
Linear Algebra

Pascal Gourdel1

January 17, 2019

1Some material in this chapter (but not all of it) is from Linear Algebra, a very
complete book by Jim Hefferon, from Saint Michael’s College, Vermont, USA. His
book is available on the web for free and is a fruitful reading for students.



Contents

1 Linear computations in R
n 2

1.1 Linear systems and Gauss’ method . . . . . . . . . . . . . . . 2
1.2 How to solve and present the solution of a system . . . . . . . 5

2 Matrices and vectors of Rn 7
2.1 Definitions, rules . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 definition . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Product of a matrix by a vector . . . . . . . . . . . . . 8

2.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Gaussian operations in terms of matrices . . . . . . . . 9
2.2.2 Linear systems revisited . . . . . . . . . . . . . . . . . 9
2.2.3 Map associated to a matrix . . . . . . . . . . . . . . . 10
2.2.4 Operations on matrices . . . . . . . . . . . . . . . . . . 12
2.2.5 Trace and transpose . . . . . . . . . . . . . . . . . . . 12
2.2.6 Linear geometry of Rn . . . . . . . . . . . . . . . . . . 12
2.2.7 Some matrices and vectors of interest . . . . . . . . . . 13
2.2.8 Gaussian operations revisited . . . . . . . . . . . . . . 15

3 Vector space 16
3.1 Definition of a vector space . . . . . . . . . . . . . . . . . . . . 16
3.2 Vector subspace . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Linear independence . . . . . . . . . . . . . . . . . . . 18
3.2.2 Basis and dimension . . . . . . . . . . . . . . . . . . . 19
3.2.3 Computing spans and dimensions . . . . . . . . . . . . 21
3.2.4 Sum, direct sum and complement . . . . . . . . . . . . 22

3.3 Maps between spaces . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Linear maps . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Image and kernel . . . . . . . . . . . . . . . . . . . . . 24

1



CONTENTS 2

3.3.3 Computing images and kernels . . . . . . . . . . . . . . 25
3.3.4 The rank-nullity theorem and its consequences . . . . . 25
3.3.5 projection . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.6 Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.7 Representing vectors and linear maps with matrices . . 27
3.3.8 Change of basis . . . . . . . . . . . . . . . . . . . . . . 29
3.3.9 Rank of a matrix . . . . . . . . . . . . . . . . . . . . . 30

4 Determinants 32
4.1 The particular case of dimension 2 . . . . . . . . . . . . . . . 32
4.2 The general case . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Useful formulas involving determinants . . . . . . . . . 35
4.2.2 Some determinants of interest . . . . . . . . . . . . . . 35
4.2.3 Similarity . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 diagonalization 36
5.1 Eigenvalues, eigenvectors . . . . . . . . . . . . . . . . . . . . . 36
5.2 diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Characteristic polynomial . . . . . . . . . . . . . . . . . . . . 38

A Algebraic prerequisite 41
A.1 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.2 Euclidean division . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.3 Arithmetic of polynomials . . . . . . . . . . . . . . . . . . . . 44
A.4 Roots of a polynomial . . . . . . . . . . . . . . . . . . . . . . 47

Index 49



Chapter 1

Linear computations in R
n

1.1 Linear systems and Gauss’ method

The Gauss’ method to solve a linear system consists in several applications
of Gaussian operations, until reaching an equivalent system in echelon form,
that is very easy to solve. Let us define this.

A linear equation in variables x1, x2, . . . , xn has the form

a1x1 + a2x2 + a3x3 + · · ·+ anxn = b (1.1)

where the numbers a1, . . . , an ∈ R are the equation’s coefficients and b ∈ R

is the constant . An n-tuple (s1, s2, . . . , sn) ∈ R
n is a solution of, or satisfies

that equation if substituting the numbers s1, . . . , sn for the variables gives
a true statement: a1s1 + a2s2 + . . . + ansn = b. Note that 0 = 1 is linear
equation, that has no solutions. Also, 0 = 0 is a linear equation and every
n-tuple (s1, s2, . . . , sn) ∈ R

n is a solution of the equation 0 = 0.
A system of linear equations is a sequence of linear equations in the same

set of variables:



















a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1
a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2

...
am,1x1 + am,2x2 + · · ·+ am,nxn = bm

(1.2)

It has the solution (s1, s2, . . . , sn) if that n-tuple is a solution of all of the
equations in the system.
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Theorem 1 (Gauss operations) If a linear system is changed to another
by one of these operations

1. an equation is swapped with another;

2. an equation has both sides multiplied by a nonzero constant;

3. an equation is replaced by the sum of itself and a multiple of another

then the two systems have the same set of solutions.

The three operations from Theorem 1 are the elementary reduction op-
erations , or row operations , or Gaussian operations . They are swapping,
multiplying by a scalar (also called rescaling) and pivoting . Before proving
the theorem, the following lemma is useful:

Theorem 2 The Gaussian operations are reversible. That is, if S is changed
to S ′ by a Gaussian operation, then there exists a Gaussian operation that
changes S ′ to S.

Proof 1 : If S ′ is obtained from S by swapping two rows, then the same
swapping applied to S ′ gives S again. If S ′ is obtained from S by multiplying
a row by a scalar λ 6= 0, then multiplying the same row of S ′ by 1/λ gives S
again. If S ′ is obtained from S by replacing the row i by itself plus the row
j multiplied by a scalar λ, replacing the row i of S ′ by itself minus the row
j of S ′ multiplied by λ gives S again.

Proof of Theorem 1: Let S ′ be a system on variables (x1, . . . , xn) obtained
from S by applying a gaussian operation. We claim that if (s1, . . . , sn) is a
solution of S, then it is a solution of S ′. If S ′ is obtained from S by swapping
two rows, this is clear. If S ′ is obtained from S by multiplying a row by a
scalar, this is clear also. If S ′ is obtained by a pivoting, this is clear again.
So our claim is clear. We still have to check the converse. But the converse
can be proved by the same way since by Theorem 2, S is obtained from S ′

by a Gaussian operation. This proves Theorem 1.
Let us now describe formally the Gauss algorithm.
In each row of a linear system, the first variable with a nonzero coefficient

is the row’s leading variable. A system is in echelon form if each leading
variable is to the right of the leading variable in the row above it (except
for the leading variable in the first row). The non-leading variables in an
echelon-form linear system are free variables .
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Theorem 3 (Solving systems in echelon form)

• A system in echelon form has at least a solution if and only if it contains
no equation stating that 0 equals a non-zero number.

• Moreover, if a system in echelon form has at least one solution, then
for every assignment of values to its free variables, it has exactly one
solution.

• In particular, a system in echelon form has a unique solution if and
only if it has no free variable and no equation stating that 0 equals a
non-zero number.

Proof 2 : The last claim follows trivially from the two first claims. More-
over, if the rows of the system S that we consider are all 0 = 0, then the
theorem is clear. Also, if the system has at least one row 0 = b where b 6= 0
then clearly S has no solution and the theorem holds. So we assume that S
has at least one row that is not 0 = 0, and has no row 0 = b with b 6= 0. Let
us prove the two first claim of the theorem by induction on the number of
rows of the system S.

Suppose first that S consists in a single row. Since this row is not 0 = b,
it is has a leading variable xj, 1 ≤ j ≤ n. So the first claim of the theorem
holds. Because the system has at least one solution: give value 0 to every
non-leading variable, and b1/a1,j to xj . For the second claim, let us assign
values to every free variable. The resulting row may be written a1,jxj = c
where c is a constant. This has a unique solution: c/a1,j.

Suppose that S has at least two rows. Since it has a row that is not 0 = b,
let us consider the last row i of S that has a leading variable xj . Note that
the variables xj′ , j ≤ j′ ≤ n are free variables of the system obtained from
S by deleting Row i. Hence, assigning values to the free variable of S forces
xi to get a value by the paragraph above, and forces all the other leading
variables by the induction hypothesis, providing a unique solution.

A row ai,1x1+ · · ·+ai,nxn of a system is leading if either it has no leading
variable and ai′,j′ = 0 whenever i′ > i and 1 ≤ j ≤ n, or its leading variable
xj is such that ai′,j′ = 0 whenever i′ > i and j′ ≤ j. Note that a system is in
echelon form if and only if every row is leading.
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The Gauss algorithm uses the following strategy in order to turn a linear
system into an equivalent system in echelon form: increase by one the number
of consecutive leading rows at the beginning of a system, until reaching a
system in echelon form. If not every row is leading, let i be the smallest
index of a non-leading row. Let i′ ≥ i be the indice of a row with a smallest
leading variable indice. Such an indice i′ exists because row i is not leading.
Let us swap rows i and i′. Our new system has i−1 leading rows followed by
one potentially non-leading row ai,1x1 + · · ·+ ai,nxn with a leading variable
xj . This i’th row is called the pivot. By the choice of i, j, ai,j 6= 0, ai,j′ = 0
whenever 1 ≤ j′ < j, and ai′,j′ = 0 whenever 1 ≤ j′ < j and i′ > i. For
every i < i′ ≤ m let us replace the row i′ by the sum of itself and −ai′,j/ai,j
multiplied by the pivot row. In this new system, the rows 1, . . . , i are leading,
so we increased by one the number of leading rows at the beginning of the
system. Applying this fundamental step as long as there exist non-leading
rows, we obtain:

Theorem 4 For every linear system there is a finite sequence of gaussian
operation that leads to an equivalent linear system in echelon form.

1.2 How to solve and present the solution of

a system

Here, we give examples that show how to deal concretely with various kind
of linear systems.

Here is a system:







2x +y −z +3t= 1
4x+2y −z +4t= 5
2x +y +t = 4

We apply several step of Gaussian operations to obtain an equivalent
system in echelon form.







2x+y −z +3t = 1
z −2t= 3

0 = 0

The last row, that obtain by applying the Gaussian algorithm may be
forgotten. This system has no “silly row” such as 0 = 1, it has two leading
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variables x and y, two free variables y and t, so it has infinitely many solutions
according to Theorem 3. A good way to actually find the solution of the
system is now to push the free variables on the right side of every equality
in the system:

{

2x−z = 1−y −3t
z = 3 +2t

We substitute the value of z in the first row so that we get in every row
a unique leading variable of the system and free variables:

{

2x−(3 + 2t) = 1−y −3t
z = 3 +2t

Now it easy to turn the system into a system where every row is of the
form A = B where A is a leading variable and B is some expression where
only free variables are involved.

{

x= 2−y/2−t/2
z = 3 +2t

The system above is a first way to present the solution. Indeed, every
leading variable is a function of the free variables. This should be understood
as: “any solution of the system can be made as follows: choose any values
for the free variables, and then use the equations to compute the values of
the leading variables”. This way of presenting the system has a default: the
lake of symmetry. In fact, by carrying the computations differently, it may
happen that the set of free variables changes. This is why we sometimes
prefer to present the solution as a set of vectors, but this will be done in the
next section.



Chapter 2

Matrices and vectors of Rn

The product of a m×n matrix A with a vector x ∈ R
n is a notion that allows

to write linear systems in a compact form.

2.1 Definitions, rules

2.1.1 definition

Anm×nmatrix is a rectangular array of numbers with m rows and n columns .
When n = m the matrix is square. Each number in the matrix is an entry .

Usually, matrices will be denoted by upper-case letter, such as A, and
their entries will be denoted by lower-case letters, with two subscripts: the
first one corresponding to the row, the second one to the column. For in-
stance, a1,2 denotes the entry on the first line, second column, of A. We
write A = (ai,j)1≤i≤m,1≤j≤n or sometimes A = (ai,j) if the number of rows
and columns are clear from the context.

A vector (or column vector) is a matrix with a single column. A matrix
with a single row is a row vector . The entries of a vector are its components .

Usually, vectors are denoted by lower-case letters. A vector whose com-
ponents are all 0 is a zero-vector simply denoted by 0. By R

n, we mean
the set of every vectors with n real components. Thus, for us, an element
of Rn is a column of n numbers. Note that in the chapter Logic and Sets,
R

n denotes the sets of every n-tuples of reals, that are usually denoted by
a row of n numbers. Distinguishing between rows and columns might seem
spurious but in linear algebra, it may matter as we will see later.
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For any matrix A, the transpose of A, written AT , is the matrix whose
columns are the rows of A. More precisely, if A = (ai,j)1≤i≤m,1≤j≤n then
A = (aj,i)1≤j≤n,1≤i≤m.

Note that the transpose of a vector is a row-vector, and conversely.
Transpose is a fundamental tool in linear algebra but, by now, we use it
only as a typographic trick: since a column is uncomfortable to typeset, we
will sometimes write v = (x1, . . . , xn)

T instead of the equivalent statement

v =







x1
...
xn






.

For any vectors x, y ∈ R
n, the sum of x and y is the vector z = x + y

defined by zi = xi + yi for every 1 ≤ i ≤ n. For any vector x ∈ R
n and

any real number t ∈ R, the product of x by t is the vector z = tx defined by
zi = txi for every 1 ≤ i ≤ n.

We are now able to present the solution of the system of the section above
as the set S of these vectors (x, y, z, t)T that satisfy the system.

S = {(2− y/2− t/2, y, 3 + 2t, t)T such that y, t ∈ R}
= {(2, 0, 3, 0)T + y(−1/2, 1, 0, 0)T + t(−1/2, 0, 2, 1)T such that y, t ∈ R}

2.1.2 Product of a matrix by a vector

We will see later that matrices give a common way to write (surprisingly ?)
many maps from R

n to R
n that have interesting combinatorial or geometric

meanings.
For any m × n matrix A and any vector x of Rn, the product of A by

x is the vector of Rm y = Ax defined by yi = ai,1x1 + · · ·+ ai,nxn for every
1 ≤ i ≤ m.

Theorem 5 Let A be an m × n matrix, x1, . . . , xp ∈ R
n be vectors and

λ1, . . . , λp be real numbers. We have A(λ1x
1 + · · ·+ λpx

p) = λ1Ax
1 + · · ·+

λpAx
p.
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2.2 Applications

2.2.1 Gaussian operations in terms of matrices

Let x1, . . . , xk ∈ R
n be vectors and λ1, . . . , λk be real numbers. the vector

λ1x1 + · · · + λkxk is the linear combination of x1, . . . , xk with coefficients
λ1, . . . , λk.

Note that the columns of an m × n matrix A are n vectors of Rm. If
x = (x1, . . . , xn)

T then Ax is the linear combination of the columns of A
with coefficients x1, . . . , xn.

Gaussian row-operations applied to a matrix are: swapping two rows,
scaling a row (that is multiplying it by a nonzero scalar) and pivoting (that
is replacing a row by the sum of itself and a multiple of another). In each
row of a matrix, the first nonzero entry is the row’s leading entry . A matrix
is in echelon form if each leading entry is to the right of the leading entry in
the row above it (except for the leading variable in the first row). Applying
Gaussian reduction to matrices instead of linear systems yields:

Theorem 6 For every matrix, there is a sequence of Gaussian row-operations
that leads to a matrix in echelon form.

2.2.2 Linear systems revisited

Note that the linear system in Subsection 1.1 can now be written Ax = b
where A = (ai,j)1≤i≤m,1≤j≤n

and b = (b1, . . . , bm)
T .

Theorem 7 Let S : Ax = b be a linear system where A is an m× n matrix
and b ∈ R

m. Then either:

• S has a unique solution;

• S has infinitely many solutions and there exist k ≥ 1 and vectors
x0, f1, . . . , fk so that x is a solution if and only if there exist real num-
bers λ1, . . . , λk satisfying x = x0 + λ1f1 + · · ·+ λkfk;

Moreover, k is number of free variables in the echelon system obtained
from S after the Gaussian algorithm.

• the system has no solution and there is a linear combination of its
equations that yields 0 = 1.
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Moreover, only one of these statements holds.

Proof 3 : It is clear that at most one of the statement holds since no
solution can satisfies 0 = 1. Let us prove that at least one of the statements
holds. By Theorem 4 let us transform our system by a sequence of operations
into a system S in echelon form. If S has a row stating 0 = b where b 6= 0
then by multiplying it by 1/b, we obtain the desired row 0 = 1. Otherwise,
there is no row stating that 0 = b where b 6= 0. Then S as at least a
solution by Theorem 3. If it has no free variable, this solution is unique
again by Theorem 3, and if it has free variables, Theorem 3 says that there
are infinitely many solutions since every choice of value brings a solution.

Theorem 8 Let A be a m× n matrix and b ∈ R
m be a vector. If there is a

vector x0 ∈ R
n such that Ax0 = b then for any y

Ay = b if and only if y = x0 + x for some x such that Ax = 0.

Ay = b if and only if y − x0 is a solution of the system Ax = 0.

The theorem above says that to solve Ax = b, it suffices to have one
solution x0 of Ax = b. The other solutions are obtained by adding x0 with
the solutions of Ax = 0. A system Ax = b is homogeneous if b = 0. The
system Ax = 0 is the homogeneous system associated to Ax = b.

2.2.3 Map associated to a matrix

When A is an m×n matrix, we denote by fA the map from R
n to R

n defined
by fA(x) = Ax. So, for any x1, . . . , xp ∈ R

n vectors and λ1, . . . , λp ∈ R
n be

vectors fA(λ1x1 + · · ·+ λpxp) = λ1fA(x1) + · · ·+ λpfA(xp) by Theorem 5.

Theorem 9 Let A,B be two matrices. Then fA = fB if and only if A = B.

Proof 4 : If A = B then clearly fA = fB. Conversely, if fA = fB then
A and B must have same dimension, say m × n. For every 1 ≤ i ≤ n, we
denote by ei the vector with only 0 components, except the i’th one that is
1. Then, fA(ei) is easily seen to be the i’th column of A and fB(ei) the i’th
column of B. So, A and B must have the same columns, they must be equal.
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The identity matrix In is the n × n matrix defined as follows: the (i, j)
entry is 1 if i = j and 0 otherwise. If x is a vector of Rn, then Inx = x.
Hence fIn = Id where Id is the function identity. A square matrix A is upper
triangular (resp. lower) if for every i > j (resp. i < j), ai,j = 0. A matrix
that is either upper or lower triangular is simply triangular.

Theorem 10 Let A be a n× n square matrix. The following properties are
equivalent.

1. fA is a bijection

2. for every b ∈ R
n, Ax = b has a unique solution

3. there exists a vector b ∈ R
n such that Ax = b has a unique solution

4. Ax = 0 has a unique solution

5. There exists a sequence of row operations that applied to A leads to a
triangular matrix with non-zero entries on its diagonal.

6. There exists a sequence of row operations that applied to A leads to the
identity matrix.

Proof 5 : (1) ↔ (2) : since fA is a bijection, for every b ∈ R
n there is

a unique x so that fA(x) = b. Since fA(x) = Ax, this means exactly that
Ax = b has a unique solution.

(2) → (3) : clear.
(3) → (4) : clear by Theorem 8.
(4) → (5) : let us transform Ax = 0 into a system in echelon form by

Gaussian operations. If every row has a leading variable, then since A is
square, there is no free variable and for every i, xi must be the leading i’th
row of the system. So the same sequence of Gaussian operations applied to A
lead to a triangular matrix with non-zero entries on its diagonal as claimed.
Else, there is a row with no leading variable, so some there must exists at
least one free variable. Hence, either the system has no solution or it has
infinitely many solution, in both cases contradictory to our hypothesis.

(5) → (6) : example ...
(6) → (2) : Apply the sequence of Gaussian operations to Ax = b leads

to a system of the form Inx = c, which has a unique solution c.

A matrix satisfying the properties of the theorem above is non-singular ,
and singular otherwise.
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2.2.4 Operations on matrices

The sum of two same-sized matrices is their entry-by-entry sum. The scalar
multiple of a matrix is the result of entry-by-entry scalar multiplication.

Since matrices represent functions, it is natural to ask which matrix cor-
responds to the composition of two functions. This leads us to the notion of
product of two matrices.

The matrix-multiplicative product of the m × r matrix A and the r × n
matrix B is the m× n matrix C, where

ci,j = ai,1b1,j + ai,2b2,j + . . .+ ai,rbr,j (2.1)

AB =







...
ai,1 ai,2 . . . ai,r

...

















b1,j
. . . b2,j . . .

...
br,j











=







...
. . . ci,j . . .

...







(2.2)

Note that the row i of AB is the linear combination of the rows of B
whose coefficients are the numbers in the row i of A. The column j of AB
is the linear combination of the columns of A, whose coefficients are the
numbers in the column j of B.

2.2.5 Trace and transpose

Theorem 11 Let A be an m × l matrix and B be an l × n matrix. Then
(λA+ µB)T = λAT + µBT and (AB)T = BTAT .

The trace of a square matrix M is the sum denoted by Tr(M) of the
entries on its diagonal.

Theorem 12 Let A,B be n× n matrices. Then Tr (AB) = Tr(BA).

2.2.6 Linear geometry of Rn

No definition or theorem of geometry is requested for this course. However,
geometry is a natural way of “seeing” what is going on with linear algebra,
and helps a lot to understand and remember the definitions and theorems.
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~u+ ~v

~u

~u

~v ~v

Figure 2.1: sum of two vectors

We assume that the following notions are known by the reader: coor-
dinates of a point in 2 and 3 dimensional space, distance, angles, rotation,
function sinus and cosinus. The objects and statements given in this subsec-
tion will not be defined rigorously nor proved.

Geometrically, what we call a vector is defined by a length and a direction.
They may be represented by arrows. Note that two arrows of same length
and same direction represent the same vector, even if they are drawn at
different places. To obtain the sum of two vectors geometrically, draw the
parallelogram formed by them. Their sum extends along the diagonal to
the far corner. To obtain the coordinates of a vector geometrically, draw
that vector starting at the origin. The coordinates of the vector are the
coordinates of the point where the vector gets to.

The following result has to be known: the set of point of coordinate
(x, y) in the plane R2 such that ax+ by = 0 is a line and the vector (a, b)T is
perpendicular to that line. Similarly, the set of points of coordinate (x, y, z)
in the space R3 such that ax+ by+ cz = 0 is a plane and the vector (a, b, c)T

is perpendicular to that plane.

2.2.7 Some matrices and vectors of interest

If λ1, . . . , λn are real numbers, then the linear combination of the real num-
bers x1, . . . , xn with coefficients λ1, . . . , λn equals (λ1, . . . , λn)(x1, . . . , xn)

T .
Hence the matrix (λ1, . . . , λn) is the matrix associated to the linear combi-
nation with coefficients λ1, . . . , λn. The result is sometimes called the dot
product of (λ1, . . . , λn) and (x1, . . . , xn)

T . Note that when A,B are matrices,
then the i, j-th entry of the product AB is the dot product of the i-th row
and the j-th column.

A permutation of {1, . . . n} is a bijection from {1, . . . , n} to itself.
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Let r be the rotation of angle θ centered at the origin in the plane. If the
vector x is sent to the vector x by r, we put y = r(x). We have:

y =

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

x

This is why the matrix in the equation above is the matrix associated
to the rotation of angle θ. To see this, we assume that we know by geom-
etry that r(λx + µy) = λr(x) + µr(y). Let x be the vector of coordinates
(x1, x2)

T and e1 = (1, 0)T , e2 = (0, 1)T . By geometry, we know that r(e1) =
(cos(θ), sin(θ))T and that r(e2) = (− sin(θ), cos(θ))T . Hence, y = r(x) =
r(x1e1+x2e2) = x1r(e1)+x2r(e2) = x1(cos(θ), sin(θ))

T+x2(− sin(θ), cos(θ))T

= (cos(θ)x1 − sin(θ)x2, sin(θ)x1 + cos(θ)x2)
T .

There are matrices associated to Gaussian operations. If n is an integer,
if 1 ≤ i, j ≤ n are integers and λ is a real number, then we put:

• if i 6= j, Pn,i,j,λ is the n × n matrix whose entries are all 0, except for
the diagonal whose entries are 1, and the entry (i, j) that is λ;

• if λ 6= 0, Pn,i,i,λ is the n× n matrix whose entries are all 0, except for
the diagonal whose entries are 1, except for the entry (i, i) that is λ;

• Pn,i,j is the n× n matrix obtained from In by swapping rows i and j

Note that all the matrices defined above are non-singular.

Theorem 13 Let A be an m× n matrix. Then:

• the matrix obtained from A be swapping rows i, j is Pm,i,jA;

• the matrix obtained from A be multiplying row i by a scalar λ is Pm,i,i,λA;

• the matrix obtained from A be replacing row i by itself plus λ times row
j is Pm,i,j,λA;

• the matrix obtained from A be swapping columns i, j is APn,i,j;

• the matrix obtained from A be multiplying column j by a scalar λ is
APn,j,j,λ;

• the matrix obtained from A be replacing column j by itself plus λ times
column i is APn,i,j,λ.
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2.2.8 Gaussian operations revisited

If M ′ is obtained from M by a sequence of Gaussian row-operations, then
every row of M ′ is a linear combination of the rows of M . This can be seen
by back-tracking the row-operations.

Theorem 14 For every (n + 1) × n matrix there is a linear combination
(with at least one nonzero coefficient) of the rows that yields 0.

Proof 6 : Apply Theorem 6 and note that in an m× n matrix in echelon
form, at most n rows are nonzero.



Chapter 3

Vector space

3.1 Definition of a vector space

Vectors spaces may be seen as a generalization of Rn that preserves its prop-
erties with respect to linear combinations. Such a generalization is relevant
since a lot of sets of interest (set of the solutions to some differential equa-
tions, sets of polynomial of degree at most n, . . . ) are vector spaces.

Classical notations of a vector use arrow (~u,
−→
AB, . . .). It is not an obli-

gation, just an useful convention in order to distinguish scalars (here real
numbers) from vectors. When people are familiar with linear algebra, such
a notation is unnecessary.

Definition 1 A vector space (over R) consists of a set V along with two
operations ‘+’ and ‘·’ subject to Conditions (1) to (10) below.

When ~x, ~y ∈ V ,

(1) their vector sum ~x+ ~y is an element of V .

(2) ~x+ ~y = ~y + ~x and

If ~x, ~y, ~z ∈ V then

(3) (~x+ ~y) + ~z = ~x+ (~y + ~z).

(4) There is a zero vector ~0 ∈ V such that ~x+~0 = ~x for all ~x ∈ V .

(5) Each ~x ∈ V has an additive inverse ~y ∈ V such that ~x+ ~y = ~0.

17
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If r is a scalar (element of R), and ~x ∈ V then

(6) each scalar multiple r · ~x is in V .

If r, s ∈ R and ~x, ~y ∈ V then

(7) (r + s) · ~x = r · ~x+ s · ~x, and

(8) r · (~x+ ~y) = r · ~x+ r · ~y, and

(9) (rs) · ~x = r · (s · ~x), and

(10) 1 · ~x = ~x.

Some classical rules can be deduced 0 ·~x = ~0, r ·~0 = ~0. Most of the times,
the notation for the external law will be omitted : ~u+ ~u = 2 · ~u = 2~u.

examples Rn... , F(A,E) if E is a vector space.

3.2 Vector subspace

For any vector space, a subspace is a subset that is itself a vector space, under
the inherited operations. Note that every vector space must contain ~0. The
vector space containing only ~0 is the trivial subspace.

Theorem 15 The intersection of subspaces of a vector space V is a subspace
of V .

Note that there is no similar theorem with the union: the union of two
subspaces may fail to be a subspace.

Theorem 16 For a nonempty subset S of a vector space V , under the in-
herited operations, the following are equivalent statements.

• S is a subspace of that vector space

• S is closed under linear combinations of pairs of vectors: for any vectors
~s1, ~s2 ∈ S and scalars r1, r2 the vector r1~s1 + r2~s2 is in S

• S is closed under linear combinations of any number of vectors: for any
vectors ~s1, . . . , ~sn ∈ S and scalars r1, . . . , rn the vector r1~s1+ · · ·+ rn~sn
is in S.
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The span (or linear closure) of a nonempty subset K of a vector space
V is the set of all linear combinations of vectors from K. No notation for
the span is completely standard. It will be denoted here either by vect(K)
or span(K). It correspond geometrically to the set of points, that can be
reached if you are only allowed to use directions given by elements of K.

The span of the empty subset of a vector space is the trivial subspace
while the following formula explicits the value of vect(K) if the set K is
nonempty.

vect(K) =







~z ∈ V

∣

∣

∣

∣

∣

∣

there exists c1, . . . , cn ∈ R,
there exists ~s1, . . . , ~sn ∈ K,
satisfying ~z = c1~s1 + · · ·+ cn~sn







(3.1)

An alternative definition is given by the fact that the span of K is the
inclusion-wise minimal vector subspace of V that contains K: the important
rules are

vect(K) = K ⇔ K is a vector space

K ⊂ G where G is a vector space ⇒ span(k) ⊂ G

Proposition 1 The span of a subset K of vector space V is the intersection
of all the subspaces of V that contain K.

A subset of a vector space E is a spanning set if span(K) = E.

3.2.1 Linear independence

Linear independence is a notion that formalizes the fact, already met when
solving systems, that some vectors in a list are in some respect “unnecessary”
to describe the set.

A subset of a vector space is linearly independent if none of its elements
is a linear combination of the others. Otherwise it is linearly dependent.

Proposition 2 A subset S of a vector space is linearly independent if and
only if for any distinct ~x1, . . . , ~xn ∈ S the only decomposition of the null
vector is the trivial one

λ1~x1 + . . .+ λn~xn = ~0, when λ1, . . . , λn ∈ R ⇒ λ1 = 0, . . . , λn = 0
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Proposition 3 If ~x1, . . . , ~xn ∈ V are independent vectors, and if ~y ∈ V
is a vector such that ~x1, . . . , ~xn, ~y are not independent, then ~y is a linear
combination of ~x1, . . . , ~xn.

The last proposition can be translated in terms of equations. Let us
consider two linear systems:

(S)











a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1
...

am,1x1 + am,2x2 + · · ·+ am,nxn = bm

and

(S2)



















a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1
...

am,1x1 + am,2x2 + · · ·+ am,nxn = bm
c1x1 + c2x2 + · · ·+ cnxn = d

If (S) does not contain any redundant equation while the “extended” linear
system (S)2 contains a redundant equation then the “additional” equation
can be decomposed as a linear combination of the m first equations.

3.2.2 Basis and dimension

It is easy to see that any subset of an independent set is also independent,
and that any set containing a spanning set is also spanning. Hence, maximal
independent sets and minimal spanning sets are worth investigating.

The following is called Steinitz’ exchange property. It is an important
step in order to define the concept of dimension

Lemma 1 Let n ≥ 1 be an integer. In a vector space, if ~x1, . . . , ~xn are
independent vectors and if ~y1, . . . , ~yn+1 are independent vectors, then there
exits 1 ≤ i ≤ n + 1 such that ~x1, . . . , xn, ~yi are independent vectors.

Proof 7 Suppose not. By Proposition 3, for every 1 ≤ i ≤ n + 1, ~yi =
ai,1~xi · · · + ai,n~xn. By Theorem 14, there is a linear combination (with at
least one non-zero coefficient) of the rows of (ai,j) that equals 0. Hence, the
same linear combination applied to ~y1, . . . , ~yn+1 equals ~0, contradictory to the
independence of ~y1, . . . , ~yn+1.
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Proposition 4 Let n ≥ 1 be an integer. In a vector space, if ~x1, . . . , ~xn are
independent vectors and if ~xn+1 /∈ vect(~x1, . . . ~xn) then ~x1, . . . , ~xn, ~xn+1 are
independent vectors.

Theorem 17 (Weak duality) In a vector space, if ~x1, . . . , ~xn are indepen-
dent vectors and if ~y1, . . . , ~ym are vectors that span that space, then m ≥ n.

Proof 8 Let us choose {~yi1 , . . . , y~ik} an independent set of maximum cardi-
nality among the ~yi’s. By the maximality and by Proposition 3, every vector
in {~y1, . . . , ~ym} is a linear combination of ~yi1, . . . , y~ik , and since {~y1, . . . , ~ym}
spans the space, it follows that {~yi1, . . . , ~yik} spans the space. If n < m, then
by Lemma 1, there exists an ~xi such that ~yi1, . . . , ~yik , ~xi are independent. So,
~xi is not a linear combination of ~yi1 , . . . , ~yik , a contradiction since ~yi1, . . . , ~yik
span the space.

An independent family of vectors that span the space is a basis . For
example, if n ≥ 1 is an integer, let us define for every 1 ≤ i ≤ n the vector ~ei
of Rn, whose components are all 0, except the i’th component that equals 1.
Then (~e1, . . . , ~en) is a basis of Rn, called the canonical basis . The vector set
of every polynomial function of degree n has dimension n+1 and has a basis
1, x, x2, . . .. Note that there is no canonical basis in a general vector space.

Corollary 1 If B = (~x1, . . . , ~xn) and C = (~y1, . . . , ~ym) are basis then n = m.

Proof 9 Since ~x1, . . . , ~xn are independent vectors and since ~y1, . . . , ~ym are
vectors that span that space, we can apply Theorem 17 in order to get m ≥ n.
But by a symmetric argument, we can remark that ~y1, . . . , ~ym are indepen-
dent vectors and ~x1, . . . , ~xn are vectors that span that space, we can apply
Theorem 17 in order to get the converse inequality.

A vector space of finite dimension is a vector space that contains a finite
spanning family.

The dimension of the space is the cardinal of a smallest spanning family.

Theorem 18 Let ~x1, . . . , ~xn be vectors in a vector space V of finite dimen-
sion. The following properties are equivalent :

• (~x1, . . . , ~xn) is a basis;
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• V has dimension n and ~x1, . . . , ~xn are independent;

• V has dimension n and ~x1, . . . , ~xn span V ;

• {~x1, . . . , ~xn} is an inclusion-wise maximal independent set;

• {~x1, . . . , ~xn} is an inclusion-wise minimal set that spans V ;

• For every vector ~y ∈ V there is a unique linear combination of the ~xi’s
that equals y.

It follows that every vector space of finite dimension has at least one basis
and that every basis has n vectors where n is the dimension of the space. It
allows to consider the coordinates of any ~y since the decomposition is unique.

Theorem 19 Every independent set of a vector space is included in some
basis, and every spanning set contains a basis.

3.2.3 Computing spans and dimensions

The two following theorems give a way to compute a basis of the span of a
finite set of vectors of Rn: write them as row vectors of matrix, use Gaussian
operations on rows till reaching of matrix in echelon form. The non-zero rows
of the matrix form a basis of the span, and their number is the dimension.

Theorem 20 Let M be an m× n matrix.

• If M ′ is obtains from M by Gaussian operations on columns, then the
subspace of Rm spanned by the columns of M is the same as the subspace
of Rm spanned by the columns of M ′.

• If M ′ is obtains from M by Gaussian operations on rows, then the
subspace of Rn spanned by the rows of M is the same as the subspace
of Rn spanned by the rows of M ′.

Theorem 21 Let M be an m× n matrix in echelon form. Then:

• the columns of M that contain a leading entry form a basis of the
subspace of Rm spanned by the columns of M ;
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• the rows of M that contain a leading entry (that are exactly the non-
zero rows of M) form a basis of the subspace of Rn spanned by the row
of M ;

• the two spaces mentioned above have same dimension, that is the num-
ber non-zero rows of M .

3.2.4 Sum, direct sum and complement

Definition 2 Let E be a vector space, and V , W be vector subspaces of E.
Let us consider the set

V +W = {~z | there exists ~x ∈ V, ~y ∈ W such that ~z = ~x+ ~y}.

This set is the sum of W and W .

Remark 1 It is easy to check that V +W is a vector space, that it contains
both V and W since for example any ~x ∈ V can be decomposed ~x = ~x + ~0
where ~x ∈ V and ~0 ∈ W . More precisely,

V +W = span(V ∪W ).

We can generalize

Definition 3 Let E be a vector space, and V1, . . .Vk be vector subspaces of
E. Let us consider the set

V1 + . . .+ Vk = {~z | there exists ~xk ∈ Vk, such that ~z = ~x1 + . . .+ ~xk}.

Remark 2 It is easy to check that V1 + . . . + Vk is a vector space, that it
contains all the Vi. More precisely,

V1 + . . .+ Vk = span(V1 ∪ . . . ∪ Vk).

For any ~x ∈ V1 + · · · + Vk, there exists at least one decomposition ~x =
~x1 + . . .+ ~xk but in general the decomposition is not unique. This is why we
will introduce the concept of direct sum.



CHAPTER 3. VECTOR SPACE 24

Definition 4 Let V1, . . . , Vk be subspaces of a vector space E, we will say that
they are in direct sum if for any ~x ∈ V1 + · · ·+ Vk, the above decomposition
is unique.

We will denote by W1 ⊕ . . . ⊕ Wk the set W1 + . . . + Wk in order to
keep in mind the information that the sum is direct. There exists an easy
characterization (of particular interest when the length is equal to two).

Proposition 5 Let V1, . . . , Vk be subspaces of a vector space E. The sum
V1+. . .+Vk is direct if and only if the null vector has a unique decomposition.

Remark 3 Let V1, . . . , V2 be subspaces of a vector space E. The sum V1 +
. . . Vk is direct if and only if V1∩V2 = {~0}. Indeed, if ~x ∈ V1∩V2, and ~x 6= ~0,
then we can write several different decompositions (and many other)

~x = ~0 + ~x = ~x+~0 = (1/2)~x+ (1/2)~x

An easy way to build a basis of V1 ⊕ V2 is to the concatenate a basis of
V1 with a basis of V2.

The case of two subspaces of E whose direct sum is E is so important
that it is worth to introduce a particular terminology.

Definition 5 When E = V1⊕V2, V1 and V2 are complement with respect to
E.

Theorem 22 Every subspace has a complement. More precisely, if V is a
vector subspace of E then there exits a subspace W such that E = V ⊕W .

These results can be extended in a general theorem.

Theorem 23 Let V1, . . . , Vk be non-zero subspaces of a vector space E of
finite dimension. The following conditions are equivalent:

• E = V1 ⊕ · · · ⊕ Vk.

• V1 + · · ·+ Vk = E and dim(V1) + · · ·+ dim(Vk) = dim(E);

• for every (B1, . . . ,Bk) such that Bi is a basis of Wi (1 ≤ i ≤ k), the
concatenation of the Bi’s, 1 ≤ i ≤ k, is a basis of E.

• for some (B1, . . . ,Bk) such that Bi is a basis of Wi (1 ≤ i ≤ k), the
concatenation of the Bi’s, 1 ≤ i ≤ k, is a basis of E.
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3.3 Maps between spaces

3.3.1 Linear maps

A function f from a vector spaces V to a vector space W that preserves the
operations of addition:

if ~x1, ~x2 ∈ V then h(~x1 + ~x2) = h(~x1) + h(~x2)

and scalar multiplication:

if ~x ∈ V and t ∈ R then h(t · ~x) = t · h(~x)

is a linear map. When V = W , that is when h is from V to itself, h is an
endomorphism.

Note that a map f is linear if and only if for every ~x, ~y ∈ V and λ, µ ∈ R

we have f(λ~x+ µ~y) = λf(~x) + µf(~y).
Examples: f(X) = AX , φ(f) = df/dx, A → (TA).
Counter examples: trigo, x2, ax+ 1, ex ...
Note that for every linear map f ∈ L(E, F ), f(~0E) = ~0F . In particular,

a constant map is linear if and only if it is equal to ~0.

Theorem 24 A linear map is determined by its action on a basis. That is,
if (~b1, . . . ,~bn) is a basis of a vector space V and ~c1, . . . ,~cn are (perhaps not
distinct) elements of a vector space W then there exists a linear map from V

to W sending ~b1 to ~c1, . . . , ~bn to ~cn, and that linear map is unique.

Proof 10 Let us prove the existence. If ~x ∈ V , then ~x = λ1b1 + · · ·+ λn
~bn

since (~b1, . . . ,~bn) is a basis. Since this decomposition is unique, it is well
defined to consider a map defined f by: f(~x) = λ1~c1 + · · ·+ λn~cn. Checking
that f(λ~x+ µ~y) = λf(~x) + µf(~y) for every x, y ∈ V and every λ, µ ∈ R is a
routine matter.

The uniqueness is clear: since ~c1 = f(~b1), . . . ,~cn = f(~bn) and since we
want f to be linear, we must have f(~x) = λ1c1 + · · ·+ λn~cn.

3.3.2 Image and kernel

The rangespace, or image of a linear map h:V → W is

Im(h) = {h(~x) such that ~x ∈ V },
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sometimes denoted h(V ). The dimension of the image is the map’s rank .
The nullspace or kernel of a linear map h:V → W is the inverse image of
~0W ,

Ker(h) = h−1({~0W}) = {x ∈ V such that h(x) = ~0W}.

The dimension of the nullspace is the map’s nullity .
Note that Ker(f) and Im(f) are easily checked to be vector spaces. Warn-

ing: nullity cannot be translated in French by nullité (which does exist but
means something else).

Theorem 25 A linear map f is injective if and only if it has nullity 0, or
equivalently, ker(f) = {~0}.

Proof 11 Let ~x, ~y be such that f(~x) = f(~y). Then f(~x)−f(~y) = f(~x−~y) =
~0. Hence, ~x− ~y ∈ Ker(f). So, ~x− ~y = ~0 and ~x = ~y.

3.3.3 Computing images and kernels

If f is the linear map f(x) = Mx then the image of f is the span of the
columns of M .

The kernel of f can be computed by solving Mx = 0.

Theorem 26 The dimension of the solution of an homogeneous system in
echelon form is the number of its free variables.

3.3.4 The rank-nullity theorem and its consequences

Theorem 27 (Rank-nullity theorem) A linear map’s rank plus its nul-
lity equals the dimension of its domain. Rephrased: if f :V → W is linear
then dim(Ker(f)) + dim(Im(f)) = dim(V ).

Proof 12 Let (e1, . . . , ek) be a basis of Ker(f). Let us add vectors f1, . . . , fl
so that (e1, . . . , ek, f1, . . . , fl) is a basis of V (this can be done by Theorem 19).
We claim that (f(f1), . . . , f(fl)) is a basis of Im(f).

Indeed, if λ1f(f1) + · · · + λnf(fn) = 0 then f(λ1f1 + · · · + λnfn) = 0.
Hence, λ1f1+ · · ·+λnfn ∈ Ker(f). So, λ1f1+ · · ·+λnfn = µ1e1+ · · ·+µkek
since (e1, . . . , ek) is a basis of Ker f . So, λ1, . . . , λk = 0. This proves that
f1, . . . , fl are independent.

If y ∈ Im(f) then y = f(x) for some x ∈ V . Hence, y = f(µ1e1 + · · ·+
µkek+λ1f1+ · · ·+λnfn) = λ1f(f1)+ · · ·+λnf(fn). So, f1, . . . , fl span Im(f).
This proves our claim and the theorem.
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Note that the next theorem holds in particular for every endomorphism.

Theorem 28 Let h be a linear map from a vector space V of dimension n
to a vector space W of same dimension. Then the following properties are
equivalent :

1. h has rank n;

2. h has nullity 0;

3. h is an injection;

4. h is a surjection;

5. h is a bijection;

6. For some basis (~b1, . . . ,~bn) of V , (h(~b1), . . . , h(~bn)) is a basis of V ;

7. For every basis (~b1, . . . ,~bn) of V , (h(~b1), . . . , h(~bn)) is a basis of V .

Proof 13 By Theorem 27, (1) and (2) are equivalent. By Theorem 25, (2)
and (3) are equivalent. Clearly, (1) and (4) are equivalent. Since (3) and
(4) are equivalent, they are equivalent to (5). Clearly, (7) implies (6).

Let us prove (6) implies (2). If h(~x) = 0, then h(x) = h(λ1
~b1+ · · ·+λn

~bn)

= λ1h(~b1) + · · ·+ λnh(~bn). So, λ1 = 0, . . . , λn = 0 since (h(~b1), . . . , h(~bn) is
a basis. Hence, ~x = 0.

Let us prove (5) implies (7). If (~b1, . . . ,~bn) is a basis, then let us prove

that f(~b1), . . . , f(~bn) are independent. If λ1f(~b1) + · · · + λnf(~bn) = 0 then

f(λ1b1+· · ·+λn
~bn) = ~0. Since f is a bijection, this implies λ1

~b1+· · ·+λn
~bn =

~0. So, λ1, . . . , λn = 0. Let us prove that (f(~b1), . . . , f(~bn)) spans V . Let ~y be

in V . Then ~y = f(~x) since f is a bijection. So, f(~x) = λ1f(~b1)+· · ·+λnf(~bn)

where the coefficients λ1, . . . , λn are defined by ~x = λ1
~b1 + · · ·+ λnf~bn .

3.3.5 projection

Let us call projection any linear map p from V to V such that p(p(x)) = p(x)
for every x ∈ V .

Exercise 1 : A map p is a projection if and only if: Ker(f)⊕ Im(f) = V .
Moreover, for every ~x ∈ V , if ~x = ~y + ~z where y ∈ Ker(f) and ~z ∈ Im(f)
then p(~x) = ~z.
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3.3.6 Isomorphisms

Isomorphisms between spaces are maps that formalize the feeling that some
spaces are “just like oneother”.

An isomorphism between two vector spaces V and W is a linear map f
from V to W that is also a bijection. Two spaces such that there exists an
isomorphism between them are isomorphic.

Note that Theorem 28 applies in particular to isomorphism.

Theorem 29 Two vector spaces over R of finite dimension are isomorphic
if and only if they have same dimension. If V is a vector space over R of
finite dimension, then it is isomorphic to R

n for some n.

Proof 14 If two spaces are isomorphic, then they clearly have same dimen-
sion. The proof is left to the reader as an exercise.

The following theorem says that isomorphism preserve dimension.

Theorem 30 Let φ be an isomorphism from a space V to a space W . Let
V ′ be a subspace of V . Then V ′ and φ(V ′) have same dimension.

3.3.7 Representing vectors and linear maps with ma-
trices

We already know that to every matrix we can naturally associate a function.
Here we prove the converse : up to the choice of a basis, every linear map
can be represented by a matrix.

Let V be a vector space of dimension n and B = (~b1, . . . ,~bn) be a basis.
The representation of a vector x ∈ V with respect to B is the vector of Rn

whose components are the coefficients of the unique linear combination of
the ~bi’s that equals x.

Suppose that V andW are vector spaces of dimensions n andm with bases
B and D, and that f :V → W is a linear map. The matrix that represents f
with respect to B,D is the m×n matrix whose column j is the representation
of f(~bj) with respect to D.

Example : derivative of polynomials.

Theorem 31 Let f :V → W be a linear map, and suppose that V is of di-
mension n with a basis B and W of dimension m with a basis D. If M is
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the representation of f with respect to B,D and X, Y are the representation
of x ∈ V, f(x) ∈ W with respect to B,D then:

Y = MX

Proof 15 Let ~x = λ1
~b1+· · ·+λn

~bn be a vector of V . Since f is linear we have
f(~x) = λ1f(~b1)+ · · ·+λnf(~bn) = λ1(f1,1~d1+ · · ·+fm,1

~dm)+ · · ·+λn(f1,n~d1+

· · ·+ fm,n
~dm) = (f1,1λ1 + · · ·+ f1,nλn)~d1 + · · ·+ (fm,1λ1 + · · ·+ fm,nλn)~dm.

Theorem 32 Let h, g:V → W be linear maps represented with respect to
bases B,D by the matrices M and N , and let t be a scalar. Then the map
h+ g:V → W is represented with respect to B,D by M + N , and the map
t · h:V → W is represented with respect to B,D by tM .

Theorem 33 A composition of linear maps is represented by the matrix
product of the representatives.

Theorem 34 Let M be a non-singular matrix. Then there exists a unique
matrix N such that MN = NM = I.

Proof 16 SinceM is non-singular, by theorem 10 we know that f :X → MX
is bijective. So, f must have a unique inverse map g. We claim that g is
linear. Indeed, g(λx+ µy) and λg(x) + µg(y) are equal, since their image by
the bijection f is the same vector λx+ µy.

Let N be the matrix of g with respect to the canonical basis of Rn. Note
that M is the matrix of f with respect to the same basis. Since f◦g = g◦f = I
and by Theorem 33, we have MN = NM = I.

The matrix N in the theorem above is the inverse of M , denoted by
M−1.

Practically, to compute M−1, a method is to solve Mx = y where x, y are

general vectors. For instance, if P =

(

3 2
2 1

)

this yields:

{

3x1 + 2x2 = y1
2x1 + x2 = y2

{

3x1 + x2 = y1
(1/2)x1 = y2 − (1/2)y1
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{

x1 =−y1 + 2y2
x2 = 2y1 − 3y2

Hence, P−1 =

(

−1 2
2 −3

)

is read from the solution.

Theorem 35 If A,B are two non-singular n× n matrices then AB is non-
singular and (AB)−1 = B−1A−1.

3.3.8 Change of basis

Let B = (~b1, . . . ,~bn) be a basis of a vector space, and B′ = (~b′1, . . . ,
~b′n) be

another basis of the same vector space. The change of basis matrix from B to
B′ is the n×n matrix P whose column j is b′j represented with respect to B.
It is convenient to think of B as the “old” basis, and B′ as the “new” basis.
So, P is obtained by expressing the new basis into the old one. Note that
P is the matrix representing the identity with respect to B′, B. It follows
that P is invertible and that P−1 is the matrix representing the identity with
respect to B,B′.

Theorem 36 Suppose that B,B′ are basis of a vector space and x is a vector
of that space. If P is the change of basis matrix from B to B′, if X,X ′ are
the vectors representing x with respect to B,B′ then X = PX ′.

For instance, if B is the standard basis of R2, if B′ = (

(

3
2

)

,

(

2
1

)

)

then P =

(

3 2
2 1

)

. If X =

(

5
4

)

then, X = PX ′, so X ′ = P−1X =
(

−1 2
2 −3

)(

5
4

)

=

(

3
−2

)

. This means that

(

5
4

)

has components

3,−2 with respect to the basis B′. Indeed,

(

5
4

)

= 3 ·

(

3
2

)

+−2 ·

(

2
1

)

.

Theorem 37 Suppose that B,B′ are basis of a vector space V , that D,D′

are basis of a vector space W and that f :V → W is a linear map. Let P be
the change of basis matrix from B to B′ and Q be the change of basis matrix
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from D to D′. Let M,M ′ be the matrices that represent f with respect to
B,D and B′, D′ respectively. Then:

M ′ = Q−1MP

Proof 17 Let x ∈ V and let X, Y be the vectors representing x, f(x) with
respect to B,D respectively. Let X ′, Y ′ be the vectors representing x, f(x)
with respect to B′, D′. Then by Theorems 36, 31, Y = MX, Y ′ = M ′X ′,
X = PX ′ and Y = QY ′. Hence, QM ′X ′ = QY ′ = Y = MX = MPX ′.
Hence, for every vector X ′ we have QM ′X ′ = MPX ′. This implies QM ′ =
MP and the result follows after multiplying by Q−1.

Example: To compute the matrix of the projection of R2 on the span of
(

3
2

)

parallel to

(

2
1

)

, we can put B′ =

{(

3
2

)

,

(

2
1

)}

. The matrix

M ′ of p with respect to B′, B′ is M ′ =

(

1 0
0 0

)

. The change of basis matrix

from B to B′ is P =

(

3 2
2 1

)

. Here, Q = P . Hence, M ′ = P−1MP and

M = PM ′P−1 =

(

−3 6
−2 4

)

. We check M2 = M , M

(

3
2

)

=

(

3
2

)

and

M

(

2
1

)

= 0.

3.3.9 Rank of a matrix

The rank of anm×n matrix M is the rank of the linear map fM :X → MX .

Theorem 38 Let M be an m× n matrix. Let A be an m ×m matrix, and
B be an n × n matrix. Suppose that A,B are non-singular. Then M , AM
and MB have same rank.

Proof 18 AM has rank the dimension of Im(fA ◦ fM). By Theorem , has
same dimension than Im(fM). So, M and AM have same rank. Similarly,
M and MB have same rank.

A consequence is that matrices obtained from one another by Gaussian
row and Gaussian column operations have same rank because of Theorem13.
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Theorem 39 An m× n matrix has rank k if and only if there is a sequence

of row and column Gaussian operations the transform M into :

(

Ik 0
0 0

)

.

Proof 19 By the Gaussian algorithm, any matrix M can be transformed into
(

Ik 0
0 0

)

. Since this matrix has rank k, it follows that M has rank k, and

in particular that k is unique.

Theorem 40 The rank of an m× n matrix is equal to the dimension of the
subspace of Rm spanned by its columns, and is equal to the dimension of the
subspace of Rn spanned by its rows.

Proof 20 By the definition of the rank, it is clear that it equals the dimension
of the column space. Indeed, the columns of a matrix are the image of the
standard basis. By the preceding theorem, it follows that row and column
operation are symmetric with respect to the rank. Hence, a matrix and its
transpose must have same rank.
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Determinants

Determinants are an algebraic construction that associates a real number to
every square matrix, in such a way that the number equals 0 if and only if
the matrix is singular.

4.1 The particular case of dimension 2

In dimension 2, it is “well known” that the determinant of M , denoted by
|M | is defined by

∣

∣

∣

∣

(

a b
c d

)∣

∣

∣

∣

= ad− bc.

Note that the mapping “det” can be viewed either as a mapping of M or
a mapping of its columns.

Proposition 6 for any columns vectors C1, C2 and C3 of R2,

• det(C1, C2) = − det(C2, C1).

• det(C1 + αC3, C2) = det(C1, C2) + α det(C3, C2).

• det(C1, C2 + αC3) = det(C1, C2) + α det(C1, C3).

Consequently, if a matrix has two identical columns, then its determinant is 0.
The properties stated above are summarized as “alternating multi-linearity”.

We can study the effects of the Gaussian operations on columns:

33
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• the determinant changes of sign if columns are exchanged (C1 ↔ C2).

• the determinant is unchanged (Ck → Ck + αCj) with j 6= k).

• the determinant is multiplied by the same scalar (Ck → λCk with
λ 6= 0).

Theorem 41 A square matrix is non-singular if and only its determinant is
non-singular, that is if and only if its determinant is not 0.

Proposition 7 det(A) = det(AT ).

Consequently, the results can be transposed for rows. In particular, the
determinant is invariant under pivoting rows or columns.

Theorem 42 det(AB) = det(A) det(B).

Corollary 2 Two similar matrices have same determinant.

A consequence of Corollary2 and Theorem 52 is that for any matrix A
and B that represent the linear mapping f ∈ L(E), det(A) = det(B). This
common number will be denoted by det(f).

4.2 The general case

The standard (and in general fastest) way to compute a determinant is by
Gaussian elimination. But determinants can be computed by a other means,
and are involved in several useful formulas, that compute the inverse of a
non-singular matrix, or that solve linear systems for instance. Here it will be
considered as the definition by induction of the determinant.

For any n× n matrix A, the (n− 1)× (n− 1) matrix formed by deleting
row i and column j of A is the (i, j)-minor of A. The (i, j)-cofactor ti,j of T
is (−1)i+j times the determinant of the (i, j)-minor of T .

Theorem 43 (Laplace Expansion of Determinants) Where A is an n×
n matrix, the determinant can be found by expanding by cofactors on row i
or column j.

|T | = ti,1 · ai,1 + ti,2 · ai,2 + · · ·+ ti,n · ai,n
= t1,j · a1,j + t2,j · a2,j + · · ·+ tn,j · an,j
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We can initiate the process by considering that the determinant of (1 ×
1)−matrix is determined by det(a) = a.

Remark 4 If a matrix has a column of 0’s, then its determinants is 0. The
determinant of a triangular matrix is the product of the entries in its diago-
nal.

It convenient to use the following notation: if x1, . . . , xn are vectors of
R

n, then we denote by (x1, . . . , xn) the matrix whose columns are x1, . . . , xn.

Theorem 44 det is an alternating n-linear map.
If a matrix has two identical columns, then its determinant is 0.

The following theorem keeps track of the value of a determinant after
Gaussian operations on columns of a matrix:

Theorem 45 • the determinant changes of sign if columns are exchanged
(Ci ↔ Cj with j 6= i).

• the determinant is unchanged (Ck → Ck + αCj) with j 6= k).

• the determinant is multiplied by the same scalar (Ck → λCk with λ 6=
0).

Theorem 46 A square matrix is non-singular if and only its determinant is
non-singular, that is if and only if its determinant is not 0.

Theorem 47 det(A) = det(AT ).

A consequence of the theorem above is that the determinant is invariant
under pivoting rows or columns.

Theorem 48 det(AB) = det(A) det(B).

Theorem 49 Two similar matrices have same determinant.

A consequence of the theorem above is that it is well defined to consider
the determinant of an endomorphism by the determinant of one of its matrix
representation.

Theorem 50 A matrix M has rank r if and only if there exists an r × r
submatrix of M that has a non-zero determinant and every (r + 1)× (r+ 1)
submatrix of M (if any) has determinant 0.
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4.2.1 Useful formulas involving determinants

Determinant par bloc. (to be written ...)

Definition 6 The matrix adjoint to the square matrix T is

adj(A) =











t1,1 t2,1 . . . tn,1
t1,2 t2,2 . . . tn,2

...
t1,n t2,n . . . tn,n











(4.1)

where Tj,i is the j, i cofactor.

Theorem 51 When A is a square matrix, A adj(A) = adj(A)A = det(A)I.
In particular, if A is non-singular, A−1 = |A|−1 adj(A).

4.2.2 Some determinants of interest

4.2.3 Similarity

The n × n matrices T and S are similar if there is a an n × n nonsingular
matrix P such that T = P−1SP .

Theorem 52 Let A,B be two n × n square matrices. They are similar
if and only if there exists a vector space V , two basis B,D of V and an
endomorphism f of V such that A is the representation of f with respect to
B and B is the representation of f with respect to D.

Proof 21 This is Theorem 37 rephrased.

Proposition 8 Let A,B be two n× n square matrices. If they are similar,
then Tr(A) = Tr(B).



Chapter 5

diagonalization

5.1 Eigenvalues, eigenvectors

Definition 7 Let V be a vector space and ϕ be an endomorphism of E. Let
λ ∈ R be a scalar, λ is an eigenvalue of ϕ if there exists a nonzero vector
~x ∈ V such that ϕ(~x) = λ~x. Such a non-zero vector ~x is called an eigenvector
associated to the corresponding eigenvalue.

Note that an eigenvector is associated to a unique eigenvalue while an eigen-
value is associated to several eigenvectors.

Definition 8 If λ is an eigenvalue, we will denote By Vλ the eigenspace
associated to λ, defined by

Vλ = {~x ∈ V such that ϕ(x) = λ~x}.

Since we can remark that Vλ = Ker(ϕ−λ Id), it follows that the eigenspaces
are vector subspace of V . Note that if λ is in R, we can use similarly the
same notation Vλ = {x ∈ V such that ϕ(x) = λx}. It is obvious that λ is an
eigenvalue of ϕ if and only if Vλ 6= {~0}. Note also that, if ~x is an element of
Vλ it is either the null vector or an eigenvector.

Remark 5 Let V be a vector space and ϕ ∈ L(V ). It is immediate that for
any scalar λ, either

• λ = 0 and V0 = Ker(ϕ) or

37
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• λ 6= 0 and Vλ ⊂ Im(ϕ).

Proposition 9 If M is a triangular matrix, then the eigenvalues of M are
the numbers on the diagonal of M .

5.2 diagonalization

An important step towards diagonalization is the following proposition.

Proposition 10 If λ1, . . . , λk are k pairwise distinct scalars, then Vλ1
, . . . , Vλk

are in direct sum, that is Vλ1
+ · · ·+ Vλk

= Vλ1
⊕ · · · ⊕ Vλk

.

The proof is based on Vandermonde determinants in the general case but
it is obvious in the case of two distinct eigenvalues. In view of Proposition 3,
let us consider ~x ∈ Vλ1

∩Vλ2
, then we have ϕ(~x) = λ1~x = λ2~x. Consequently,

(λ1 − λ2)~x = ~0. Since the eigenvalues λ1 and λ2 are distinct, ~x is the null
vector and the sum is direct.

Theorem 53 Let h be an endomorphism of a space V of dimension n. The
following conditions are equivalent:

• the sum the eigenspaces of h is V ;

• the sum of the dimensions of the eigenspaces of h equals n;

• there exists a basis of V whose elements are eigenvectors of h;

• there exits a basis B of V such that the representation of h with respect
to B is a diagonal matrix.

Definition 9 An endomorphism that satisfies the conditions in the theorem
above is diagonalizable.

We can define similarly the notions of eigenvalues, eigenvectors and eigen-
spaces for square matrices, since an n× n matrix can be viewed as an endo-
morphism of Rn.
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Remark 6 A matrix is diagonalizable if and only if it is similar to a diagonal
matrix.

Remark 7 Note that if the eigenvalues are knowns then Theorem 53 gives
a process in order to check whether matrix is diagonalizable. It suffices to
determine the eigenspaces and their dimension.

Example, let us consider

M =

(

0 1
0 0

)

.

For any real number λ, we recall that λ is an eigenvalue if and only if the
following linear system admits a non-trivial solution:

{

0x1 +x2 = λx1

0x1 +0x2 = λx2
⇔

{

x2 = λx1

0 = λx2

It is immediate that Eλ = {~0} if λ 6= 0 and Eλ = span(1, 0) (dimension 1).
We can therefore conclude that M is not diagonalizable.

If there exists some condition on the iterates of a linear mapping, we can
deduce a necessary condition on the eigenvalues. For example, if f 2 = Id,
we can translate this condition as λ2 = 1 for any eigenvalue of f .

The next section will give us a systematic method in order to look for the
eigenvalues.

5.3 Characteristic polynomial

The characteristic polynomial of a square matrix A is the determinant χA(X)
of the matrix A−XI, where X is a variable. The characteristic equation is
|A− xI| = χA(x) = 0.

The characteristic polynomial of an endomorphism f is the characteristic
polynomial of the representation of f with respect to any basis B (the result
does not depend on the choice of B).

Proposition 11 A scalar λ is an eigenvalue of a matrix (respectively of an
endomorphism) if and only if it is a root of its characteristic polynomial.
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Since it is easy to compute the determinant of a triangular matrix, we
can write an alternative proof of the triangular case.

Corollary 3 If M is a triangular matrix, then the eigenvalues of M are the
numbers on the diagonal of M .

Proposition 12 Let M be a square matrix. Then for any λ, dimVλ ≤
mult(λ) where mult(λ) is the multiplicity of λ in the characteristic polyno-
mial.

For example, if χA(x) = (x − 7)3(x + 5)2, it means that there are two
eigenvalues 7 of multiplicity 3, and −5 of multiplicity 2. So we know that
dimV7 ≤ 3 and dimV−5 ≤ 2 but also, that 2 is not an eigenvalue, which
implies that dimV2 = 0.

Theorem 54 Let M = (mi,j) be a square matrix of size n. Then χM is a
polynomial of degree n which can be written as

χM = (−1)nλn + an1
λn−1 + . . .+ a0

where a0 = det(M) and an−1 = (−1)n−1Tr(M).

For example, if M =

(

a b
c d

)

It follows that χM(λ) = λ2− (a+d)λ+(ad−

bc).

Corollary 4 An n × n matrix (respectively an endomorphism of a vector
space of dimension n) has at most n distinct eigenvalues.

Warning: the converse of the theorem above is false: an n × n matrix
may be diagonalizable while having less than n pairwise distinct eigenvalues.

Theorem 55 Let M = (mi,j) be a square matrix of size n (respectively ϕ ∈
L(E) where E is a vector space of dimension n). We denote by λ1, . . . , λk

the roots of χM (respectively χϕ). We denote by ni the multiplicity of λi in
the polynomial. Either

• n1 + . . .+ nk < n. Then M (respectively ϕ) is not diagonalizable.
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• n1 + . . . + nk = n and there exists some i such that dim(Eλi
) < ni.

Then M (respectively ϕ) is not diagonalizable.

• n1 + . . . + nk = n and for all i, dim(Eλi
) = ni. Then M (respectively

ϕ) is diagonalizable. In addition, we have Vλ1
⊕ . . .⊕ Vλk

and a basis
of diagonalization can be build by merging the basis of Vλ1

, . . . , Vλk
.

In particular, if the decomposition of the characteristic polynomial in-
cludes a an irreducible polynomial of degree 2, we can conclude that the
diagonalization is not possible. The following result is used frequently in the
exercises.

Example, if we consider A =

(

0 1
−1 0

)

. It is easy to check that

χA(X) = X2 + 1. But this polynomial has no real root, so it can not be
decomposed. It is irreducible, therefore A is not diagonalizable.

Theorem 56 If an n × n matrix has n pairwise distinct eigenvalue then it
is diagonalizable.

Proof 22 Let us first remark that for any eigenvalue λ1, . . . , λn, the mul-
tiplicity equals 1 and consequently 1 ≤ dimVλi

≤ 1, which implies that
dim(Vλi

) = 1. So the sum of the dimension of the eigenspaces equals the
dimension of the space.

Theorem 57 (Cayley-Hamilton) LetM be a square matrix. Then χM(M) =
0.

Let us first present an example in order to understand the conclusion. Let

us consider the matrix

(

2 1
3 4

)

. It is easy to compute the characteristic

polynomial:
∣

∣

∣

∣

2− λ 1
3 4− 1λ

∣

∣

∣

∣

= (2− λ)(5− λ)− 1× 3 = 5− 6λ+ λ2

With the convention, thatM0 = Id, χM(M) = M2−6M+5 Id. Therefore,

χM(M) =

(

2 1
3 4

)2

− 6

(

2 1
3 4

)

+ 5

(

1 0
0 1

)

=

(

7 6
18 19

)

+

(

−12 −6
−18 −24

)

+

(

5 0
0 5

)

=

(

0 0
0 0

)

.

Note that the result is obvious if the matrix is diagonal or even diagonalizable.
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Algebraic prerequisite

A.1 Polynomials

Let us introduce the algebraic concept of polynomial which is closely related
to the concept of polynomial functions.

Let us call polynomial any sequence P = (an)n∈N of real numbers such
that there exists an integer d satisfying ai = 0 for every i > d. The numbers
ai are the coefficients of P .

The polynomial (0, 1, 0, . . .) is often1 denoted by X , leading to a set of
polynomial denoted by R[X ]. Note that X is not any more a real number,
it is an algebraic object.

In this case, (0, 0, 1, 0, . . .) is denoted by X2, (0, 0, 0, 1, 0, . . .) is denoted by
X3, and more generally Xk = (0, . . . , 0, 1, 0 . . .) = (δ(n, k))n∈N where δ(n, k)
is the Kronecker’s delta, equal to 1 if n = k and equal to 0 otherwise.

Those notations allow to establish a link between the formal definition
of the polynomial (1,−1, 0, 1, 0, 0 . . .) and a “concrete” polynomial. The se-
quence (1, 2,−1, 0, 1, 0, 0 . . .) corresponds to the polynomial 1+2X−X2+X4.
Conversely, the sequence is the result of “coding”: 1−X +X3 will be coded
by the sequence (1,−1, 0, 1, 0, 0 . . .). In view of this “idenfication”, we will
say that 1−X +X3 is a polynomial.

The largest integer d such that ad 6= 0 is the degree of P , denoted by
deg(P ). If every coefficient of P is zero, then P is the zero polynomial,
denoted by 0. Its degree is defined to be −∞. The polynomial of degree

1alternatively, if we denote (0, 1, 0, . . .) by Y , the set of polynomial will be R[Y ].
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0 whose first coefficient is a ∈ R and every other coefficient is 0 is simply
denoted by a. Such a polynomial is said to be constant. It follows easily that
every non-zero polynomial can be written a0 + a1X + . . .+ adX

d where d is
its degree.

Let us define formal concepts of sum and products on those algebraic
object. It is important to notice that they coincide with the usual operations
on polynomial functions.

The sum of two polynomials P = (an)n∈N and Q = (bn)n∈N is P + Q =
(an + bn)n∈N, which is in fact the usual sum. It is easy to see that P + Q is
a polynomial and that2 that deg(P +Q) ≤ max(deg(P ), deg(Q)).

The product of a scalar λ by a polynomial P = (an)n∈N is λP = (λai)n∈N.
It is easy to see that λP is a polynomial and that deg(λP ) = deg(P ) if λ 6= 0
while deg(λP ) = −∞ if λ = 0. Note that X2 = X ×X .

The product of two polynomials P = (an)n∈N and Q = (bn)n∈N is PQ =
(
∑

i+j=n aibj)n∈N. It is easy to see that PQ is a polynomial and that deg(PQ) =
deg(P ) + deg(Q).

Let us check that those rules lead to a vector space structure:

Theorem 58 For every polynomials P,Q,R and every scalars λ, µ we have:

• P + (Q+R) = (P +Q) +R, P +Q = Q+ P , P + 0 = P , P − P = 0;

• P · (QR) = (PQ) · R, PQ = QP , 1P = P ;

• λ(P +Q) = λP +λQ, (λµ)P = λ(µP ), (λ+µ)P = λP +µP , λ(PQ) =
(λP ) ·Q = P · (λQ);

• P · (Q+R) = PQ+ PR.

Note that 1 might denote the real number 1, or the polynomial (1, 0, 0, . . .).
But in both cases, 1P = P .

Theorem 59 If PQ = 0 then either P = 0 or Q = 0. Also, if PA = PB
for some P non equal to 0, then A = B.

Proof 23 : degree.

2Note that the formula is still true if one of the polynomial values zero in view of the
convention introduced for the zero polynomial
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As usually, we can compose the polynomials P and Q. If the polynomial
P = a0 + a1X + . . . + adX

d, the composition P ◦ Q will be defined as a0 +
a1Q+ . . .+ adQ

d. It can be denoted by P ◦Q = P (Q). In particular, we can
check P (X) = P and for any real number P (a) is constant.

A polynomial P is invertible if there exists a polynomial Q such that
PQ = 1. The following theorem shows that except for some very special
cases, a polynomial is not invertible.

If A is equal to PB, then A is a multiple of B and B is a divisor of A.

Proposition 13 Let P be an invertible polynomial. Then P = a where a is
a non-zero real number.

A.2 Euclidean division

Let us define the concept of Euclidean division of A by B, which is based on
the following theorem.

Theorem 60 Let A and B 6= 0 be two polynomials. There exists a unique
Q and a unique R such that A = BQ+R and deg(R) < deg(B).

For example, we can write X2+X−1 = X(X+1)−1. How to determine
Q and R ? By solving linear systems : For example, if we consider A =
X5 + 1 and B = X2 + 1, let us consider the decomposition A = BQ +R or
A − R = BQ. Since deg(B) ≤ 1, we know that deg(A − R) = 5, therefore
deg(BQ) = 5, and consequently Q has degree 3. In view of the degrees, we
can denote B = aX3 + bx2 + cX + d and R = eX + f .

A = BQ+R means X5 + 1 = (X2 + 1)(aX3 + bx2 + cX + d) + eX + f.

In particular (X2+1)(aX3+ bx2 + cX + d) + eX + f can be decomposed
as aX5+ terms of degree less than 5. We can deduce that a = 1. We need
to solve

X5 + 1 = (X2 + 1)(X3 + bx2 + cX + d) + eX + f.

It is easy to compute that the right-hand side term is equal to

(X5 + bx4 + cX3 + dX2) + (X3 + bx2 + cX + d) + (eX + f)
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which can grouped as X5+bx4+(c+1)X3+(d+b)X2+(c+e)X+(d+f). So
A = BQ+R means thatX5+1 = X5+bx4+(c+1)X3+(d+b)X2+(c+e)X+f ,
leading to b = 0, c + 1 = 0, d+ b = 0, c + e = 0 and d + f = 0. This linear
system is easy to solve, b = 0, c = −1, d = 0, e = 1 and f = 1.

X5 + 1 = (X2 + 1)(X3 −X) + (X + 1)

The pair (Q,R) in the above theorem is the result of the Euclidean divi-
sion of A by B. The polynomial Q is the quotient and R is the rest . If the
rest in division of A by B is 0, then B is a divisor of A, B divides A, and A
is a multiple of Q.

Remark 8 Let A,B be two polynomials. One has the equivalence

• A is a divisor of B and B is a divisor of A

• there exists k ∈ R
∗ such that A = kB.

A.3 Arithmetic of polynomials

If A,B are such that A = kB where k ∈ R
∗, then they equal up to the

multiplication by a constant. A unitary polynomial is a polynomial whose
coefficient of highest degree is 1. It is easily checked that every non-zero
polynomial is equal to a unitary polynomial, up to the multiplication by a
constant.

Let us denote by D(P ) the sets of all the divisors of P . In particular P
is a divisor of P . In order to understand this set, let us remark that for any
P , both 1 ∈ D(P ) and P ∈ D(P ) while 0 consider some example

• if P = 0 then D(P ) = R[X ].

• if P = 1 then D(P ) = R[X ] \ {0}.

• if P = X then D(P ) = R[X ] \ {constant polynomials}.

Note that D(P ) = D(Q) if and only if they are equal up to the multipli-
cation by a constant (cf. Remark 8).

An important problem is to have a description of D(A) ∩ D(B) when
A,B are polynomial. This set is the set of the common divisors of A and B,
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which is a step in order to define the concept of Greatest Common Divisor.
The following theorem shows that the computation of D(A) ∩D(B) can be
replaced by a simpler computation:

Theorem 61 Let A,B be polynomials such that A = BQ +R. Then

D(A) ∩D(B) = D(R) ∩D(B).

By the above theorems, the set D(A)∩D(B) can be computed as follows:
if B = 0, then it is D(A). Else, we compute the quotient and the rest of
the euclidean division of A by B, and we go on with the simpler problem
D(B) ∩D(R). At the end of this process, we will find a polynomial C such
that D(A) ∩D(B) = D(C), that is such that every common divisor of A,B
is a divisor of C.

Note that

• if both A and B are equal to zero then C = 0 and C is unique;

• if either A or B are different from zero, as noticed previously this
polynomial C is unique “up to the multiplication by a constant”. In
order to have unicity, we require in addition C to be unitary.

In any case, this unique polynomial C is the GCD of A,B (GCD means
Greatest Common Divisor) denoted by GCD(A,B).

Theorem 62 (Bézout3) Let A,B be two polynomials where B 6= 0. Then
there exist polynomials U, V such that UA + V B = GCD(A,B).

Polynomial such that GCD(A,B) = 1 are said to be relatively prime.

Remark 9 Note that, for any a ∈ R, for any polynomial P , (X − a) is a
divisor of P if and only if P (a) = 0.

A polynomial P (of degree n) is said to be entirely decomposed on R[X ]
if there exits some (α1, . . . , αn) ∈ R

n such that

P = an(X − α1) . . . (X − αn).

Remark 10 Note that, for any polynomials P and Q such that P and Q are
entirely decomposed on R[X ]. Then P and Q are relatively prime if and only
if they have no common root (cf. Page 47). Such a property can be extended
in the general case if we allow complex root.
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The Bézout’s Theorem for relatively prime polynomials is so important
that it is worth stating separately:

Theorem 63 (Bézout) Two polynomials are relatively primes if and only
if there exist polynomials U, V such that UA + V B = 1.

The following theorem might seems trivial, but it relies on all the con-
struction above. It says that in some respect, polynomials behave like inte-
gers.

Theorem 64 (Gauss) Let us consider A,B two relatively prime polynomi-
als.

• If A divides BC then A divides C.

• If A, and B are both divisors of C, then AB is a divisor of C.

• If in addition A is relatively prime to C, then A is relatively prime to
BC.

Proof 24 : Let U, V be such that AU + BV = 1, leading to C = AUC +
BV C.

• Since A divides BC, there exists P such that BC = AP . So, C =
AUC + V AP = A(UC + V P ). Hence, A divides C.

• Also, C = AP1 and C = BP2. So, C = AUC + BV C = AU(BP2) +
BV (AP1) = AB(UP2 + V P1). So, AB is a divisor of C.

• In addition, there exits Ũ , Ṽ such that: AŨ+CṼ = 1. We can compute

(AU +BV )(AŨ + CṼ ) = 12 = 1

Let us develop A2UŨ + AUCṼ +BV AŨ +BV CṼ = 1. So,

A(AUŨ + UCṼ +BV Ũ) +BC(CṼ ) = 1,

so A and BC are relatively prime.
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Every non-zero polynomial P have divisors: itself (but also the polynomi-
als equal to P up to the multiplication by non-zero scalar), and the non-zero
scalars. A non-constant polynomial is irreducible if it has no other divisor.

So, a non-constant polynomial P is irreducible if and only there exists a
divisor Q such that 0 < deg(Q) < deg(P ).

It is easily seen that two unitary irreducible polynomials are relatively
prime.

Theorem 65 Let us consider P a polynomial, P ∈ R[X ] of degree n ≥ 1,
we can discuss the irreducibility of P :

• if n ≥ 2, P is not irreducible;

• if n = 2, P is irreducible if and only if it has no real roots;

• if n = 1, P is irreducible.

For example, if P = X2+1 was not irreducible, there would exist a divisor
Q such that 0 < deg(Q) < 2. So Q can be written X − a, and in particular
P (a) = Q(a) = 0 which is impossible.

Theorem 66 Let A be a polynomial. Then A is equal to a product of irre-
ductible polynomial. This decomposition is unique up to a permutation of its
terms and up to a multiplication of its terms by non-zero scalars.

A.4 Roots of a polynomial

If P is a polynomial, there is a function naturally associated to P :
A root of a polynomial is a real x such that P (x) = 0.

Theorem 67 Let P be a polynomial. Then a is a root of P if and only if
(X − a) divides P .

Proof 25 : By the Euclidean division: P = (X−a)Q+R where deg(R) <
deg(X − a). Hence, R is a number, so P (a) = R which implies the result.

The multiplicity of a root of polynomial P is the greatest k such that
(X − a)k divides P . If P =

∑k=n
k=0 akX

k, then we denote by P ′ the derivative

of P , defined by P ′ =
∑k=n

k=1 kakX
k−1. By P (k) we denote the polynomial

obtained from P after k derivatives.
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Theorem 68 (Taylor) Let P be a polynomial of degree n and a be a real
number. Then:

P (X) =

n
∑

k=0

P (k)(a)

k!
(X − a)k

Theorem 69 Let a be the root of a polynomial P . Then the multiplicity of
a is k if and only if P (a) = · · · = P (k−1)(a) = 0 and P (k)(a) 6= 0.
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