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One dimensional analysis

1 Basic properties of the set of real numbers

N is the set of non-negative integers.

Z is the set of integers.

Q is the set of rational numbers p/q with p and q in Z and q 6= 0.

R is the field of real numbers with the basic operations, addition + and multi-
plication and the complete order ≤.

For all (x, y) ∈ R× R, with x ≤ y,

• [x, y] = {z ∈ R | x ≤ z ≤ y},

• [x, y[= {z ∈ R | x ≤ z < y},

• ]x, y] = {z ∈ R | x < z ≤ y},

• ]x, y[= {z ∈ R | x < z < y},

• [x,+∞[= {z ∈ R | x ≤ z},

• ]x,+∞[= {z ∈ R | x < z},

• ]−∞, y] = {z ∈ R | z ≤ y},

• ]−∞, y[= {z ∈ R | z < y}.

We extend the order on R to R ∪ {−∞,+∞} as follow: for all real numbers
x, −∞ < x < +∞.

For all x ∈ R, |x| = max{x,−x} is the absolute value of x.
The distance between two elements x and y of R is d(x, y) = |x − y|. We

remark that

• d(x, y) = d(y, x),

• d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y and,

• for all (x, y, z) ∈ R3, d(x, y) ≤ d(x, z) + d(z, y).
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We also recall the useful inequality when we want to deal with the product:

|ab− cd| ≤ |a||b− d|+ |d||a− c|

A subset I of R is an interval if for all (x, y) ∈ I × I, [x, y] ⊂ I.
For all x ∈ R, {z ∈ R | d(x, z) ≤ r} = [x − r, x + r] and {z ∈ R | d(x, z) <

r} =]x− r, x+ r[.
For all (x, y) ∈ R × R with x ≤ y, [x, y] = {z ∈ R | d(z, x+y

2
) ≤ y−x

2
} and

]x, y[= {z ∈ R | d(z, x+y
2

) < y−x
2
}.

A subset A of R is bounded if there exists r ≥ 0 such that A ⊂ [−r, r].
x is an upper bound of A if A ⊂]−∞, x] or equivalently if for all a ∈ A, a ≤ x.
x is a lower bound of A if A ⊂ [x,+∞[ or equivalently if for all a ∈ A, a ≥ x.
The supremum of A is the least upper bound of A. The infimum of A is the

greatest lower bound of A. The supremum of A is the maximum of A if it belongs
to A. The infimum of A is the minimum of A if it belongs to A.

Fundamental property of R. The key property of the set R is the following:
all nonempty bounded above subsets of R have a supremum.

Furthermore, Q is dense in R, which means that for all a ∈ R and for all r > 0,
there exists b ∈ Q ∩ ]a− r, a+ r[. In some sense, which can be precisely defined,
R is the smallest set containing Q which satisfies the existence of a supremum for
all bounded above nonempty subsets.

Exercise 1 Show that all bounded below subsets of R has an infimum. Hint: if
A is a bounded below subset of R, consider the set −A = {−a | a ∈ A}, show
that it is bounded above and show that the opposite of the supremum of −A is
an infimum of A.

2 Sequences

Definition 1 A sequence is a mapping from N to R.

A sequence is often denoted (un) where un is the image of n ∈ N.
Examples

Definition 2 A sequence (un) is

a) increasing if for all n ∈ N, un+1 ≥ un;

b) decreasing if for all n ∈ N, un+1 ≤ un;

c) strictly increasing if for all n ∈ N, un+1 > un;

d) strictly decreasing if for all n ∈ N, un+1 < un;

e) bounded if there exists r > 0 such that for all n ∈ N, un ∈ [−r, r].
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Definition 3 Let (un) and (vn) be two sequences and t ∈ R.

a) The sequence (wn) defined by for all n ∈ N, wn = un + vn is called the sum
of (un) and (vn).

b) The sequence (wn) defined by for all n ∈ N, wn = unvn is called the product
of (un) and (vn).

c) The sequence (wn) defined by for all n ∈ N, wn = tun is called the product
of t and (un).

d) If for all n ∈ N, un 6= 0, then we can define a sequence (wn) by wn = 1/un
for all n ∈ N.

Definition 4 The sequence (un) converges to a limit ` ∈ R if for all r > 0, there
exists an integer nr ∈ N such that for all n ≥ nr, un ∈ ]`− r, `+ r[.

If a sequence converges to a limit, we say that it is convergent and the limit is
denoted by limn→∞ un.

Proposition 1 (i) If a sequence is convergent, it has unique limit.
(ii) The sequence (un) converges to the limit ` if and only if the sequence

(|un − `|) converges to 0.
(iii) Let (un) be a convergent sequence and a ∈ R. If for all n ∈ N, un ≤ a,

then limn→∞ un ≤ a. If for all n ∈ N, un ≥ a, then limn→∞ un ≥ a.
(iv) If the sequence (un) is convergent, then it is bounded.

Exercise 2 Let (un) and (vn) be two sequences. We assume that (un) is conver-
gent. Show that if the set {n ∈ N | un 6= vn} is finite, then, (vn) is convergent
and has the same limit than (un).

We assume that (un) is not convergent. Show that if the set {n ∈ N | un 6= vn}
is finite, then, (vn) is not convergent.

Proposition 2 Let (un) and (vn) be two sequences and t ∈ R. We assume that
(un) converges to ` and (vn) converges to `′. Then

a) The sequence (un + vn) converges to `+ `′.

b) The sequence (unvn) converges to ``′.

c) The sequence (tun) converges to t`.

d) The sequence (|un|) converges to |`|.

e) The sequence (max{un, vn}) converges to max{`, `′}.

f) The sequence (min{un, vn}) converges to min{`, `′}.

g) If for all n ∈ N, un 6= 0 and ` 6= 0, then the sequence ( 1
un ) converges to 1

`
.
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Definition 5 The sequence (un) converges to +∞ if for all r ∈ R, there exists
an integer nr ∈ N such that for all n ≥ nr, un ∈ ]r,+∞[.

The sequence (un) converges to −∞ if for all r ∈ R, there exists an integer
nr ∈ N such that for all n ≥ nr, un ∈ ]−∞, r[.

Calculus rules with infinite limits
limn→∞(un + vn)

limn→∞ un −∞ ` +∞
limn→∞ vn
−∞ −∞ −∞ ?
`′ −∞ `+ `′ +∞
+∞ ? +∞ +∞

limn→∞(unvn)

limn→∞ un −∞ ` < 0 0 ` > 0 +∞
limn→∞ vn
−∞ +∞ +∞ ? −∞ −∞
`′ < 0 +∞ ``′ 0 ``′ −∞
0 ? 0 0 0 ?
`′ > 0 −∞ ``′ 0 ``′ +∞
+∞ −∞ −∞ ? +∞ +∞

Example un+1 = aun + b

Particular cases b = 0, a = 1, general case, geometric sequence, formula,
arithmetic sequence.

Proposition 3 Let (un) and (vn) be two sequences.

(i) If (un) is increasing and bounded above, then it is convergent.

(ii) If (un) is decreasing and bounded below, then it is convergent.

(iii) If (un) is increasing, (vn) is decreasing and (vn − un) converges to 0, then
(un) and (vn) are convergents and they have the same limit. In that case,
we say that the two sequences are adjacent.

Exercise 3 Let (un) be a bounded sequence. Let (vn) be defined by, for all n ∈ N,
vn = sup{uk | k ≥ n} and (wn) be defined by, for all n ∈ N, wn = inf{uk | k ≥ n}.

Show that (vn) is decreasing, (wn) is increasing and, for all n ∈ N, wn ≤ un.
Show that (vn) and (wn) are convergent.

Let us assume that (un) is decreasing. Show that, for all n ∈ N, vn = un and
wn = limn→∞ un.

We are now back to the general case. Show that if (un) is convergent, then
(vn) and (wn) converge to limk→∞ uk.

Show that if limn→∞wn < limn→∞ vn, then (un) is not convergent.
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Cauchy Criterion: From the above exercise, we can derive the following very
important criterion for convergence.

Proposition 4 A sequence (un) is convergent if and only if it satisfies the fol-
lowing Cauchy criterion:

∀r > 0,∃n ∈ N,∀p, q ≥ n, |up − uq| ≤ r

From a given sequence (un), we can build many others by picking only some
terms of it.

Definition 6 Let (un) be a real sequence. A subsequence of (un) is a sequence
(vn) defined by a strictly increasing mapping ϕ from N to itself and for all n ∈ N,
vn = uϕ(n).

Proposition 5 If (un) is a converging sequence, then all subsequences of (un)
are convergent and they are converging to the same limit.

Exercise 4 Let (un) be a bounded sequence. Let (vn) be defined by, for all
n ∈ N, vn = sup{uk | k ≥ n}. Let ` be the limit of (vn). (We have prove in
Exercise 3 that this sequence is convergent.) Show that there exists a subsequence
(wn) of (un), which converges to `.

From Exercise 4, we deduce the fundamental Bolzano-Weierstrass Theorem

Theorem 1 All bounded real sequences have a converging subsequence.

From this result, we deduce a new convergence criterion for bounded sequences.

Proposition 6 Let (un) be a bounded sequence. (un) is convergent if and only if
all convergent subsequences of (un) have the same limit.

Definition 7 Let (un) be a real sequence. c ∈ R is a cluster point of (un) if for
all r > 0, the set {n ∈ N | un ∈ ]c− r, c+ r[} is infinite.

Proposition 7 Let (un) be a real sequence. c ∈ R is a cluster point of (un) if
and only if there exists a convergent subsequence (vn) of (un) such that c is the
limit of (vn).

Note that the Bolzano-Weierstrass Theorem can be equivalently stated as all
bounded real sequences have a cluster point. We also deduce from the previous
results that a bounded sequence is convergent if and only if it has a unique cluster
point. In that case, the limit is the unique cluster point.
Example of recursive sequences of order 1

un+1 = f(un), convergence of the Newton algorithm.
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3 Series

Let (un) be a real sequence. The series associated to (un) is the sequence (σn)
defined by σn =

∑n
ν=0 uν .

Definition 8 The series associated to (un) (or, in short, the series (un)) is
convergent if the sequence (σn) defined by σn =

∑n
ν=0 uν is convergent.

The series associated to (un) is absolutely convergent if the sequence (
∑n

ν=0 |uν |)
is convergent.

Remark 1 One easily shows (exercise) that if the series (un) is convergent, then
the sequence (un) converges to 0. The converse is not true. For example, show
that the series associated to the sequence (un = 1

n+1
) is not convergent. Hint:

show that the sequence
∑n

ν=0
1

ν+1
does not satisfy the Cauchy Criterion.

Using the Cauchy criterion of convergence, one has the fundamental following
result.

Proposition 8 If the series associated to (un) is absolutely convergent, then the
series associated to (un) is convergent.

Since the series associated to a non-negative sequence is increasing, we get the
simple convergence criteria.

Proposition 9 The series associated to the sequence (un) is absolutely conver-
gent if and only if the sequence (

∑n
ν=0 |uν |) is bounded above.

Exercise 5 Let (un) and (vn) be two sequences such that the associated series
are convergent. Show that the series associated to (un + vn) is also convergent
and that its limit is the sum of the limits of the series associated to (un) and (vn).

Exercise 6 Show that the series associated to the sequence ((−1)n 1
n+1

) is con-
vergent but not absolutely convergent.

Show that the series associated to the sequence (kn) is absolutely convergent
when k ∈ ]− 1, 1[.

Proposition 10 Let (un) be a decreasing sequence such that limn→∞ un = 0 and
for all n ∈ N, unun+1 ≤ 0. Then the series associated to the sequence (un) is
convergent.

Proposition 11 Let (un) and (vn) be two sequences with non-negative terms.
We assume that the series associated to (vn) is convergent.

a) If for all n ∈ N, vn > 0 and (un
vn

) is bounded above then the series associated
to (un) is convergent.

b) If for all n ∈ N, un > 0, vn > 0 and un+1

un
≤ vn+1

vn
then the series associated to

(un) is convergent.
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c) If for all n ∈ N, un > 0 and limn→∞ n
√
un < 1 then the series associated to

(un) is convergent.

d) If for all n ∈ N, un > 0 and limn→∞
un+1

un
< 1 then the series associated to

(un) is convergent.

Exercise 7 Show that the series associated to the sequence ( 1
(n+1)α

) is convergent
when α > 1. Hint: Compare

∑n
ν=0

1
(ν+1)α

with 1 +
∫ n+1

1
1
tα
dt.

4 Basic topology on R
Definition 9 A subset F of R is closed if for all convergent sequences (un) such

that un ∈ F for all n ∈ N, then the limit of (un) belongs to F .

A subset U of R is open if if for all convergent sequences (un) such that the limit
belongs to U , then there exists n0 ∈ N such that un ∈ U for all n ≥ n0.

Remark 2 A closed interval is closed. An open interval is open. If a < b, the
intervals [a, b[ and ]a, b] are neither open nor closed.

Exercise 8 Show that a singleton is a closed set. Show that a finite set is closed.

Proposition 12

A subset F of R is closed if and only if F c, its complement in R, is open.

A subset U of R is open if and only if U c, its complement in R, is closed.

A subset U of R is open if and only if for all x ∈ U , there exists r > 0 such that
]x− r, x+ r[ ⊂ U .

Proposition 13

A finite union of closed sets is closed.

An intersection of finitely many or infinitely many closed sets is closed.

A finite intersection of open sets is open.

A union of finitely many or infinitely many open sets is open.

Definition 10 Let A be a subset of R.

The closure of A is the set of real numbers ` such that there exists a sequence
(un) converging to ` and satisfying un ∈ A for all n ∈ N. The closure of A
is denoted clA or A.

The interior of A is the set a ∈ A for which there exists r > 0 such that
]a− r, a+ r[ ⊂ A. The interior of A is denoted intA or

◦
A.

Proposition 14 Let A be a subset of R.
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A ⊂ A;

A is a closed subset of R;

A is the smallest closed subset of R containing A, that is, if F is closed and
A ⊂ F , then A ⊂ F ;

A is the intersection of all closed subsets of R containing A.

Proposition 15 Let A be a subset of R.

intA ⊂ A;

intA is an open subset of R;

intA is the largest open subset of R included in A, that is, if U is open and
U ⊂ A, then U ⊂ intA;

A is the union of all open subsets of R included in A.

Exercise 9 Give the closure and the interior of the following subsets of R.

N;

Q;

R;

an interval of R;

{ 1
n+1
| n ∈ N};

{ 1
n+1
| n ∈ N} ∪ {0}.

Definition 11 Let A be a subset of R. The boundary of A denoted bdA is the
set A ∩ Ac, that is the intersection of the closure of A with the closure of the
complement of A in R.

Remark 3 An element b belongs to the boundary of A if and only if it is a limit
of a sequence of elements of A and a limit of a sequence of elements not in A.

Proposition 16 Let A be a subset of R.

The boundary of A is a closed set.

A is closed if and only if the boundary of A is included in A.

A is open if and only if the intersection of the boundary of A and A is empty,
bdA ∩ A = ∅.

Exercise 10 Give the boundary of the following subsets of R.
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N;

Q;

R;

an interval of R;

{ 1
n+1
| n ∈ N};

{ 1
n+1
| n ∈ N} ∪ {0}.

Definition 12 Let A be a subset of R. The set A is compact if it is closed and
bounded.

Proposition 17 Let A be a subset of R. A is compact if one of the following
equivalent conditions is satisfied:

If (un) is a sequence such that un ∈ A for all n, then it has a converging subse-
quence with a limit in A.

If (Ui)i∈I is a family of open subsets of R such that A ⊂ ∪i∈IUi, there exists a
finite subset J ⊂ I such that A ⊂ ∪i∈JUi.

If (Fi)i∈I is a family of closed subsets of R such that A ∩ (∩i∈IFi) = ∅, there
exists a finite subset J ⊂ I such that A ∩ (∩i∈JFi) = ∅.

5 Functions

In this section, I denotes an interval of R or a union of disjoint intervals. For
example R, ]0,+∞[, [0, 1], R∗ = R \ {0}, R \ N.

Definition 13 Let f be a function from I to R.

f is bounded if there exists r > 0 such that for all x ∈ I, f(x) ∈ [−r, r].

The image of I by f is the set {y ∈ R | ∃x ∈ I, y = f(x)}.

An element x̄ ∈ I is a maximum (resp. a minimum) of f on I if for all x ∈ I,
f(x) ≤ (resp. ≥)f(x̄).

Limit of a function

Definition 14 Let f be a function from I to R. Let x0 an element of the closure
of I.

The function f has a limit y0 at x0 if for all sequences (un) satisfying un ∈ I for
all n and limn→∞ un = x0, then the sequence (f(un)) is convergent and its
limit is y0.
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The function f has a right (resp. left) limit y0 at x0 if for all sequences (un)
satisfying un ∈ I and un ≥ (resp. ≤)x0 for all n and limn→∞ un = x0, then
the sequence (f(un)) is convergent and its limit is y0.

Proposition 18 Let f be a function from I to R. Let x0 an element of the
closure of I.

The function f has at most one limit at x0.

If f has a right and a left limit at x0, then f has a limit at x0 if and only if the
right and the left limits are equal.

The function f has a limit y0 at x0 if for all r > 0, there exists ρ > 0 such that
for all x ∈ ]x0 − ρ, x0 + ρ[∩I, f(x) ∈ ]y0 − r, y0 + r[.

Cauchy criterion: the function f has a limit at x0 if and only if for all r >
0, there exists ρ > 0 such that for all pair (x, x′) in ]x0 − ρ, x0 + ρ[∩I,
|f(x)− f(x′)| < r.

Limit at infinity

Definition 15 Let f be a function from I to R. We assume that I is not bounded
above (resp. below). The function f has a limit y0 at +∞ (resp. −∞) if for all
sequences (un) satisfying un ∈ I for all n and limn→∞ un = +∞(resp.−∞), then
the sequence (f(un)) is convergent and its limit is y0.

Proposition 19 Let f be a function from I to R. We assume that I is not
bounded above (resp. below).

The function f has a limit y0 at at +∞ (resp. −∞) if for all r > 0, there exists
ρ ∈ R such that for all x ∈ ]ρ,+∞[∩I (resp. ]−∞, ρ[∩I), f(x) ∈]y0 − r, y0 + r[.

Infinite limits

Definition 16 (i) Let f be a function from I to R. Let x0 ∈ I.
The function f tends to +∞ (resp. −∞) at x0 if for all sequences (un) sat-

isfying un ∈ I for all n and limn→∞ un = x0, then the sequence (f(un)) tends
to +∞ (resp. −∞). Equivalently, the function f tends to +∞ (resp. −∞) at
x0 if for all r > 0, there exists ρ > 0 such that for all x ∈ ]x0 − ρ, x0 + ρ[∩I,
f(x) ∈ ]r,+∞[ (resp. ]−∞, r[).

(ii) Let f be a function from I to R. We assume that I is not bounded above.
The function f tends to +∞ (resp. −∞) at +∞ if for all sequences (un)

satisfying un ∈ I for all n and limn→∞ un = +∞, then the sequence (f(un))
tends to +∞ (resp. −∞). Equivalently, the function f tends to +∞ (resp. −∞)
at +∞ if for all r > 0, there exists ρ > 0 such that for all x ∈ ]ρ,+∞[∩I,
f(x) ∈ ]r,+∞[ (resp. ]−∞, r[).

(iii) Let f be a function from I to R. We assume that I is not bounded below.
The function f tends to +∞ (resp. −∞) at −∞ if for all sequences (un)

satisfying un ∈ I for all n and limn→∞ un = −∞, then the sequence (f(un))
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tends to +∞ (resp. −∞). Equivalently, the function f tends to +∞ (resp. −∞)
at −∞ if for all r > 0, there exists ρ > 0 such that for all x ∈ ] − ∞, ρ[∩I,
f(x) ∈ ]r,+∞[ (resp. ]−∞, r[).

Notations We denotes the limit at x0 by limx→x0,x∈I f(x) assuming that the
limit could be infinite. If the domain of definition I is clearly defined, we often
omit x ∈ I and we denote the limit limx→x0 f(x). The right limit is denoted
limx→x+0 ,x∈I

f(x) and the left limit limx→x−0 ,x∈I
f(x).

For the limit at infinity, we denote it by limx→+∞,x∈I f(x) or limx→−∞,x∈I f(x).

Inequalities and limits

Proposition 20 Let f and g be two functions from I to R. Let x0 ∈ I. x0 could
be +∞ if I is not bounded above or −∞ if I is not bounded below. We assume
that f and g have a limit at x0. Then

a) If for all x ∈ I, f(x) ≤ g(x), then limx→x0 f(x) ≤ limx→x0 g(x).

b) If there exists a real number m ∈ R such that for all x ∈ I, f(x) ≤ m, then
limx→x0 f(x) ≤ m.

c) If there exists a real number m ∈ R such that for all x ∈ I, f(x) ≥ m, then
limx→x0 f(x) ≥ m.

Basic calculus with limits

Proposition 21 Let f and g be two functions from I to R. Let x0 ∈ I. We
assume that f and g have a finite limit at x0 denoted y0 and z0. Then

a) The function f + g has a limit at x0 which is y0 + z0.

b) The function fg has a limit at x0 which is y0z0.

c) For all t ∈ R, the function tf has a limit at x0 which is ty0. In particular,
limx→x0 −f(x) = − limx→x0 f(x).

d) The function |f | has a limit at x0 which is |y0|

e)The function max{f, g} has a limit at x0 which is max{y0, z0}.

f) The function min{f, g} has a limit at x0 which is min{y0, z0}.

g) If z0 6= 0 then there exists r > 0 such that the function f
g is defined on

]x0 − r, x0 + r[∩I and it has a limit at x0 which is y0z0 .

Remark 4 The above results holds true if I is not bounded above (resp. bouded
below), for the limit at +∞ (resp. −∞).
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Calculus rules with infinite limits Let f and g be two functions from I to R.
Let x0 ∈ I. x0 could be +∞ if I is not bounded above or −∞ if I is not bounded
below. We assume that f and g have a finite or infinite limit at x0 denoted ` and
`′.

limx→x0(f + g)(x)

limx→x0 f(x) −∞ ` +∞
limx→x0 g(x)
−∞ −∞ −∞ ?
`′ −∞ `+ `′ +∞
+∞ ? +∞ +∞

limx→x0(fg)(x)

limx→x0 f(x) −∞ ` < 0 0 ` > 0 +∞
limx→x0 g(x)
−∞ +∞ +∞ ? −∞ −∞
`′ < 0 +∞ ``′ 0 ``′ −∞
0 ? 0 0 0 ?
`′ > 0 −∞ ``′ 0 ``′ +∞
+∞ −∞ −∞ ? +∞ +∞

Limite of the composition of two functions

Proposition 22 Let f be a function on I and x0 ∈ I. x0 could be +∞ if I is not
bounded above or −∞ if I is not bounded below. Let g be a function on J . We
assume that for all x ∈ I, f(x) ∈ J . Let y0 = limx→x0 f(x). One easily checks
that y0 ∈ J or y0 = +∞(resp. −∞) and J is not bounded above (resp. below).
Let z0 = limy→y0 g(y). Then the limit of g ◦ f at x0 exists and it is equal to z0.

Continuous functions

Definition 17 Let f be a function from I to R. f is continuous at a point
x0 ∈ I, if the limit of f at x0 exists and is equal to f(x0). f is continuous on I if
f is continuous at every point of I.

Remark 5 All the usual functions: absolute value function, polynomial, fraction
of polynomial, logarithm, exponential, trigonometric functions are continuous on
their domain of definition.

A particular class of continuous function is the class of Lipschitzian functions,
that is the function f from I to R such that there exists k ≥ 0, for all (x, x′) ∈
I × I, |f(x)− f(x′)| ≤ k|x− x′|.

Proposition 23 Let f be a function from I to R. f is continuous on I if one of
the two equivalent following conditions is satisfied:
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For all open set U of R, the set f−1(U) = {x ∈ I | f(x) ∈ U} = V ∩ I where V
is an open set of R.

For all closed set F of R, the set f−1(F ) = {x ∈ I | f(x) ∈ F} = G ∩ I where
G is a closed set of R.

Proposition 24 Let f be a continuous function from I to R. Then

|f | is a continuous function from I to R.

for all t ∈ R, tf is a continuous function from I to R.

Proposition 25 Let f and g be two continuous functions from I to R. Then

f + g is a continuous function from I to R.

fg is a continuous function from I to R.

if g(x) 6= 0 for all x ∈ I, fg is a continuous function from I to R.

Proposition 26 Let f be a continuous function on I. Let g be a continuous
function on J . We assume that for all x ∈ I, f(x) ∈ J . Then g ◦ f is continuous
on I.

With these basic operations, we are able to show almost always that the usual
functions are continuous.

Remark 6 If f is continuous on I and has a limit at x0 ∈ I \ I, then the
mapping f̃ from J = I ∪ {x0} to R defined by f̃(x) = f(x) if x ∈ I and f̃(x0) =
limx→x0,x∈I f(x) is a continuous function on J called the continuous extension of
f . If a continuous extension of f exists on I, it is unique.

The following criterion of continuity is very useful when the function f is
defined as a solution of an optimisation problem.

Proposition 27 Let f a bounded function from I to R. Then f is continuous
on I if and only if the graph of f is closed, that is, for all sequences (xn) of
elements of I converging to x0 ∈ I and the sequence (f(xn)) converges in R, then
limn→∞ f(xn) = f(x0).

Exercise 11 Let f be a bounded continuous function from R to R. Show that
the function g(y) = supx∈[−y,y]{f(x)} is continuous on R+.

5.1 Continuous function on a closed interval

Theorem 2 Let I = [a, b] be a closed interval and f a continuous function from
I to R. Then f([a, b]) is a closed interval.
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Corollary 1 Intermediate Value Theorem. Let I = [a, b] be a closed interval and
f a continuous function from I to R. Let (c, d) ∈ [a, b]× [a, b] with f(c) ≤ f(d).
Then, for all y ∈ [f(c), f(d)], there exists x ∈ I such that f(x) = y.

Corollary 2 Weierstrass Theorem. Let I = [a, b] be a closed interval and f a
continuous function from I to R. Then there exists x ∈ I and x ∈ I such that
for all x ∈ I, f(x) ≤ f(x) ≤ f(x).

Corollary 3 Weierstrass Theorem. Let A be a bounded closed (compact) subset
of R and f a continuous function from A to R. Then there exists x ∈ A and
x ∈ A such that for all x ∈ A, f(x) ≤ f(x) ≤ f(x).

Theorem 3 Let f be continuous and strictly monotone function from [a, b] to
f([a, b]). Then f is onto and one to one and f−1 is continuous.

Banach fixed point theorem

Theorem 4 Let f be a function from an interval I to R. We assume that
f(I) ⊂ I and f is a contraction, that is, there exists k ∈ [0, 1[ such that for all
(x, x′) ∈ I × I, |f(x) − f(x′)| ≤ k|x − x′|. Then there exists a unique element
(fixed point) x̄ ∈ I such that f(x̄) = x̄ and for all x0 ∈ I, the sequence (un)
defined by u0 = x0 and for all n ∈ N, un+1 = f(un) converges to x̄.

Sequence of continuous bounded functions
Let I be an interval of R or a union of disjoint intervals. Let (fn) be a se-

quence of bounded continuous function on I. We assume that for all x ∈ I,
the real sequence (fn(x)) is convergent. So we can define a function f on I by
f(x) = limn→∞ fn(x). The question is to find a sufficient condition to obtain the
continuity of f as a function from I to R.

Theorem 5 If f is bounded and the real sequence (supx∈I{|fn(x)− f(x)|}) con-
verges to 0, then f is continuous on I. In this case, we say that the sequence (fn)
converges uniformly to f .

Like for the real sequences, we have a Cauchy criterion for the uniform con-
vergence of limit of continuous functions.

Theorem 6 Let I be an interval of R or a union of disjoint intervals. Let (fn)
be a sequence of bounded continuous function on I. If for all r > 0, there exists
n ∈ N such that for all p, q ≥ n, supx∈I{|fp(x)− fq(x)|} ≤ r, then there exists a
continuous function f on I such that limn→∞ supx∈I{|fn(x) − f(x)|} = 0, which
implies that for all x ∈ I, f(x) = limn→∞ fn(x).

5.2 Derivative

Let f be a function defined on I, which is an interval or a union of disjoint
intervals. Let x and y two different points of I. The rate of increasing of f

14



between x and y is the ratio f(y)−f(x)
y−x , which is the slope of the line joining the

two points of the graph of f , (x, f(x)) and (y, f(y)). The derivative of f at x is
the limit of this rate of increasing when y tends to x.

Definition 18 Let f be a function defined on I and x0 be an element of interior
of I. Then f is differentiable at x0 if the following limit exists:

lim
x→x0,x∈I,x 6=x0

f(x)− f(x0)

x− x0

This limit is called the derivative of f at x0. It is denoted f ′(x0).
If there exists r > 0 such that ]x0 − r, x0] ⊂ I, f is left differentiable at x0 if

the following limit exists:

lim
x→x−0 ,x∈I,x 6=x0

f(x)− f(x0)

x− x0

This limit is called the left derivative of f at x0. It is denoted f ′l (x0).
If there exists r > 0 such that [x0, x0 + r[⊂ I, f is right differentiable at x0 if

the following limit exists:

lim
x→x+0 ,x∈I,x 6=x0

f(x)− f(x0)

x− x0

This limit is called the right derivative of f at x0. It is denoted f ′r(x0).
If I is open, f is differentiable on I if f is differentiable at each point of I. f

is continuously differentiable on I if the function x→ f ′(x) is continuous on I.
If I is a closed bounded interval [a, b], f is differentiable on I if it is differen-

tiable on ]a, b[ and it has a right derivative at a and a left derivative at b. f is
continuously differentiable on I if the function f ′ extended by f ′r(a) and f ′l (b) is
continuous

Exercise 12 Compute the derivative of f for the following functions if it exists
at all point of its domain of definition.

f(x) = m where m is a real number;

f(x) = x;

f(x) = |x|;

f(x) = x2;

f(x) =
√
x;

Proposition 28 If f is differentiable at a point x0 in its domain, it is continuous
at x0.

15



Proposition 29 Let f and g be two functions defined on I and differentiable at
x0 ∈ I. Then

f + g is differentiable at x0 and the derivative is f ′(x0) + g′(x0);

fg is differentiable at x0 and the derivative is f ′(x0)g(x0) + g′(x0)f(x0);

if g(x0) 6= 0, then f
g
is differentiable at x0 and the derivative is f ′(x0)g(x0)−g′(x0)f(x0)

(g(x0))2
;

Proposition 30 Let f be a function on I differentiable at x0 ∈ I. Let g be a
function defined on J . We assume that f(x0) ∈ intJ and g is differentiable at
f(x0). Then g ◦ f is differentiable at x0 and the derivative is f ′(x0)g′(f(x0)).

Corollary 4 If f is differentiable on I an interval of R and f ′(x) ≥ (resp. >)0
for all x ∈ I, then f is (resp. strictly) increasing on I.

If f is differentiable on I an interval of R and f ′(x) ≤ (resp. <)0 for all x ∈ I,
then f is (resp. strictly) decreasing on I.

Proposition 31 Let f be a differentiable mapping on I an open interval of R.
Let us assume that f ′(x) > 0 for all x ∈ I. Then f is one-to-one and onto from
I to f(I) and the inverse mapping f−1 is differentiable on f(I) and its derivative
is (f−1)′(y) = 1

f ′(f−1(y))
.

A similar result holds true if f ′(x) < 0 for all x ∈ I.

Theorem 7 Rolle’s Theorem and Mean value theorem Let f be a continuous
function on [a, b], differentiable on ]a, b[ then there exists c ∈ ]a, b[ such that
f ′(c) = f(b)−f(a)

b−a .
In particular, if f(a) = f(b), then there exists c ∈]a, b[ such that f ′(c) = 0.

Corollary 5 Let f be a continuous function on [a, b], differentiable on ]a, b[.

If f ′(x) ≥ 0 for all x ∈]a, b[, then f is increasing on [a, b];

If f ′(x) > 0 for all x ∈]a, b[, then f is strictly increasing on [a, b];

If f ′(x) ≤ 0 for all x ∈]a, b[, then f is decreasing on [a, b];

If f ′(x) < 0 for all x ∈]a, b[, then f is strictly decreasing on [a, b];

Corollary 6 Let f be a continuous function on [a, b], differentiable on ]a, b[. If
there exists a non-negative real number k such that |f ′(x)| ≤ k for all x ∈ ]a, b[,
then f is Lipschitz continuous on [a, b] of rank k, that is, for all (x, x′) ∈ [a, b]×
[a, b], |f(x)− f(x′)| ≤ k|x− x′|.

16



6 Taylor development of a function

6.1 Higher order derivatives

Let ]a, b[ be an interval with a < b. Let f be a function from ]a, b[ to R.
The second derivative f ′′ is the derivative of the derivative and the derivative

of order p + 1 is the derivative of the derivative of order p. It is denoted f (p+1).
We can also define the left and right derivatives of higher order when f is defined
on ]x0 − r, x0] or [x0, x0 + r[.

The same formulas apply for the computation of the higher order derivatives.
For the computation of the derivative of order p of a product of two functions,
we have the following Leibniz formula:

(fg)(p) = f (p)g + C1
pf

(p−1)g′ + C2
pf

(p−2)g′′ + . . .+ Ck
pf

(p−k)g(k) . . .+ fg(p)

where Ck
p is the binomial coefficient, that is Ck

p = p!
k!(p−k)! .

Let p be an integer greater of equal to 1. f is of class Cp on ]a, b[ iff has
derivatives until order p on ]a, b[ and f (p) is continuous. This implies that all
derivatives until order p of f and f are continuous. f is of class C∞ if f has
derivatives for all order p ∈ N∗. This implies that all derivatives of f and f are
continuous. We can also define function of class Cp or C∞ on a closed interval [a, b]
by considering the right derivatives at a and the left derivatives at b to extend
the higher order derivatives from ]a, b[ to [a, b].

6.2 Taylor Formula

Let f of class Cp on [a, b] such that f (p+1) exists on ]a, b[. Then, there exists
c ∈]a, b[ such that:

f(b) = f(a) + (b− a)f ′(a) + . . .+
(b− a)p

p!
f (p)(a) +

(b− a)p+1

(p+ 1)!
f (p+1)(c)

For all x ∈ [a, b], there exists θ ∈]0, 1[ such that:

f(x) = f(a)+(x−a)f ′(a)+ . . .+
(x− a)p

p!
f (p)(a)+

(x− a)p+1

(p+ 1)!
f (p+1)(a+θ(x−a))

If |f (p+1)(x)| is upper bounded on ]a, b[ by M , then for all x ∈ [a, b],

|f(x)− (f(a) + (x− a)f ′(a) + . . .+
(x− a)p

p!
f (p)(a))| ≤M

(x− a)p+1

(p+ 1)!

Remark 7 When a = 0, we obtain the following formula: for all x ∈ [0, b], there
exists θ ∈]0, 1[ such that:

f(x) = f(a) + xf ′(a) + . . .+
xp

p!
f (p)(a) +

xp+1

(p+ 1)!
f (p+1)(θx)
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Development of Taylor-Young
Let f of class Cp on [a, b] such that f (p+1

r (a) exists. Then, there exists a function
η from [a, b] to R such that limx→a η(x) = 0 and for all x ∈ [a, b],

f(x) = f(a)+(x−a)f ′(a)+. . .+
(x− a)p

p!
f (p)(a)+

(x− a)p+1

(p+ 1)!
f (p+1)(a)+(x−a)p+1η(x)

Taylor Development with an integral
Let f of class Cp+1 on [a, b]. Then, for all x ∈ [a, b],

f(x) = f(a) + (x− a)f ′(a) + . . .+
(x− a)p

p!
f (p)(a) +

1

p!

∫ x

a

(x− t)pf (p+1)(t)dt

6.3 Power serie

Let (an) be a sequence such that limn→∞
n
√
|an| is finite. Then, let r = 1/ limn→∞

n
√
|an|

(with r = +∞ if the limit is 0). From the convergence criteria for series (See
Proposition 11 (c)), for all x ∈]−r, r[, the series associated to the sequence (anx

n)
is convergent, that is, limn→∞

∑n
ν=0 aνx

ν exists. So, we can define a function ϕ
on ]− r, r[ by:

ϕ(x) = lim
n→∞

n∑
ν=0

aνx
ν =

∞∑
ν=0

aνx
ν

In other words, ϕ(x) is the limit of the polynomial (Pn(x) =
∑n

ν=0 aνx
ν).

The key properties of ϕ are sumarized below.

Proposition 32 a) ϕ is the uniform limit of (Pn(x)) on all closed segments
[−ρ, ρ] for all ρ < r.

b)ϕ is of class C∞ on ]r, r[.

c)The p derivative of ϕ is given by the following formula:

ϕ(p) =
∞∑
ν=0

(ν + p)(ν + p− 1) . . . (ν + 1)aνx
ν

d) In particular ϕ(p)(0) = p!ap.

Definition 19 A function f defined on an open interval ]− r, r[ is analytic if it
is equal to

∑∞
ν=0

f (ν)(0)
ν!

xν with f (0) = f and 0! = 1 for all x ∈]− r, r[.

Remark 8 All usual functions are analytic. We can also defined analytic func-
tions around x0 be considering the change of variable t = x− x0.
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Remark 9 For two analytic functions f and g on the same interval ] − r, r[,
we can extend the usual formula applied to polynomials. For example, f + g is
analytic and

(f + g)(x) =
∞∑
ν=0

f (ν)(0) + g(ν)(0)

ν!
xν

fg is analytic and

fg(x) =
∞∑
ν=0

f (ν)(0)g(0) + C1
νf

(ν−1)(0)g′(0) + C2
νf

(ν−2)(0)g′′(0) + . . .+ f(0)g(ν)(0)

ν!
xν

7 Usual functions on R
Usual limits

Limit at −∞ and +∞ of a polynomial function.
a > 0 and b ∈ R
limx→+∞

(lnx)b

xa
= 0

limx→0+ x
a(lnx)b = 0

limx→+∞
(expx)a

xb
= +∞

limx→−∞(expx)axb = 0

Polynomial
Domain: R
f(x) = a0 + a1x+ . . .+ apx

p

derivative f ′(x) = a1 + 2a2x+ . . .+ papx
p−1

primitive F (x) = c+ a0x+ a1
2
x2 + . . .+ ap

p+1
xp+1

Power
Domain: R+ or R∗+
f(x) = xa

derivative f ′(x) = axa−1

primitive F (x) = c+ 1
a+1

xa+1 si a 6= −1, c+ lnx si a = −1

exponential
Domain: R
f(x) = ex

derivative f ′(x) = ex

primitive F (x) = c+ ex

Remark 10 a > 0, ax = ex ln a, derivative ln aex ln a, primitive c + 1
ln a
ex ln a if

a 6= 1, c+ x otherwise.

logarithm
Domain: R∗+
f(x) = ln x

derivative f ′(x) = 1
x
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primitive F (x) = c+ x(lnx− 1)

Remark 11 a > 0, a 6= 1, the logarithm with base a is loga x = lnx
ln a

sinus
Domain: R
f(x) = sinx

derivative f ′(x) = cos x

primitive F (x) = c− cosx

cosine
Domain: R
f(x) = cos x

derivative f ′(x) = − sinx

primitive F (x) = c+ sinx

tangent
Domain: R \ {π

2
+ kπ | k ∈ Z}

f(x) = sinx
cosx

derivative f ′(x) = 1
cos2 x

primitive F (x) = c− ln(cosx) in ]− π
2
, π
2
[

arcsine
Domain: [−1, 1]

f(x) = arcsin x in [−π
2
, π
2
]

derivative f ′(x) = 1√
1−x2

Primitive F (x) = c+ x arcsinx+
√

1− x2
arccosine

Domain: [−1, 1]

f(x) = arccos x in [0, π]

derivative f ′(x) = −1√
1−x2

Primitive F (x) = c+ x arccosx−
√

1− x2
arctangent

Domain: R
f(x) = arctan x in ]− π

2
, π
2
[

derivative f ′(x) = 1
1+x2

Primitive F (x) = c+ x arctanx− 1
2

ln(1 + x2)
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