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Chapter 1

Multivariable Calculus

1.1 Derivative of f: R — R?

Definition 1 Let f be a mapping of an interval J into RP. We assume that
the interval has more than one point, but the interval may contain its end
points. We say that f is differentiable at a number ¢ in its interval of defini-
tion if limy,_,q w exists, in which case this limit is called the derivative of
f at t and is denoted by f'(¢).

We say that f is differentiable (on J) if it is differentiable at every ¢ € J, and in
that case, f’ is a mapping of J into R?.

If f has p continuous derivatives, we say f is of class CP.

If f is infinitely differentiable, we say that f is C*.

Remark 1 f:.J — RP can be represented by coordinate functions,

F&) = (A), ..., f,(t) and f(t+h})b—f(t) _ <f1(t+h})L—f1 (t)’ o fp(t+h})L—fp(t)>.

The limit can be taken componentwise, and consequently f is differentiable if and
only if each coordinate function is differentiable, and then
J'(#) = (i), -, f(2)).

One usually views a map f such as above as a parametrized curve in RP.

Examples: Let f(t) = (cos(t), sin(t)) parametrizes the circle. We have f'(t) =
(—sin(t), cos(t)).

Let f(t) = (cos(t), sin(t), t). Then f(t) describes a spiral. Its projection in the
plane of the first two coordinates is of course the circle.

The examples give a curve in R? and R? respectively.

To distinguish such curves from those given by an equation like 22 + y? = 1
we also call them parametrized curves. If f is a differentiable curve, then the
derivative f’ is called the velocity of the curve. The second derivative f”, if it
exists, is called the acceleration of the curve.

Proposition 1 Let f and g from J — RP, if f and g are differentiable at t, then
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sois f+g and (f+g)(t) = f'(t) + J(1).

If f:J — R and g : J — RP are differentiable at t, let f - g be defined by
(f-9)t)=[f(t)-g(t). Then:

(f-9)(t)=f(t)-g' )+ f'(t) - g(t).

Proposition 2 (Chain rule) Let Ji, Jy be intervals. Let f : J, — Jy and
g:Jo = RP be maps. Lett € Jy. If f is differentiable at t and g is differentiable
at f(t), then go f is differentiable at t and

(go f)'(t) = g'(f() (D).

1.2 Derivative of f: R" - R

1.2.1 Partial Derivatives

Definition 2 Let U be an open set of R”, and let f : U — R be a function. We

define its partial derivative at a point x = (xy,...,2,) € U by

o . het)— . seersTithy . xn)—f(x1,..y n :
8_51(:8) = limp_0p40 f(z+ eh) fl@) _ limy, 0.p-£0 flzy,zit if )=f(@1,52n) if the

limit exists.

ei = (0,...,1,...,0) is the unit vector with the i-th component being equal to 1
and all others equal to 0. Note that f(z+ he') is well defined if & is small enough
since U, the domain of f, is open and x belongs to U.

Remark 2 We see that - is an ordinary derivative which keeps all variables
fixed but not the i-th Varlable In particular, we know that the derivative of a
sum, and the derivative of a constant times a function follow the usual rules, that
is ag;g = g—gﬁ: + g—i and g%{ = cg—aﬁ: for any constant c.

Example: If f(z,y) = 32°? then %L(z,y) = 92%® and 4 (:c y) = 62%y. Of

course we may iterate partial derlvatlves. In this example, we have ng(x y) =
92 52
18212, 57 9L (x,y) = 62° and 8x—(,£/(x,y) = 1822y,

2
o (2, y) = 1827y,

Observe that the two last iterated partials are equal. This is not an accident, and
is a special case of the following general theorem.

Theorem 1 (Schwarz) Let f be a function on an open set U € R%. Assume
af of d*f *f 9*f 03

D57 Dy’ Dwdz’ Dydy’ Dady’ Dydw exist and are continuous.

that the partial derivatives
Then 2L = 21

Oxdy ~  Oyox”
Definition 3 We define the gradient of f at any point x at which all partial
derivatives exist to be the vector V f(z) = <§7fl(x), e 8‘1’; (x))

Definition 4 We define the Hessian matrix of f at any point



02 f 02 f 02 f
@Cﬂ) 836128962 (.’L’) 81:125936” (.CC)
o°f o f o°f
H(f = | P mEE e e
82f. 82f' ' 82f‘
8$n811(x) anamz(x) o SEZ(I)

Remark on higher order partial derivatives
Let f be a function on an open set U of R". We may take iterated partial

i1 in
derivatives (if they exist) of the form (i) < g > f where iy, ..., are

ox dzn
integers > 0. It does not matter in which order we take the partials (provided
they exist and are continuous) according to the thwarz’s theorem. If ¢;,..i, are

o \" 0

ox1 o\ Oz
applicable to functions which have enough partial derivatives. More precisely, we
say that a function f on U is of class CP, for some integer p > 0, if all partial
derivatives (%)H 82n
clear that the functions of class CP form a vector space, that is the sum of two
functions of class C? is of class CP and the product of a function of class C? by
a real number is a function of class CP.. Let iq,...,1, be integers > 0 such that
h+...+i,,=7<p.

Let F, be the vector space of functions of class CP. (For p = 0, this is the vector

i1 in
space of continuous functions on UU.) Then any monomial ( :22-) ... (2% ) may
ox1 OTn

Ty

g3
numbers, we may form finite sums > ¢, . which we view as

in
> f exist for iy,...,4, < p and are continuous. It is

- i1 in
be viewed as a linear map F, — F,_, given by f — <8%> (%) f.
We say that f is of class C* if it is of class C? for every positive integer p.

If f is of class C*°, then <i)“ ( 9 >M f is also of class C*.

ox1 Ozn

1.2.2 Reminder on Euclidean algebra

Orthogonal spaces

Definition 5 (uy,...,u,) is an orthogonal basis of R™ if (uq,...,u,) is a basis
of R™ and w; - u; = 0 for all (4, j), i # j.
(u1,...,u,) os an orthonormal basis of R if (uq, ..., u,) is an orthogonal basis

of R™ and ||u;|| =1 for all 7.

The canonical basis of R™ is orthonormal.

Proposition 3 Let B = (u,...,u,) be an orthonormal basis of R™ and let x
and y be two vectors of R™. Let (&1,...,&,) be the coordinates of x is the basis B
and (1, ..., C,) be the coordinates of y in the basis B. Then, for alli, & = x - u;,



G =19y u; and

-y = Zfi@ and ||z| = Zf?
i=1

i=1
Let E be a linear subspace of R™ and (u4,...,u,) a basis of E. One can
built an orthogonal basis of E, (vq,...,v,), starting from (us,...,u,) using the

Gram-Schmidt orthogonalisation method as follows:
U1 = Ug;
V1 U
V2 = U2 T 21
Vg—1"Ug

1 Uk V2 Uk

— _ Liug _ _ _ Yk-1"Uk
Uk = Uk = g2V 7 Toaf2¥2 7 0 7 o2 Vh—1
. V1 Up V2 Up Vp—1-Up
Vy = Up — 7—5UV1 — 75U — ... — 77— 5Up—
p = Up T o2V T Tuge V2 Top_1]]2 Up—1

From which, we deduces that all linear subspace of R™ has an orthogonal basis.

Exercise 1 Let (u= (1,0,1),v = (2,-1,1),w = (=1, —1,2)) be three vectors of
R3. Show that this is a basis of R3. Apply the Gram-Schmidt orthogonalisation
method to find an orthogonal basis of R3.

Same question with ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) in R™%.

Let E be a linear subspace of R™. The orthogonal complement of E denoted
Etis the set defined by:

Et={veR"|Vue E,u-v=0}
Proposition 4 E* is a linear subspace of R*. EN E+ = {0}.

Let (uq,...,u,) be a basis of E, then
Et={weR"|Vi=1,....,p€ E,u; - v =0}

In other words, B+ is the kernel of the linear mapping f from R™ to R defined
by f(v) = (u1-v,...,up,-v).
Let E be a linear subspace of R™ and (uy,...,u,) be an orthogonal basis of E.

we know that there exists (upt1, ..., u,) € (R™),_, such that (us, ..., up, Upi1, ..., Uy)
is a basis of R"”. Using the Gram-Schmidt orthogonalisation method, we build
orthogonal basis of R" (vq,...,0p, Upt1,...,0,) from (ug, ..., up, Upig,. .., uy).
Since (u,...,u,) is an orthogonal basis of E, we remark thatv; = uy, vy = uo,

oy Up = Up. SO (Vpy1,-..,v,) are linearly independent vectors of E+ and they
are a basis of E+. So we conclude that

Proposition 5 1) E are E+ are complements in R*, R® = EQE+ and dim E+ =
n —dim £
2) THe orthogonal complement of E+ is E: (E+)t = E



For all x € R", there exists a unique pair (y,2) € E x B+ such that z = y + 2.
y is the orthogonal projection of x on E, z is the orthogonal projection of x on
E*. They are denoted projz(z) and projz. (z).

Remark that proj () - projg. (z) = 0.

Proposition 6 1) The mappings projé are projg L are linear;

2) The kernel of projg (resp. the range projg. ) is E*, the range of projz (resp.
the kernel of projg. ) is E.

3) projg; © proji = projg.
4) projz + projp. = Id.

We remark that all linear subspaces of R™ is the kernel of a linear mapping. We
can also represent a linear subspace E of R" of dimension p by n — p independent
linear equations. Indeed, if (v1,...,v,_,) is a basis of E*, then

E={zeR"|Vj=1,....n—p,vj -z =0}

Proposition 7 Let E and F be two linear subspaces of R". Then (EN F)*+ =
E++Ftand (E+ F)*=FE+*nF+ IfECF, then F* C E*.

Let u be a non zero vector in R™; we denote by u' the orthogonal complement
of the line D generated by u: D = {tu | t € R}. We remark that u* is an
hyperplan, that is, a linear subspace of dimension n — 1 and the projections on
ut and on D are defined as follows:

T U

— 5 U
J[u]?

projr. (z) =z — ﬁu et projp(r) =
Linear mappings and inner product
Let f be a linear mapping from R"™ to RP. Let M its p X n matrix. in the
canonical basis of R" and R?. we denote by (¢;)_; the rows of the matrix M
which are vectors in R and by (¢;)!; the columns of M which are vectors in R,
The transpose of M denoted M? is the n x p matrix whose column vectors are
the row vectors of M.

For all x € R", we have two ways to compute the image of x by f.
fla) =) wici = (t;-x)h_,
i=1

The transpose of f is the unique linear mapping f* from R? to R" satisfying
for all (z,y) e R x RP, y - f(z) = f'(y) - x.

The matrix of f! in the canonical basis is M*. We remark that the transpose
of the transpose of f is equal to f.

Proposition 8 Let f be a linear mapping from R™ to RP.



1) Kerf = (Imf%)*, Imf = (Kerf)*;
2) Kerf! = (Imf)*, Tmf! = (Kerf)";
3) f and f' have the same rank, the dimension of their ranges are equal.

Properties of the symmetric matrices Let M be a n X n symmetric matrix,
that is, M is equal to its transpose, M* = M. M is the matrix of a linear mapping
f from R"™ to R™ defined by the matrix-vector product f(x) = Mx. This linear
mapping satisfies y - f(z) =y- Mz = M'y-x = My-x = f(y) -z and it is called
a symmetric linear mapping.

We recall the fundamental spectral theorem on the symmetric matrices. An
orthonormal basis of R™ is a basis B = (u4, ..., u,) such that u; - u; = 0 for all
(4,7) with ¢ # j and |Ju;|| = 1 for all 4.

Theorem 2 Let f be a symmetric linear mapping on R™ and M its symmet-
ric matrix in the canonical basis. Then it exists an orthonormal basis B =
(Ui, ..., uy,) such that for alli, there exists a real number \; such that f(u;) = \u;.
In other words, the matriz of f in the basis B is diagonal and N\; is the term on
the diagonal and on the ith row. Equivalently, we can say that there exists anxn
matriz P such that P~ = Pt and P~'MP is a diagonal matriz.

Definition 6 Let M be a n X n symmetric matrix. Then M is
positive definite if all its eigenvalues are positive;
positive semi-definite if all its eigenvalues are non negative;
negative definite if all its eigenvalues are negative;

negative semi-definite if all its eigenvalues are non positive;

Proposition 9 Let M be a n x n symmetric matriz. If M is positive definite
(resp. negative definite), then M is invertible and its inverse is positive definite
(resp. negative definite).

From a symmetric n x n matrix M, we define a quadratic form ¢ from R" to
R and a bilinear symmetric form ¢ from R" x R™ to R as follows:
q(z) =z - Mz
pl,y) =z My.
We note that g(x

~—

= @(x,z) and V(z,y,2) € R" x R" x R", Vt € R,

- o(x,y) = p(y, )

- (@ +2,y) = o(r,y) + 0(2,9)
- p(z,y +2) = p(z,y) + p(, 2)
- p(tz,y) = p(z,ty) = to(z,y)
- q(tr) = t*q()

-q(z +y) = q(x) + q(y) + 2p(z,y)
- p(x,y) = 1z +y) —qlz —y))



Remark 3 M is positive definite (resp. positive semi-definite, negative semi-
definite, negativedefinite) if and only if g(x) > 0 (resp. > 0, < 0, < 0) for all
x # 0. More precisely, if A is the smallest eigenvalue of M and A\ the largest

eigenvalue of M, then _
Alz]* < q(z) < Nz|?

Exercise 2 Let M be a p x n matrix. Let P be the p x p matrix defined by
P = MM*.

1) Show that P is a symmetric positive semi-definite matrix.

2) Show that if the rank of M is equal to p, then P is positive definite.

Let N be a n x n symmetric positive definite matrix. Same questions with
Q = MNM:.

Criterion for a positive definite symmetric matrix

If M is a 2 x 2 symmetric matrix. M is positive definite if both trace and the
determinant are positive.

If M is a nxn symmetric matrix. We denote MP the p X p submatrix containing
the first p columns and the first p rows of the matrix M. M is postive definite if

the determinant of the matrices MP with p = 1,...,n are positive.
mi1 Mg ... Mip mi; Mz ... My
M= m'21 771.22 .- 771.2n P — Mo1 Mo ... Mgy
Mp1 Mp2 .. Mpp mp1r Mp2 ... Mypyp

Exercise 3 Let a € R and ¢ be a quadratic function define on R? as:
oz, y,2) =22+ (1+a)y* + (1 + a+a*)2* + 2zy — 2ayz

1) Compute the bilinear form ¢ associated to q.
2) Give the matrix of ¢ in the canonical basis of R3.
3) For which values of a, ¢ is positive definite?

Exercise 4 Let ¢ be the quadratic form defined by its matrix in the canonical
basis:

M=

— =

11
11
1 2

1) Compute the bilinear form ¢ associated to q.
2) Show that ¢ is positive definite?

1.2.3 Differentiable Functions

Definition 7 A function f : U — R, where U is an open set of R", is differ-
entiable at a point x if there exists a vector ¢ € R™ and a mapping € defined
on an open set containing 0 such that f(z + h) = f(z) + g - h + ||h]le(h) with
limy_o €(h) = 0.



Proposition 10 Let f be a function U — R, where U is an open set of R™. If
f is differentiable at a point x, then it is continuous at x.

Theorem 3 Let f be differentiable at a point x and let g be a vector such that
flz+h) = f(x)+g-h+]h||e(h) withlim,_o €(h) = 0. Then all partial derivatives
of f at x exist, and g = V f(x).

Conversely, assume that all partial derivatives of f exist in some open set con-
taining x and are continuous functions. Then f is differentiable at x.

Remark 4 Note that a function may have partial derivatives everywhere and
not being differentiable. For example:

L if (z,y) # (0,0)
_ ] 2 1 Y ’
. y) { 0 otherwise.

You can check that g—f(:c,y) and g—é(x, y) are defined for all (z,y), included at

L1
(0,0), but f is not differentiable at (0,0). It is not even continuous at the origin.

Definition 8 A function f from U an open set of R” to R is differentiable on U
if it is differentiable at every point of U. It is continuously differentiable on U if
all partial derivatives are continuous on U.

Proposition 11 Let f and g be two differentiable functions from U an open set
of R" to R. Then, for allx € U, V(f + g)(x) = Vf(x)+ Vg(z), V(fg)(x) =
f(@)Vyg(z) + g(x)Vf(x) and for all c € R, V(cf)(x) = cV f(x).

Remark 5 Suppose f is defined on an open set U, and let ¢ : [a,b] — U be
a differentiable curve. Then we may form the composite function f o ¢ given
by (f o ¢)(t) = f(e(t)). We may think of ¢ as parametrization of a curve, or
we may think of ¢(¢) as representing the position on a curve at time ¢. If f(z)
represents, say, the value of the basket of commodities z, then f(y(t)) is the value
of the commodities at time t of © = (t). The rate of change of the value along
the curve is then given by the derivative %. The chain rule which follows
gives an expression for this derivative in terms of the gradient, and generalises

the usual chain rule to n variables.

Theorem 4 Let ¢ : J — U be a differentiable function defined on some interval,
and with values in an open set U of R*. Let f : U — R be a differentiable
function. Then fog:J — R is differentiable, and (f o p)'(t) = Vf(e(t))-¢'(1).

1.2.4 Geometric properties of the gradient

From the chain rule, we deduce a geometric interpretation for the gradient.

Definition 9 Let x be a point of U and let v be a fixed vector. We define the di-
rectional derivative of f at x in the direction of v to be f'(z, v) = lim; 0420 %(f(x—l—

tv) = f()).



Remark 6 This means that if we let g(t) = f(x + tv) then f'(z,v) = ¢’(0). By
the chain rule, ¢’(t) = V f(x + tv) - v whence f'(z,v) = Vf(x) - v.

From this formula we obtain an interpretation for the gradient. We use the stan-
dard expression for the dot product, namely f'(z,v) = || f(z)||||v]cos(d) where
0 is the angle between v and V f(x). Depending on the direction of the vector
v, the number cos(f) ranges from —1 to 1. The maximal value occurs when v
has the same direction as V f(x), in which case for such unit vector v we obtain
f(x,v) = ||V f(x)||lv]]. Therefore we get an interpretation for the direction and
norm of the gradient:

The direction of V f(z) is the direction of maximal increase of the function f at z.
The norm ||V f(x)|| is equal to the rate of change of f in its normalized direction
of maximal increase.

Example: Find the directional derivative of the function f(z,y) = 2%y at
(1,-2) for v = 7=(3,1).

We have V f(z,y) = (2zy?, 32%y?) and V f(1, —2) = (—16,12). Hence the desired

directional derivative is f'((1,—2),v) = (—16, 12).\/%(3, 1) = J%(_36)‘

1.2.5 Tangent plane to a surface

Consider the set of all z € U such that f(x) = 0; or given a number ¢, the set
of all x € U such that f(z) = c¢. This set, denoted by S, is called the level
hypersurface at c¢. Let z € S, and assume again that V f(z) # 0.

It will be shown later as a consequence of the implicit function theorem that

given any direction v perpendicular to the gradient, there exists a differentiable
curve « : J — U defined on some interval J containing 0 such that a(0) = = and
o'(0) = v and f(a(t)) = c for all t € J. In other words, the curve is contained
in the level hypersurface. Conversely, we see from the chain rule that if we have
a curve « lying in the hypersurface such that a(0) = z, then 0 = %(&(t)) =
Vf(a(t).o'(t).
In particular, for t = 0, 0 = Vf(a(0)).a/(0) = Vf(x).0/(0). Hence the velocity
vector o/(0) of the curve at ¢ = 0 is perpendicular to Vf(z). From this re-
sult, we make the geometric conclusion that V f(x) is perpendicular to the level
hypersurface at x.

So we get the formal definition of the tangent plane to the level surface as
follows:

Definition 10 Let f be a differentiable mapping for U, an open subset of R",
to R. Let « € U such that Vf(z) # 0. Let ¢ = f(z). The set S. = {2/ € U |
f(z") = ¢} is the level surface of f at the level ¢. The tangent hyperplane of S,
at x denoted Ts, (x) is defined by:

Ts.(x) ={u e R" |u-V[(z) =0}

or, in other words, T’s,(x) is the orthogonal space to V f(z).

10



Note that we often consider a translation of the tangent plan which contains
the point x and which is defined as {u € R" | u-V f(x) = x- V f(z)}. Sometimes,
there is a confusion between the two plans.

Example: Let f(x,y,2) = 22 + y* + 2°. The surface S of points X = (x,y, 2)
such that f(X) = 4 is the sphere of radius 2 centered at the origin. Let P =
(1,1,v/2). We have V f(z,y,2) = (2, 2y,22) and so Vf(P) = (2,2,2/2). Hence
the tangent plane at P is given by the equation 2z + 2y + 2v/2z = 0.

Exercise 5 Let f be a differentiable function on R"™ \ {0}, depending only on
the distance from the origin, that is, there exists a differentiable function g on
R, such that f(z) = g(||z|]) where ||z|| is the Euclidean norm. Show that

gl
VI =

1.2.6 Taylor Formula

By applying the result on the directional derivatives to the first order partial
derivatives, we obtain the following result:

Proposition 12 Let f be a C? function from U, an open subset of R", to R. Let
x €U and u € R™. Let ¢ be the function from the open interval I containing 0
in R defined by o(t) = f(T + tu). then,

¢"(t) = ' Hf (T + tu)u = i i O'f (T + tu)uu,

i—1 j—1 axﬁx]

Using the Taylor-Lagrange development of ¢, we obtain the following result
for f:

Proposition 13 Let f be a C? function from U, an open subset of R", to R. Let
x and ' be two elements of U such that the segment [x,x'| C U. Then, it exists
¢ €|x, 2’| such that:

Fa) = £(@) + DI — ) + 5 (@ — ) Hy€) — )

Using the continuity of the second order partial derivatives, we obtain the
following Taylor development:

Proposition 14 Let f be a C? function from U, an open subset of R", to R.
Then, it exists a continuous function n from U x U to R such that:

f@') = f(z) + Df(x)(a" — x) + %(%” — ) Hp(2)(2' — 2) + ||’ — 2*n(a’, )

and n(z,z) =0 for allz € U.

Note that the continuity of  implies that for all z € U, lim,_,, n(2’, z) = 0.

11



1.2.7 Euler’s formula

Definition 11 For any real number k&, a real-valued function f defined on a cone
K of R" is homogeneous of degree k if f(tx) = t*f(zy,...,x,) for all x € K and
all t > 0.

Theorem 5 Let f(z) be a C' function on an open cone K of R™. If f is homo-
geneous of degree k, its first order partial derivatives are homogeneous of degree
k—1.

Theorem 6 (Euler’s formula) Let f be a C' homogeneous function of degree
k on an open cone K of R™. Then for all x,
of of

r1——(x) + mQa—:BQ(x) +... +xna n(a:) =kf(x)

or using the gradient

x-Vf(x)=kf(z)

1.3 Derivative of f: R" — R?

1.3.1 The Frechet derivative as a linear map

Definition 12 Let U be an open subset of R" and let x € U. Let f be a
mapping from U to R . We shall say that f is (Frechet)-differentiable at z if
there exists a continuous linear map ¢ : R" — RP and a map 7 defined for all
sufficiently small h € R", with values in R?, such that lim,_,, n(h) = 0 and

f(x+h) = f(z) + @(h) + [|hln(h).

Remark 7 Setting h = 0 shows that we may assume that 7 is defined at 0 and
that 1(0) = 0. The preceding formula still holds.

We view the definition of the derivative as stating that near z, the values of f
can be approximated by a affine map f(z) + ¢(z’) with an error term described
by the limit property of n at 0.

Theorem 7 If f is (Frechet)-differentiable at x, then f is continuous at x.

Definition 13 If f is (Frechet)-differentiable at every point = of U, then we
say that f is (Frechet)-differentiable on U. In that case, the derivative Df is a
mapping from U to the space of continuous linear mappings £(R", RP), and thus
to each x € U, we have associated the linear map D f(z) € L(R™ RP).

We shall now see systematically how the definition of the derivative as a linear
map actually includes the cases which we have been studied previously. We have
three cases:

'For all z € K and for all ¢t > 0, tz € K.

12



We consider a map f : J — R from an open interval J into R. Then Df(z) is
the linear mapping from R to R define by D f(z)(t) = f'(z)t.

Let U be an open subset of R® and let f : U — R be a mapping, differentiable
at a point x € U. Then Df(z) is the linear mapping from R™ to R define by
Df(z)(u) = Vf(z) - u.

Let J be an interval in R, and let f : J — R? be a mapping. Then D f(x) is the
linear mapping from R to R? define by Df(x)(t) = tf'(x).

Theorem 8 (Maps with coordinates) Let U be open in R", let f be a map-
ping from U to RP* x ... x RPx. Let (f1,..., fx) be the coordinate mappings from
U to RV, that is f(x) = (fi(z),..., fe(x)). Then f is (Frechet)-differentiable
at = if and only if each f; is differentiable at x, and if this is the case, then
Df(x) = (Dfi(x),...,Dfe(x)).

Theorem 9 Let ¢ : R® — RP be a linear mapping. Then 1 is (Frechet)-
differentiable at every point of R™ and Diy(x) =1 for every x € R™.

Let ¢ from R™ x RP to R¥ be a bilinear mapping, that is the partial mapping
o(x,-) is linear for all x in R™ and ¢(-,y) is linear for all y in RP. Then ¢ is
(Frechet)-differentiable at every point of R™ x RP and for all (u,v) € R™ x R?,
Do(x)(u,v) = ¢(u,y) + d(x,v) for every (x,y) € R™ x RP.

1.3.2 The Jacobian matrix of a differentiable map

Theorem 10 Let U be an open set of R™, and let f : U — RP be a mapping
which is (Frechet)-differentiable at x. Then the continuous linear map D f(x) is
represented by the Jacobian matrix

%(SL') %(SL‘)

. ox1 0zn

nw=(ghw)=| ¢
v g—i’;’(x) g%i(x)

where f; is the i-th coordinate function of f.

We see that if f is (Frechet)-differentiable at every point of U, then z — J¢(z)
is a mapping from U into the space of p xn matrices, which is a space of dimension

pn.

Definition 14 We shall say that f is of class C! on U, or is a C' mapping,
if f is (Frechet)-differentiable on U and if in addition the derivative Df : U —
L(R"™, RP) is continuous, which is equivalent to assume that pn partial derivatives
ng; are continuous.

Theorem 11 Let U be an open set of R”, and let f : U — RP be a mapping. If
the pn partial derivatives g—aﬁ are defined on U and are continuous, then f is C*
onU.

13



1.3.3 Basic Properties of the Derivative

Proposition 15 Let U be open in R™. Let f,g: U — RP be two mappings which
are (Frechet)-differentiable at x € U. Then f + g is (Frechet)-differentiable at x
and D(f + g)(z) = Df(x) + Dg(x). If ¢ is real number, then cf is (Frechet)-
differentiable at x and D(cf)(x) = cD f(z).

We recall that a bilinear mapping 1 from R” x R? to R¥ is a mapping such
that the partial mapping ¢ (x, ) is linear for all = in R™ and (-, y) is linear for
all y in RP.

Proposition 16 Let 1 be a bilinear mapping 1 from R™ x RP to R*. Let U be
an open subset of R® and let f : U — R™ and g : U — RP be two (Frechet)-
differentiable mappings at x € U. Then (f, g) is differentiable at x and for all
v ERY,

Dy(f, 9)(@)(v) = (D f(x)(v), g(x)) + ¢ (f(x), Dg(x)(v))

Remark 8 If ¢ is the inner product on R™ x R", we have the following formula
for all v € RY,

D(f - g)(x)(v) = Df(x)(v) - g(x) + f(x) - Dg(x)(v)

or
V(f-g)(x) = Df(x)'(9(x)) + Dg(x)'(f(x))

where Df(x)! is the transpose of the linear mapping D f(z) and Dg(z)" is the

transpose of the linear mapping Dg(z).

Example: Let J be an open interval in R and let ¢ — A(t) = (a;(t)) and
t — X(t) be two differentiable maps from J into the space of p X n matrices,
and into R™ respectively. Thus for each ¢, A(t) is an p X n matrix, and X (t) is
a column vector of dimension n. We can form the product A(¢)X(¢), and thus
the product map ¢ — A(t) X (t), which is differentiable. Our rule in this special
case asserts that 2 A(t)X(t) = A'(t)X(t) + A(t)X'(t) where differentiation with
respect to t is taken componentwise both on the matrix A(¢) and the vector X (¢).
The product here is the product of a matrix and a vector.

1.3.4 Chain Rule

Proposition 17 (Chain Rule ) Let U be an open subset of R™ and let V' be
an open subset of RP. Let f : U — V and g : V — RF be two mappings.
Let x € U. Assume that f is (Frechet)-differentiable at x and g is (Frechet)-
differentiable at f(x). Then go f is (Frechet)-differentiable at x and D(go f)(x) =

Dy(f(x)) o Df(x).

Remark 9 Df(z): R" — RP is a linear map, and Dg(f(z)) : R? — R® is a linear
map, and so these linear maps can be composed, and the composite is a linear
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map, which is continuous because both Dg(f(x)) and D f(x) are continuous. The
composed linear map goes from R"™ into R?, as it should.

Remark 10 In terms of the Jacobian matrix we have: Jyor(x) = J,(f(2))J¢(x),
the multiplication being that of matrices.

Corollary 1 Let U be an open subset of R™ and f : U — R be a (Frechet)-
differentiable mapping. Let J be an open interval of R and let ¢ : J — R"™ be a
differentiable mapping such that o(t) € U fort € J. Then f o is differentiable
on J and (£ o ¢)/(t) = Y0, (02 ((t)) for all t € J.

In particular if (t) = T + tu for some T € U and u € R", we get (f o p)'(t) =
> uig—i(go(t)) =Vf(Z+tu) u foralltel.

1.3.5 The Mean Value Theorem

Theorem 12 Let U be an open subset of R™ and f be a differentiable mapping
from U to R. Let x and T two elements of U such that the segment [z,T] =
{(1—=t)x+tz |t e€[0,1]} CU. Then, it exists £ €]z, Z[ such that f(T) — f(z) =
Df(&)(z — z).

Remark 11 This theorem cannot be generalised to a differentiable mapping f
taken its value in R? with p > 1. Indeed, let f from R to R? defined by f(t) =
(cost,sint). f is C' on R. We remark that f(0) = f(27). It does not exists
t €]0, 27| such that f(27) — f(0) = Df(t)(27). Indeed, Df(t) # 0 for all t € R.

Nevertheless, we can obtain an upper bound of the norm f(Z) — f(z) by using
the norm as a linear mapping of Df(&) for £ € [z, Z].

Theorem 13 Let U be an open subset of R™ and f be a differentiable mapping
from U to RP. Let x and T two elements of U such that the segment [z, T] =
{1 —=t)x+tx |t e 0,1]} is included in U. Then, it exists & €]z, T[ such that
1f (@) = f@)lp < 1Dl -zl -

Corollary 2 Let U be an open subset of R™ and f be a differentiable mapping
from U to RP. Let x and T two elements of U such that the segment [z, z| = {(1—
t)x+tz |t €[0,1]} is included in U. Then, || f(Z) — f(2)|, < max{||Df(&)]|z |
§ € [z z]}|7 — s

A first consequence of this theorem is the fact that a differentiable mapping f
such that D f(x) is the nul linear mapping for every z is locally constant.

Corollary 3 Let U be an open subset of R™ and f be a differentiable mapping
from U to RP. If Df(x) = 0f for all x € U, the, for allz € U, f is constant on
the ball B(z,r) such that B(z,r) C U.

Another consequence is the fact that a C! mapping is locally Lipschitz contin-
uous.

15



Corollary 4 Let U be an open subset of R™ and f be a continuously differentiable
mapping from U to RP. Let & € U and r > 0 such that the closed ball B(Z,r)
is included in U. Then it exists k > 0 such that for all (z,2') € B(Z,7)?%

1f (@) = f(@)llp < Klla" =zl

Exercise 6 Compute the partial derivatives of the following mappings

1) f(z,y) =2x@2In(z+1)+y+1)+e¥+2In(x+ 1) +y;

2) f(x,y,2) =2Y?27; 0 >0,8>0,v>0;

3) f(z,y,2) = Var + By +7z, >0, >0,7>0;

4) f(@,y,2) = y(o +a223 +2);

5) f(x,y,z):(axp+6yp+7zp)%,a>0,6>0,7>Op>0;

TYZ

6) f(z.y,2) = ;5

7) f(z,y,2) = e*ePver,

9) f(x,y,2) =In(z) — aln(z) — fln(y);

f(x,y,2) = a +y? + 22
(

=3}
15) f(z,y) = 2*(1 +y)* +y*
16) f(z,y) = 2* —y* +y'/4;
17) f(z,y) = 2° — 3z(1 +y?);

[ U000 (g ) £ (1,1
18) f(z,y) _{ 0 if (x,y)=(1,1)

Exercise 7 Let N be a norm on R". Show that IV is not differentiable at 0.

Exercise 8 Let f be a linear mapping from R” to R. Show that f is differentiable
on R" and Df(z) = f for all z € R".
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Exercise 9 Let M be a n X p matrix. Let f be the mapping from R” x R? to R
defined by:

flx,y) =z My
1) Show that for all (z,y) € R" x R?, f(x,y) < [|M|z||=||||lyl-

2) Using the definition of the derivative show that f is differentiable on R" x RP
and that the derivative is defined by :

Df(z,y)(h, k) = h- My + x - Mk

3) Deduce the derivative of the standard inner product on R" as a mapping from
R"™ x R™ to R.

Exercise 10 Let A be a n x n matrix, b, a vector in R"” and ¢ a real number.
Let f be the mapping from R" to R defined by:

flx)=z-Az+b-x+c

1) Compute the partial derivatives of f on R™.
2) Show that the derivatives are continuous.
3) Provide the formula for the derivative of f at each point Z of R".

Exercise 11 Let f be the mapping from R"™ to R defined by:
flx)=lz* =) _aF
i=1

1) Compute the partial derivatives of f at each point .
2) Show that f is differentiable at each point z € R"™ and show that Df(z) is
defined by Df(z)(h) = 2% - h.

Exercise 12 Let f be a mapping from R™ to R. We assume that there exists
c € R, and o > 0 such that for all (z,y) € (R")?,

[f(y) = f(@)] < clly — ]

1) Show that the partial derivatives of f at each point of R™ are vanishing.
2) Deduce that f is constant.

Exercise 13 Let f be a differentiable mapping from R? to R. We assume that for
all (z,y,2) € R3, the three partial derivatives of f at (z,y,2) are non negative.
Show that if (2,4, 2') satisfies 2’ > z, ¥ > y and 2’ > z, then f(2/,¢/,2") >
f(xa Y, Z)'

We now assume that for all (z,y,2) € R? the three partial derivatives of f at
(z,y,z) are positive. Show that if (z',y/, 2’) satisfies 2’ > z, ¢y > y and 2/ > 2
with one strict inequality among the three, then f(2',v', 2") > f(x,y, z).
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Exercise 14 Let My be the space of dimension 4 of the 2 x 2 matrices. We
consider the mapping “determinant” from M, to R.

For all M = (‘CL Z) det M = ad — be.

1) Compute the partial derivative of the mapping det.
2) Show that the mapping det is differentiable and give its derivative at M € M.
3) Show that D det(M) = 0, if and only if M = 0.

Exercise 15 Let f and g two differentiable mappings from R" to RP. Let z € R™.
We assume that f(x) = g(z) + ||z — Z||e(x) where ¢ is a mapping from R” to R?
satisfying lim,_,; e(z) = 0,. Show that f(Z) = ¢(z) and Df(Z) = Dg(Z).

Exercise 16 Let f be a differentiable mapping from an open subset U of R" to
RP. We assume that f is k Lipschitz continuous on U, i.e., Ik > 0, Va,y € U?,
lf(z) = f(y)ll, < kllz — y||n. Show that for all z in U, ||Df(x)|z < k.
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