t.
Let U be an open subset of Rn and let f : U → R be a mapping, differentiable
at a point x ∈ U . Then Df(x) is the linear mapping from Rn to R define by
Df(x)(u) = ∇f(x) · u.
Let J be an interval in R, and let f : J → Rp be a mapping. Then Df(x) is the
linear mapping from R to Rp define by Df(x)(t) = tf ′(x).

Theorem 8 (Maps with coordinates) Let U be open in Rn, let f be a map-
ping from U to Rp1 × . . .×Rpk . Let (f1, . . . , fk) be the coordinate mappings from
U to Rpj , that is f(x) = (f1(x), . . . , fk(x)). Then f is (Frechet)-differentiable
at x if and only if each fj is differentiable at x, and if this is the case, then
Df(x) = (Df1(x), . . . , Dfk(x)).

Theorem 9 Let ψ : Rn → Rp be a linear mapping. Then ψ is (Frechet)-
differentiable at every point of Rn and Dψ(x) = ψ for every x ∈ Rn.

Let φ from Rn × Rp to Rk be a bilinear mapping, that is the partial mapping
φ(x, ·) is linear for all x in Rn and φ(·, y) is linear for all y in Rp. Then φ is
(Frechet)-differentiable at every point of Rn × Rp and for all (u, v) ∈ Rn × Rp,
Dφ(x)(u, v) = φ(u, y) + φ(x, v) for every (x, y) ∈ Rn × Rp.

1.3.2 The Jacobian matrix of a differentiable map

Theorem 10 Let U be an open set of Rn, and let f : U → Rp be a mapping
which is (Frechet)-differentiable at x. Then the continuous linear map Df(x) is
represented by the Jacobian matrix

Jf (x) =

(
∂fi
∂xj

(x)

)
=


∂f1
∂x1

(x) ... ∂f1
∂xn

(x)
...

...
...

∂fp
∂x1

(x) ... ∂fp
∂xn

(x)


where fi is the i-th coordinate function of f .

We see that if f is (Frechet)-differentiable at every point of U , then x 7→ Jf (x)
is a mapping from U into the space of p×nmatrices, which is a space of dimension
pn.

Definition 14 We shall say that f is of class C1 on U , or is a C1 mapping,
if f is (Frechet)-differentiable on U and if in addition the derivative Df : U →
L(Rn, Rp) is continuous, which is equivalent to assume that pn partial derivatives
∂fi
∂xj

are continuous.

Theorem 11 Let U be an open set of Rn, and let f : U → Rp be a mapping. If
the pn partial derivatives ∂fi

∂xj
are defined on U and are continuous, then f is C1

on U .
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1.3.3 Basic Properties of the Derivative

Proposition 15 Let U be open in Rn. Let f, g : U → Rp be two mappings which
are (Frechet)-differentiable at x ∈ U . Then f + g is (Frechet)-differentiable at x
and D(f + g)(x) = Df(x) + Dg(x). If c is real number, then cf is (Frechet)-
differentiable at x and D(cf)(x) = cDf(x).

We recall that a bilinear mapping ψ from Rn × Rp to Rk is a mapping such
that the partial mapping ψ(x, ·) is linear for all x in Rn and ψ(·, y) is linear for
all y in Rp.

Proposition 16 Let ψ be a bilinear mapping ψ from Rn × Rp to Rk. Let U be
an open subset of R` and let f : U → Rn and g : U → Rp be two (Frechet)-
differentiable mappings at x ∈ U . Then ψ(f, g) is differentiable at x and for all
v ∈ R`,

Dψ(f, g)(x)(v) = ψ(Df(x)(v), g(x)) + ψ(f(x), Dg(x)(v))

Remark 8 If ψ is the inner product on Rn ×Rn, we have the following formula
for all v ∈ R`,

D(f · g)(x)(v) = Df(x)(v) · g(x) + f(x) ·Dg(x)(v)

or
∇(f · g)(x) = Df(x)t(g(x)) +Dg(x)t(f(x))

where Df(x)t is the transpose of the linear mapping Df(x) and Dg(x)t is the
transpose of the linear mapping Dg(x).

Example: Let J be an open interval in R and let t 7→ A(t) = (aij(t)) and
t 7→ X(t) be two differentiable maps from J into the space of p × n matrices,
and into Rn respectively. Thus for each t, A(t) is an p × n matrix, and X(t) is
a column vector of dimension n. We can form the product A(t)X(t), and thus
the product map t 7→ A(t)X(t), which is differentiable. Our rule in this special
case asserts that ∂

∂t
A(t)X(t) = A′(t)X(t) + A(t)X ′(t) where differentiation with

respect to t is taken componentwise both on the matrix A(t) and the vector X(t).
The product here is the product of a matrix and a vector.

1.3.4 Chain Rule

Proposition 17 (Chain Rule ) Let U be an open subset of Rn and let V be
an open subset of Rp. Let f : U → V and g : V → Rk be two mappings.
Let x ∈ U . Assume that f is (Frechet)-differentiable at x and g is (Frechet)-
differentiable at f(x). Then g◦f is (Frechet)-differentiable at x and D(g◦f)(x) =
Dg(f(x)) ◦Df(x).

Remark 9 Df(x) : Rn → Rp is a linear map, and Dg(f(x)) : Rp → Rs is a linear
map, and so these linear maps can be composed, and the composite is a linear
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map, which is continuous because both Dg(f(x)) and Df(x) are continuous. The
composed linear map goes from Rn into Rs, as it should.

Remark 10 In terms of the Jacobian matrix we have: Jg◦f (x) = Jg(f(x))Jf (x),
the multiplication being that of matrices.

Corollary 1 Let U be an open subset of Rn and f : U → R be a (Frechet)-
differentiable mapping. Let J be an open interval of R and let ϕ : J → Rn be a
differentiable mapping such that ϕ(t) ∈ U for t ∈ J . Then f ◦ ϕ is differentiable
on J and (f ◦ ϕ)′(t) =

∑n
i=1 ϕ

′
i(t)

∂f
∂xi

(ϕ(t)) for all t ∈ J .
In particular if ϕ(t) = x̄ + tu for some x̄ ∈ U and u ∈ Rn, we get (f ◦ ϕ)′(t) =∑n

i=1 ui
∂f
∂xi

(ϕ(t)) = ∇f(x̄+ tu) · u for all t ∈ J .

1.3.5 The Mean Value Theorem

Theorem 12 Let U be an open subset of Rn and f be a differentiable mapping
from U to R. Let x and x̄ two elements of U such that the segment [x, x̄] =
{(1− t)x+ tx̄ | t ∈ [0, 1]} ⊂ U . Then, it exists ξ ∈]x, x̄[ such that f(x̄)− f(x) =
Df(ξ)(x̄− x).

Remark 11 This theorem cannot be generalised to a differentiable mapping f
taken its value in Rp with p > 1. Indeed, let f from R to R2 defined by f(t) =
(cos t, sin t). f is C1 on R. We remark that f(0) = f(2π). It does not exists
t ∈]0, 2π[ such that f(2π)− f(0) = Df(t)(2π). Indeed, Df(t) 6= 0 for all t ∈ R.

Nevertheless, we can obtain an upper bound of the norm f(x̄)− f(x) by using
the norm as a linear mapping of Df(ξ) for ξ ∈ [x, x̄].

Theorem 13 Let U be an open subset of Rn and f be a differentiable mapping
from U to Rp. Let x and x̄ two elements of U such that the segment [x, x̄] =
{(1 − t)x + tx̄ | t ∈ [0, 1]} is included in U . Then, it exists ξ ∈]x, x̄[ such that
‖f(x̄)− f(x)‖p ≤ ‖Df(ξ)‖L‖x̄− x‖n .

Corollary 2 Let U be an open subset of Rn and f be a differentiable mapping
from U to Rp. Let x and x̄ two elements of U such that the segment [x, x̄] = {(1−
t)x + tx̄ | t ∈ [0, 1]} is included in U . Then, ‖f(x̄) − f(x)‖p ≤ max{‖Df(ξ)‖L |
ξ ∈ [x, x̄]}‖x̄− x‖n.

A first consequence of this theorem is the fact that a differentiable mapping f
such that Df(x) is the nul linear mapping for every x is locally constant.

Corollary 3 Let U be an open subset of Rn and f be a differentiable mapping
from U to Rp. If Df(x) = 0L for all x ∈ U , the, for all x̄ ∈ U , f is constant on
the ball B(x̄, r) such that B(x̄, r) ⊂ U .

Another consequence is the fact that a C1 mapping is locally Lipschitz contin-
uous.
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Corollary 4 Let U be an open subset of Rn and f be a continuously differentiable
mapping from U to Rp. Let x̄ ∈ U and r > 0 such that the closed ball B̄(x̄, r)
is included in U . Then it exists k ≥ 0 such that for all (x, x′) ∈ B(x̄, r)2,
‖f(x′)− f(x)‖p ≤ k‖x′ − x‖n.

Exercise 6 Compute the partial derivatives of the following mappings

1) f(x, y) = x(2 ln(x+ 1) + y + 1) + e−y + 2 ln(x+ 1) + y;

2) f(x, y, z) = xαyβzγ; α > 0, β > 0, γ > 0;

3) f(x, y, z) =
√
αx+ βy + γz, α > 0, β > 0, γ > 0;

4) f(x, y, z) = y(x+ x
1
2 z

1
2 + z);

5) f(x, y, z) = (αxρ + βyρ + γzρ)
1
ρ , α > 0, β > 0, γ > 0 ρ > 0;

6) f(x, y, z) = xyz
x+y+z

;

7) f(x, y, z) = eαxeβyeγz;

8) f(x, y, z) = z
(
√
x+
√
y)2

;

9) f(x, y, z) = ln(z)− α ln(x)− β ln(y);

10) f(x, y, z) =
√
x2 + y2 + z2;

11) (x, y) ∈ R2 7→ f(x, y) = x2 + (x+ y − 1)2 + y2;

12) (x, y) ∈ R2 7→ f(x, y) = (x+ y)2 + x4 + y4;

13) (x, y) ∈ R2 7→ f(x, y) = 2x4 − 3x2y + y2;

14) f(x, y) = x2−xy+y2 +x+y, where X = {(x, y) ∈ R2, x ≤ 0, y ≤ 0, x+y ≥
−3};

15) f(x, y) = x2(1 + y)3 + y4;

16) f(x, y) = x2 − y2 + y4/4;

17) f(x, y) = x3 − 3x(1 + y2);

18) f(x, y) =

{ xy(1−x)(1−y)
1−xy if (x, y) 6= (1, 1)

0 if (x, y) = (1, 1)

Exercise 7 Let N be a norm on Rn. Show that N is not differentiable at 0.

Exercise 8 Let f be a linear mapping from Rn to R. Show that f is differentiable
on Rn and Df(x) = f for all x ∈ Rn.
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Exercise 9 Let M be a n× p matrix. Let f be the mapping from Rn×Rp to R
defined by:

f(x, y) = x ·My

1) Show that for all (x, y) ∈ Rn × Rp, f(x, y) ≤ ‖M‖L‖x‖‖y‖.
2) Using the definition of the derivative show that f is differentiable on Rn ×Rp

and that the derivative is defined by :

Df(x, y)(h, k) = h ·My + x ·Mk

3) Deduce the derivative of the standard inner product on Rn as a mapping from
Rn × Rn to R.

Exercise 10 Let A be a n × n matrix, b, a vector in Rn and c a real number.
Let f be the mapping from Rn to R defined by:

f(x) = x · Ax+ b · x+ c

1) Compute the partial derivatives of f on Rn.
2) Show that the derivatives are continuous.
3) Provide the formula for the derivative of f at each point x̄ of Rn.

Exercise 11 Let f be the mapping from Rn to R defined by:

f(x) = ‖x‖2 =
n∑
i=1

x2
i

1) Compute the partial derivatives of f at each point x̄.
2) Show that f is differentiable at each point x̄ ∈ Rn and show that Df(x̄) is
defined by Df(x̄)(h) = 2x̄ · h.

Exercise 12 Let f be a mapping from Rn to R. We assume that there exists
c ∈ R+ and α > 0 such that for all (x, y) ∈ (Rn)2,

|f(y)− f(x)| ≤ c‖y − x‖1+α

1) Show that the partial derivatives of f at each point of Rn are vanishing.
2) Deduce that f is constant.

Exercise 13 Let f be a differentiable mapping from R3 to R. We assume that for
all (x, y, z) ∈ R3, the three partial derivatives of f at (x, y, z) are non negative.
Show that if (x′, y′, z′) satisfies x′ ≥ x, y′ ≥ y and z′ ≥ z, then f(x′, y′, z′) ≥
f(x, y, z).

We now assume that for all (x, y, z) ∈ R3 the three partial derivatives of f at
(x, y, z) are positive. Show that if (x′, y′, z′) satisfies x′ ≥ x, y′ ≥ y and z′ ≥ z
with one strict inequality among the three, then f(x′, y′, z′) > f(x, y, z).

17



Exercise 14 Let M2 be the space of dimension 4 of the 2 × 2 matrices. We
consider the mapping “determinant” fromM2 to R.

For all M =

(
a b
c d

)
, detM = ad− bc.

1) Compute the partial derivative of the mapping det.
2) Show that the mapping det is differentiable and give its derivative atM ∈M2.
3) Show that D det(M) = 0L if and only if M = 0.

Exercise 15 Let f and g two differentiable mappings from Rn to Rp. Let x̄ ∈ Rn.
We assume that f(x) = g(x) + ‖x− x̄‖ε(x) where ε is a mapping from Rn to Rp

satisfying limx→x̄ ε(x) = 0p. Show that f(x̄) = g(x̄) and Df(x̄) = Dg(x̄).

Exercise 16 Let f be a differentiable mapping from an open subset U of Rn to
Rp. We assume that f is k Lipschitz continuous on U , i.e., ∃k > 0, ∀x, y ∈ U2,
‖f(x)− f(y)‖p ≤ k‖x− y‖n. Show that for all x in U , ‖Df(x)‖L ≤ k.
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