
Masters M1 MAEF, M1 IMMAEF & QEM1 –

DU MMEF 2018/2019

Class Notes ∗

Microeconomics 1A: Individual Decision Making
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1. Commodities and prices

1.1 Commodities

We consider a model with a finite number ` of commodities. A commodity
or a good will be denoted by the letter h, h = 1 . . . , `.

A commodity is characterized by its physical properties (color, weight,
quality,...), the location where it is available, the date at which it will be
delivered and eventually, the state of the world in which it will be available.

We assume that the characteristics of the commodities are known by the
economic agent. We have no asymmetry of information.

We assume that the quantity of each commodity can be evaluated and a
unit is chosen for each commodity.

The commodity space is R`, the ` dimensional Euclidean space. A com-
modity bundle or commodity basket is a vector x in R`:

x = (x1, x2, . . . , xh, . . . , x`)

The h component xh represent the quantity of commodity h in the com-
modity basket x. The quantity xh may be negative, it means either that there
is a debt in commodity h or that x describe a trade or a transaction and the
commodity h is given in exchange of another commodities.

We can add two basket of commodities and multiply a basket of commod-
ity by a real number. This correspond to the usual operations in the vector
space R`.

Let x = (x1, x2, . . . , xh, . . . , x`) and x′ = (x′1, x
′
2, . . . , x

′
h, . . . , x

′
`), two bas-

kets of commodities and t a real number. Then
x+ x′ = (x1 + x′1, x2 + x′2, . . . , xh + x′h, . . . , x` + x′`)
and tx = (tx1, tx2, . . . , txh, . . . , tx`).
We adopt the following notations:
x ≥ x′ means xh ≥ x′h for all h = 1, . . . , `;
x� x′ means xh > x′h for all h = 1, . . . , `;
R`+ = {x ∈ R` | x ≥ 0};
R`++ = {x ∈ R` | x� 0}
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1.2 Prices

Each commodity h has a price ph, which is a real number. The price vector
p = (p1, p2, . . . , ph, . . . , p`) is also a vector of R`. Given the price vector p and
a commodity bundle x, the value of x for the price vector p is

p · x =
∑̀
h=1

phxh

This corresponds to the canonical inner product in R`.
In the ordinary life, the price are always quoted with respect to a given

currency. Here we do not introduce such mean of exchange in the model. So
the prices have a relative value. This means that two positively proportional
prices are economically equivalent. Indeed, for two positive prices ph and pk,
the ratio or relative price ph

pk
of good h with respect to the good k means that

one can exchange ph
pk

units of good h against one unit of good k.
Often, one considers normalized price vector. Different normalizations are

possible. One can choose one good as numéraire, which means that its price
is fixed to 1, or one can consider only the price vector such that the value of
some reference commodity basket is 1. For example, the reference commodity
basket may be 1 = (1, 1, . . . , 1) and a normalized price must satisfy 1 · p =∑`
h=1 ph = 1.
Let x = (x1, x2, . . . , xh, . . . , x`) and x′ = (x′1, x

′
2, . . . , x

′
h, . . . , x

′
`), two bas-

kets of commodities and t a real number. Let p a price vector. One easily
checks that:

p · (x+ x′) = p · x+ p · x′;
p · (tx) = t(p · x);
If p ∈ R`++ and x ∈ R`+ \{0} or p ∈ R`+ \{0} and x ∈ R`++, then p ·x > 0.
From a geometric point of view, in a two dimension plan, for a given

price vector p, then the set of commodity baskets with a zero value is the
orthogonal line to p passing through the origin (0, 0). A commodity basket has
a positive value if it is above this line in the direction of p and has a negative
value if it is below this line. A commodity bundle x is more expensive than
a commodity bundle x′ for the price vector p if the angle between the vector
x− x′ and the vector p is acute.



2. Consumers

2.1 Economic environment

2.1.1 Consumption set

A consumer is an economic agent, who is buying and selling commodities
on the market for her final consumption. Her economic characteristics are
described by a consumption set and a preference relation. The consumption
set is a subset X of R`, which contains all possible commodity baskets. This
means that the consumer can consume a consumption basket x in R` if and
only if x ∈ X. The consumption set summarize the physical constraints on
the possible consumption.

In the following, we will assume that the consumption set is the positive
orthant R`+, that is the basket of commodities with nonnegative components.
But, to analyze particular economic situations, it is necessary to take into
account additional constraints in the consumption set.

Examples: Indivisibility

X = {x ∈ R2
+ | x1 ∈ R, x2 ∈ N}

Survival constraint

X = {x ∈ R2
+ | x1 + x2 ≥ 1}

Bounded consumption

X = {x ∈ R2
+ | x1 ∈ R, x2 ∈ [0, x̄2]}

2.1.2 Budget set

A this stage, we take as given a price vector p ∈ R` \{0} and a wealth w ∈ R.

Definition 2.1.1. The budget set B(p, w) is the set of commodity bundle x
in the consumption set such that the value of x at p is lower or equal to w.

B(p, w) = {x ∈ R`+ | p · x ≤ w}
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If p � 0 and w > 0, it is easy to draw a picture in R2 to represent the
budget set. It is the triangle (0, 0), (w/p1, 0), (0, w/p2). More generally, with
` commodities, the budget set is the convex hull of the `+ 1 extreme points
(0, ((w/ph)eh)`h=1) where eh is the hth vector of the canonical basis of R`.

The budget line (in R2) or the budget hyperplane in higher dimension is
the set of elements of the budget set, which bind the budget constraint, that
is such that p · x = w.

Proposition 2.1.1. Let p ∈ R`+ \ {0} and w ≥ 0.

(i) B(p, w) is a nonempty, convex and closed subset of R`;
(ii) B(p, w) is bounded if and only if p� 0;
(iii) for all t > 0, B(tp, tw) = B(p, w); Let p′ ∈ R`+ \ {0} and w′ ≥ 0.
(iv) B(p, w) ⊂ B(p′, w′) if and only if p′hw ≤ phw

′ for all h = 1, . . . , `; in
particular, B(p, w) ⊂ B(p′, w′) if p = p′ and w ≤ w′ or if p ≥ p′ and
w = w′.

(v) for all t ∈ [0, 1], B(tp+ (1− t)p′, w) ⊂ B(p, w) ∪B(p′, w).

Remark. In many cases, it is not possible to conclude that B(p, w) ⊂
B(p′, w′) or the converse is true.

Proposition 2.1.2. Let p ∈ R`+ \ {0} and w ≥ 0. There exists x ∈ B(p, w)

such that p · x < w if and only if w > 0. x = (w/
∑`
h=1 ph)1, where 1 =

(1, 1, . . . , 1) is in the budget set and satisfies p · x = w. If x ∈ B(p, w) and

satisfies p ·x < w, then x′ = x+ ((w− p ·x)//
∑`
h=1 ph))1 satisfies p ·x′ = w

and x′ � x.

2.2 Consumer’s preferences

A consumer is supposed to have some preferences on the possible consump-
tions, that is the element of her budget set.

Definition 2.2.1. A preference relation denoted � on R`+ is a total pre-order
on R`+, which means that it is a binary relation which satisfies the following
conditions:

a) Reflexivity ∀x ∈ R`+, x � x;
b) Transitivity ∀(x, ξ, z) ∈ R`+, x � ξ and ξ � z imply that x � z;
c) Completeness ∀(x, ξ) ∈ (R`+)2, either ξ � x or x � ξ holds true.

x � ξ means that the consumer prefers or is indifferent between the
consumptions ξ and x. Two consumptions x and ξ are equivalent (x ∼ ξ) if
x � ξ and ξ � x. x is strictly preferred to ξ (ξ ≺ x) if ξ � x and not x � ξ. A
consumer is supposed to be able to compare any pairs of consumption but she
can be indifferent among two consumptions. We remark that the completeness
of the preference relation implies that if x is not strictly preferred to ξ, then
ξ is preferred or indifferent to x.
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Definition 2.2.2. The preference relation � is :

• continuous if for all (x, ξ) ∈ (R`+)2 such that x ≺ ξ, then, there exists
r > 0 such that for all (x′, ξ′) ∈ (B(x, r)∩R`+)× (B(ξ, r)∩R`+), x′ ≺ ξ′;

• monotonic if for all (x, ξ) ∈ (R`+)2, if x� ξ then x ≺ ξ;
• strictly monotonic if for all (x, ξ) ∈ (R`+)2, if x ≤ ξ and x 6= ξ then x ≺ ξ;
• convex if for all x ∈ R`+, the upper contour set {ξ ∈ R`+ | x � ξ} is convex;
• strictly convex if for all (x, ξ) ∈ (R`+)2 such that x 6= ξ and x ∼ ξ, then

for all t ∈]0, 1[, x ≺ tx+ (1− t)ξ.

Remark. On can prove that � is continuous if and only if for all x ∈ R`+,
the lower contour set {ξ ∈ R`+ | ξ � x} and the upper contour set {ξ ∈ R`+ |
x � ξ} are closed.

Examples.

• Lexicographic preferences on R2
+ :

x � ξ if x1 < ξ1 or x1 = ξ1 and x2 ≤ ξ2.
This preference relation is strictly monotonic and strictly convex but is

not continuous. One remarks that x ∼ ξ if and only if x = ξ.

• Leontief preferences :

x � ξ if minh{xh/ah} ≤ minh{ξh/ah}, where ah > 0 for all h.
This preference relation is continuous, convexe, monotonic but not strictly

convex and not strictly monotonic. This preference relation describes the
extreme case where the commodities are complementary commodities.

• Linear preferences :

x � ξ if
∑`
h=1 ahxh ≤

∑`
h=1 ahξh, where ah > 0 for all h.

This preference relation is continuous, convex, strictly monotonic, but
not strictly convex. It describes the case where the commodities are perfect
substitute and the rate of substitution among two commodities is constant.

Graphically, one represents a preference relation with the indifference
curves.

Remark. If φ is a function from R`+ to R, then one can define a preference
relation � on R`+ as follows: for all (x, ξ) ∈ (R`+)2, x � ξ if φ(x) ≤ φ(ξ). We
remark that x and ξ are equivalent if φ(x) = φ(ξ) and ξ is strictly preferred
to x if φ(x) < φ(ξ).

One easily checks that one obtains a complete, reflexive and transitive
binary relation. One also checks that: the preference relation is continuous if
φ is continuous; the preference relation is convex if φ is quasi-concave (∀α ∈ R,
{x ∈ R`+ | φ(x) ≥ α} is convex); the preference relation is monotonic if φ is
increasing (∀(x, ξ) ∈ (R`+)2, if x� ξ then φ(x) < φ(ξ)).

A typical example is a preference relation á la Cobb-Douglas, which means
that they are define by the function φ defined by:
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φ(x) =
∏̀
h=1

xαhh

with αh > 0 for all h. One can prove that these preference relations are
continuous, convex, monotonic and strictly convex and strictly monotonic on
R`++.

We now consider the opposite question: taken a preference relation, does
it exist a function u from which one can derive the preference relation.

Definition 2.2.3. A preference relation � is representable by a utility func-
tion if there exists a function u from R`+ to R such that :

∀(x, ξ) ∈ (R`+)2, x � ξ ⇔ u(x) ≤ u(ξ).

We remark that several utility functions can represent the same preference
relation. Indeed, if u represents the preference relation �, then for all function
ϕ strictly increasing from u(R`+) to R, ϕ ◦ u also represents �. So one can
always obtain a positive utility function or a bounded utility function. The
following proposition gives sufficient conditions on the preference relation to
be representable.

Proposition 2.2.1. A preference relation � is representable by a utility
function if it is continuous and monotonic. Furthermore, the utility function
can be chosen continuous.

Actually, the result holds true if u is only continuous.

Proof. Let 1 = (1, . . . , 1) ∈ R`+. We prove first that for all x ∈ R`+, there
exists a unique non negative real number denoted u(x) such that x ∼ u(x)1.
Let A = {t ∈ R+ | t1 � x} and B = {t ∈ R+ | x � t1}. B is nonempty
since � is monotonic and A also since 0 ∈ A. These two sets are closed since
the preference relation is continuous. Since R+ is connected and R+ = A∪B
,there exists t ∈ A ∩ B. Hence t1 ∼ x. The uniqueness of t is a consequence
of the monotonicity of �.

We now show that u is continuous. Let α ∈ R+. It suffices to prove that
u−1([0, α]) and u−1([α,+∞[) are closed. From the construction of u, one
deduces that u−1([0, α]) = {x ∈ R`+ | x � α1} and u−1([α,+∞[) = {x ∈
R`+ | α1 � x} which are closed since � is continuous. Hence u is continuous.

We end the proof by showing that u represents �. Let (x, ξ) ∈ (R`+)2. If
ξ � x, by the transitivity of �, u(ξ)1 � u(x)1 and the monotonicity of �
implies that u(ξ) ≤ u(x). If u(ξ) ≤ u(x), again from the monotonicity of �,
ξ ∼ u(ξ)1 ≤ u(x)1 ∼ x and by the transitivity of �, ξ � x. �

We can remark that the Leontief preference relation and the linear pref-
erence relation are derived from a utility function. On the contrary, using the
fact that R is not countable, one can prove that the lexicographic preference
is not representable.
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2.3 Demand of a consumer

Given a price vector p ∈ R`+\{0} and a wealth w ∈ R+, the consumer chooses
a consumption x which is financially affordable and which is the best choice
for him with respect to her preference relation �. This leads to the formal
definition.

Definition 2.3.1. a) The demand of the consumer for the price p ∈ R`+\{0}
and the wealth w > 0, denoted d(p, w), is the set of consumptions x ∈ B(p, w)
satisfying one of the three following equivalent conditions:

(i) there does not exist ξ ∈ B(p, w) such that x ≺ ξ;
(ii) for all ξ ∈ B(p, w), ξ � x;
(iii) for all ξ ∈ R`+ satisfying x ≺ ξ, p · ξ > w.

b) If the preference relation is represented by a utility function u, d(p, w)
is the set of solutions of the following optimization problem:{

maximise u(x)
x ∈ B(p, w)

c) The indirect utility function is the value function of the previous prob-
lem, that is,

v(p, w) = sup{u(x) | x ∈ B(p, w)}.

We remark that if x and ξ belong to d(p, w), then x ∼ ξ. If x ∈ d(p, w) and
ξ ∈ B(p, w) satisfies x ∼ ξ, then ξ ∈ d(p, w). In other words, the elements of
d(p, w) are on the same indifference curve. If x ∈ d(p, w), then u(x) = v(p, w).
If x ∈ B(p, w) satisfies u(x) = v(p, w), then x ∈ d(p, w).

The equivalence between the four equivalent definitions of the demand is
left as an exercise. The next proposition gathers several basic properties of
the demand.

Proposition 2.3.1. Let � be a continuous, convex and monotonic prefer-
ence relation. Then

a) ∀(p, w) ∈ R`++×R++, d(p, w) is a nonempty, convex, closed and bounded
subset. For all t > 0, d(tp, tw) = d(p, w).

b) For all x ∈ d(p, w), p · x = w (Walras Law).
c) If � is strictly convex, then d(p, w) is single valued.
d) Let (pν , wν , xν) a sequence in R`++×R++×R`+ converging to (p̄, w̄, x̄) ∈

R`+×R+×R`+. If, for all ν, xν ∈ d(pν , xν) and w̄ > 0, then x̄ ∈ d(p̄, w̄).
e) If � is strictly convex, the mapping (p, w) → d(p, w) is a continuous

mapping on R`++ × R++.
f) If u is a continuous utility function representing �, the indirect utility

function v is continuous, decreasing in p, increasing in w, quasi-convex
in p and homogeneous of degree 0 in (p, w) on R`++ × R++.
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Proof. a) The non-emptiness of d(p, w) is a consequence of the continuity
of �. The convexity comes from the convexity of �. The closedness comes
from the continuity of �. Finally, the boundedness comes from the fact that
the budget set is bounded.

b) Let x ∈ R`+ such that p ·x < w. Then, ξ = x+ w−p·x∑`
h=1 ph

1 satisfies x� ξ

and p · ξ = w. So, x cannot belong to d(p, w) since the monotonicity of �
implies that ξ is strictly preferred to x and ξ belongs to the budget set.

c) If � is strictly convex, let x and ξ in d(p, w) such that x 6= ξ. Then, let
x′ = 1

2 (x+ξ). From the strict convexity of �, x ≺ x′. Furthermore, x′ belongs
to B(p, w) since the budget set is convex. Hence, one gets a contradiction
between the fact that x ∈ d(p, w) and x ≺ x′ and x′ ∈ B(p, w).

d) One easily checks that p̄ · x̄ ≤ w̄. If x̄ /∈ d(p̄, w̄), then there exists
ξ ∈ B(p̄, w̄) such that x̄ ≺ ξ. Since ≺ is continuous, there exists t ∈ [0, 1[
such that x̄ ≺ tξ. Since w̄ > 0, p̄ · (tξ) < w̄. Then there exist ν ∈ N, such
that for all ν ≥ ν, pν · (tξ) < wν . Since � is continuous, there exist ν̃ ∈ N,
such that for all ν ≥ ν̃, xν ≺ tξ. Finally, for all ν ≥ max{ν, ν̃}, tξ belongs
to the budget set B(pν , wν) and xν ≺ tξ, which contradicts the fact that
xν ∈ d(pν , wν).

e) The continuity of the demand function comes from the previous prop-
erties noticing that the demand is a locally bounded function. Indeed, for all
(p, w) ∈ R`++ × R++, there exists r > 0 such that the closed ball of center p
and radius r is included in R`++. So for all p′ in this ball, for all h = 1, . . . , `,
p′h is bounded below by a uniform positive constant. Consequently, for all
w′ in a bounded neighborhood of w, the budget set B(p′, w′) is uniformly
bounded.

f) The continuity of v is a consequence of (d), the continuity of u and the
fact that the demand is uniformly bounded in a neighborhood of (p, w) ∈
R`++ ×R++. v is decreasing with respect to p since the budget set is smaller
when the price increases, v is increasing in w since the budget set is larger
when the wealth increases, v is homogeneous since the budget set is constant
when the prices and the wealth are multiplied by a positive real number.
Finally, the quasi-convexity of v is a consequence of the assertion (v) of
Proposition 2.1.1. �

Examples. For the lexicographic preferences in R2
+, for any price-wealth pair

(p, w) ∈ R2
++ × R++, the demand is ( wp1 , 0).

For the Leontief preferences, with the utility function minh{xh/ah}, the
demand for a price-wealth pair (p, w) ∈ R`++ × R++ is ( ahw∑`

k=1 pkak
)`h=1.

For the linear preferences, with the utility function
∑`
h=1 ahxh, the de-

mand for a price-wealth pair (p, w) ∈ R`++ × R++ is:

co{ w
ph

1h | h ∈ argmax{ak
pk
| k = 1, . . . , `}}
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To find the demand when the utility function is differentiable, we will
characterize the demand using the first order condition for optimality. We
first recall a property of the gradient of a quasi-concave function.

Proposition 2.3.2. Let u be a quasi-concave continuously differentiable

function on R`++ such that for all x ∈ R`++, ∇u(x) =
(
∂u
∂xh

(x)
)`
h=1
6= 0.

Then, for all (x, x′) ∈ (R`++)2, if u(x) ≤ u(x′), then ∇u(x) · (x′ − x) ≥ 0. If
u(x) < u(x′), then ∇u(x) · (x′ − x) > 0.

Proposition 2.3.3. If the continuous, convex, montonic preference relation
is representable by a continuous quasi-concave function u on R`+, which is
differentiable on R`++ and satisfies ∇u(x) 6= 0 for all x ∈ R`++, then, for all
(p, w) ∈ R`++ × R++, x ∈ R`++ belongs to d(p, w) if and only if there exists
λ > 0 such that ∇u(x) = λp and p · x = w.

This proposition can be interpreted in the following term. A point x is
in the demand at (p, w) if the budget constraint is binding at x and if the

relative price ph
pk

is equal to the marginal rate of substitution
∂u
∂xh

(x)

∂u
∂xk

(x)
for any

pair of commodities.
The name “marginal rate of substitution” comes from the following re-

mark. At a consumption x ∈ R`++, if we want to substitute the commodity
h to the commodity k and to keep the same utility level. Let us call ϕ(t) the
quantity of commodity k that one can withdraw in the consumption if one
increases the quantity of commodity h of t keeping the utility level fixed. This
means that u(. . . , xh + t, . . . , xk − ϕ(t), . . .) = u(x). The rate of substitution
is ϕ(t)/t and the marginal rate of substitution is the limit when t tends to 0,
that is the derivative of ϕ in 0. When ∂u

∂xk
(x) 6= 0, this derivative is equal to

∂u
∂xh

(x)

∂u
∂xk

(x)
.

One can have an intuition of the necessity of the equality between relative
prices and marginal rate of substitution with the following argument. Let
us consider the new consumption (. . . , xh + t, . . . , xk − ph

pk
t, . . .) with t in

a neighborhood of 0. Clearly, the new allocation is in budget set since the
trade (0, . . . , t, 0, . . . , 0,−phpk t, 0, . . . , 0) has a value 0 at p. Consequently, if x

belongs to the demand, ψ(t) = u((. . . , xh+t, . . . , xk− ph
pk
t, . . .) ≤ u(x) = ψ(0).

Hence, the derivative of ψ at 0 is equal to 0. From the chain rule formula,
ψ′(0) = ∂u

∂xh
(x)− phpk

∂u
∂xk

(x). Hence, one gets the equality between the marginal
rate of substitution and the relative price.

Proof. If x ∈ R`++ belongs to d(p, w), we already know that p · x = w by
Proposition 2.3.1 (b). We now show that ∇u(x) = λp for some λ ≥ 0. A
standard result of linear algebra shows that it holds true if and only if for
all z ∈ R` such that p · z ≤ 0 then ∇u(x) · z ≤ 0. Let z ∈ R` such that
p · z ≤ 0. There exists t̄ > 0 such that for all t ∈ [0, t̄], x + tz ∈ R`++.
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Consequently, x+ tz ∈ B(p, w) and u(x+ tz) ≤ u(x). Let ϕ(t) = u(x+ tz). ϕ
attains its maximum on [0, t̄] at 0, thus ϕ′(0) ≤ 0. By the chain rule formula,
ϕ′(0) = ∇u(x) · z. Hence ∇u(x) · z ≤ 0. Hence, there exists λ ≥ 0, such that
∇u(x) = λp. Since ∇u(x) 6= 0, λ > 0.

If p · x = w and ∇u(x) = λp for some λ > 0, one applies the properties of
the quasi-concave function to prove that x′ /∈ B(p, w) if u(x′) > u(x). Indeed,
if x′ ∈ R`++ satisfies u(x′) > u(x) then ∇u(x) · (x′ − x) > 0. Consequently,
since λ > 0, p·(x′−x) > 0, which implies p·x′ > p·x = w. Hence x′ /∈ B(p, w).
If x′ ∈ R`+ satisfies u(x′) > u(x), then, for all t ∈]0, 1[, close enough to 1, one
has xt = tx′ + (1− t)x ∈ R`++ and u(xt) > u(x). Hence, from the first part,
p · xt > p · x. This implies that p · t(x′ − x) > 0. Hence, since t > 0, one gets
p · x′ > p · x = w, which ends the proof. �

Examples. One can apply the previous proposition to show that the demand
function for the Cobb-Douglas preference relation represented by the utility
function u(x) =

∏`
h=1 x

αh
h , where αh > 0 for all h is defined by

d(p, w) =

 αhw(∑`
k=1 αk

)
ph

`

h=1

If one considers the utility function u(x1, x2) = x1 +
√
x2, one remarks

that the demand is not always in R2
++. The wealth must be large enough with

respect to the price. So, the above formula does not always work to compute
the demand. Precisely,

d(p, w) =


(

4p2w−p21
4p1p2

,
p21
4p2

)
if w ≥ p21

4p2(
0, wp2

)
if w <

p21
4p2

2.3.1 Sensitivity of the demand

We now analyze how the demand changes when the price vector is fixed
and the wealth varies. The curve w → d(p, w) is called the Engel’s curve.
Usually, one expects that the demand of a commodity will increase when the
wealth increase. In that case, the good is called a normal good. But, when
we consider different qualities of the same good or close substitute goods, the
demand of low quality commodity can decrease when the wealth increase. In
that case, the good is called an inferior commodity.

This case may appear with a very simple utility function when there is
some survival constraint limiting the consumption from below. Let us consider
the following consumption set: X = {x ∈ R2

+ | x1 + x2 ≥ 1} The preferences
relation of the consumer is represented by the utility function u(x1, x2) =
x1 + 4x2. Let p = (1, 2). Then when w ∈ [1, 2], the demand of the consumer
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is d(1, 2, w) = (2 − w,w − 1). So the demand of the commodity 1 decreases
with w.

When the wealth is kept fixed and the price of commodity h increases, one
expects that the demand dh(p, w) of commodity h decreases since the relative
price of the commodity increases and one expects that the consumption of
the commodity h will be replaced by the consumption of a substitute which is
relatively cheaper. But, like in the case of a wealth change, this is not always
the case. An increase in the price of commodity h can lead to an increase in
the demand of commodity h. In that case, the commodity is called a giffen
goods. Indeed, an increase of the price of commodity h has an indirect wealth
effect since the budget set becomes smaller and then, the consumer has less
opportunity.

Let us consider the same example as above. Let w = 1 and p2 = 2. For
p1 ∈] 1

2 , 1], d1(p1, 2, w) = 1
2−p1 . Hence the demand increases with p1.

When the price of commodity h increases, one can expect that the demand
of the other commodities increase. But this is false when we have a strong
complementarity among the commodity. Let us consider a Leontief preference
relation represented by the utility function min{x1, x2}. Let us fix w = 1 and
p2 = 1. Then, the demand d(p1, 1, 1) is equal to ( 1

1+p1
, 1

1+p1
). One remarks

that the demand for the second commodity decreases with respect to p1.
We now consider a simultaneous change in price and wealth called com-

pensated change. To simplify, we assume that the demand is single valued.
Let (p, w) and x = d(p, w). Let p′ a different price vector. Then we change the
wealth from w to w′ in order to compensate the wealth effect due to the price
change, which means that we let w′ = p′ · x. Hence, x is financially afford-
able for the new price-wealth pair (p′, w′). Let x′ = d(p′, w′). If x′ 6= x, since
x ∈ B(p′, w′), one has u(x′) > u(x). Consequently, p·x′ > p·x. From the Wal-
ras law, one has p′·x′ = w′ = p′·x. Consequently, (p−p′)·(x−x′) < 0. One can
summarize this by the following formula: for all (p, p′, w) ∈ (R`++)2 × R++,

(p− p′) · (d(p, w)− d(p′, p′ · d(p, w)) ≤ 0

with a strict inequality if d(p, w) 6= d(p′, p′ · d(p, w)). This is called the com-
pensated law of demand. Indeed, if p and p′ differs only for the commodity
h, one obtains (ph − p′h)(dh(p, w)− dh(p′, p′ · d(p, w)) ≤ 0. Hence if the price
of commodity h increases, the demand of commodity h decreases.

2.3.2 Axiom of revealed preferences

A crucial question is to know whether it is possible to deduce the preference
of a consumer by the observation of her demand. The complete answer to this
question goes beyond the scope of these notes but we just give some basic
elements.

We consider a consumer with a preference relation �. Let d the demand
of the consumer. Let x ∈ R`+. If we know that there exists (p, w) ∈ R`+ \
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{0} × R++ such that x ∈ d(p, w), then for all x′ ∈ B(p, w), one has x′ � x
from the definition of the demand. In that case, x is revealed preferred to all
consumption x′ belonging to the budget set B(p, w) by the knowledge of the
demand.

If the demand is single valued, we remark that it is not possible x be
revealed preferred to x′ by the knowledge of the demand and x′ be revealed
preferred to x by the knowledge of the demand when x 6= x′. Indeed, when
the demand is single valued and x′ 6= x, then x′ ≺ x if x′ ∈ B(p, w). So, if
x′ = d(p′, w′), then x /∈ B(p′, w′) and x′ is not revealed preferred to x.

The above remark is summarized by saying that the single valued de-
mand deriving from a preference relation satisfies the weak axiom of revealed
preferences, that is:

For all (p, w, p′, w′) ∈ (R`+ \{0}×R++)2, if p ·d(p′, w′) ≤ w and d(p, w) 6=
d(p′, w′) then p′ · d(p, w) > w′.

This axiom is then a necessary condition to determine if an observed
demand comes from a preference relation. But it is possible to exhibit an
homogeneous demand function satisfying the Walras law and the weak axiom
but which is not coming from a preference relation.

By a recursive argument, one easily shows that a single valued demand
actually satisfies a stronger axiom, called the strong axiom of revealed pref-
erences, which appears to be a sufficient condition in order to prove that the
demand is coming from a preference relation. The statement of the strong
axiom of revealed preferences is the following:

for all finite sequence (pκ, wκ)kκ=1 ∈ (R`+ \ {0} × R++)k, if for all κ =
1, . . . , k − 1, pκ · d(pκ+1, wκ+1) ≤ wκ and d(p1, w1) 6= d(pk, wk), then pk ·
d(p1, w1) > wk.

2.3.3 Recovering the utility function from the indirect utility
function

The next proposition shows that the utility function is the value of a mini-
mization problem where the objective function is the indirect utility function.
One then has a dual situation since the indirect utility function is the value
function of a maximization problem where the objective function is the utility
function.

Proposition 2.3.4. Let u be a continuous quasi-concave and monotonic
utility function on R`+. Let v be the indirect utility function associated to
u. For all x ∈ R`++, let us consider the following minimization problem:{

Minimize v(p, p · x)
p ∈ R`++

The value of this problem is u(x) and p is a solution if and only if d(p, p ·x) =
x.
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Proof. Let α0 the value of the above problem, that is α0 = inf{v(p, p·x) | x ∈
R`++}. For all p ∈ R`++, x ∈ B(p, p · x). Thus, u(x) ≤ v(p, w) and u(x) ≤ α0.

If u(x) < α0, then x /∈ C0 = {ξ ∈ R`+ | u(ξ) ≥ α0}. C0 is a convex
closed subset of R`+ since u is continuous and quasi-concave. C0 satisfies
C0 +R`+ = C0 since u is monotonic. C0 is nonempty since d(p, p ·x) ∈ C0 for
all p ∈ R`++. Finally C0 ⊂ R`+. Hence, from a separation theorem for convex
subsets, there exists p̄ ∈ R`++, such that p̄ · x < min p̄ · C0. Consequently
B(p̄, p̄ ·x)∩C0 = ∅, hence d(p̄, p̄ ·x) /∈ C0, which implies v(p̄, p̄ ·x) < α0. This
contradicts the fact that α0 = inf{v(p, p · x) | x ∈ R`++}. We can conclude
that u(x) = α0.

Let p ∈ R`++ be a solution of the problem. Then, u(x) = v(p, p · x).
Hence, for all x′ ∈ B(p, p · x), u(x′) ≤ u(x).This implies that x = d(p, p · x).
Conversely, if x = d(p, p ·x) then u(x) = v(p, p ·x). Hence v(p, p ·x) is equal to
the value of the minimization problem, which implies that p is a solution. �

From the above proposition, one can easily deduce formulas, which give
the demand from the partial derivatives of the inverse demand function, at
least when these partial derivatives exist.

Proposition 2.3.5. We consider a continuous convex monotonic preference
relation represented by a utility function u. Let us assume that the indirect
utility function is continuously differentiable on R`++ × R++. Then, for all
(p, w) ∈ R`++ × R++,

d(p, w) = −

(
∂v
∂ph

(p, w)
∂v
∂w (p, w)

)`
h=1

Proof. Let (p̄, w̄) ∈ R`++ × R++ and x̄ = d(p̄, w̄). We define the function φ
from R`++ to R by φ(p) = v(p, p · x̄). We remark that w̄ = p̄ · x̄ from the
Walras law. From the previous proposition, one deduces that φ(p̄) ≤ φ(p) for
all p ∈ R`++. Consequently, the gradient of φ at p̄ is equal to 0. From the
chain rule formula, one has:

∂φ

∂ph
(p̄) =

∂v

∂ph
(p̄, p̄ · x̄) + x̄h

∂v

∂w
(p̄, p̄ · x̄)

Since p̄ · x̄ = w̄, one deduces the desired formula. �

2.3.4 Expenditure function and compensated demand

We now introduce the expenditure function and the associated compensated
demand. We consider a preference relation represented by a continuous utility
function u. Let p be a price vector and α0 a given attainable utility level.
Taken the price, the expenditure function gives the minimal wealth above
which the consumer is able to buy a consumption having the utility level α0.
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The compensated demand is the set of consumptions, which have a utility
level equal to α0 and a value equals to the expenditure function at the price
p. This means that the consumptions in the compensated demand are the
cheapest consumptions for the price p having a utility level above α0.

In the following, we denote by I the interval of attainable utility level,
that is I = {α ∈ R | ∃x ∈ R`+, u(x) ≥ α}.

Definition 2.3.2. For a given price p ∈ R`+ \ {0} and α0 ∈ I, we consider
the following minimization problem: minimize p · x

u(x) ≥ α0

x ≥ 0
The set of solutions is called the compensated demand and it is denoted

∆(p, α0) and the value of this problem is the expenditure function and it is
denoted c(p, α0).

The next proposition gives the basic properties of ∆ and c.

Proposition 2.3.6. Let u be a continuous, quasi-concave and monotonic
utility function.

a) The expenditure function c is finite and non negative for all (p, α0) ∈
R`+ \ {0} × I. It is continuous on R`++ × I.

b) For α0 fixed, c(·, α0) is increasing, homogeneous of degree 1 and concave
on R`++.

c) For p ∈ R`+ \ {0} fixed, c(p, ·) is increasing.
d) For all (p, α0) ∈ R`++ × I, ∆(p, α0) is nonempty, convex and closed and

for all x ∈ ∆(p, α0) \ {0}, u(x) = α0. If u is strictly quasi-concave, then
∆(p, α0) is a singleton and continuous.

Proof. a) The finiteness and the non-negativity of c is a direct consequence
of the definition. The continuity of c comes from the fact that c is locally
bounded and u is continuous and monotonic.

b) The proof is easy by a direct application of the definition of c noticing
that the higher are the prices the higher is the value for a given consumption.

c) The proof is easy by a direct application of the definition of c noticing
that the set {x ∈ R`+ | u(x) ≥ α} is decreasing with respect to α.

d) The nonemptyness, the convexity and closedness of ∆(p, α0) are con-
sequences of the continuity and the quasi-convexity of u. If x ∈ ∆(p, α0)\{0}
and u(x) > α0, then for t ∈]0, 1[ close enough to 1, the continuity of u implies
that u(x) ≥ α0 and p · tx < p ·x since p ∈ R`++. One gets a contradiction with
the definition of ∆(p, α0). Hence, u(x) = α0. If u is strictly quasi-concave
and x and x′ belong to ∆(p, α0) with x 6= x′, one has p · x = p · x′ = c(p, α0).
Furthermore, let x̂ = 1

2 (x + x′). Then u(x̂) > α0, p · x̂ = c(p, α0) and x̂ 6= 0
since x and x′ belong to R`+ and are different. Consequently, one gets a con-
tradiction with the previous assertion. The continuity of ∆ is a consequence
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of the continuity and the monotonicity of u and the fact that ∆ is locally
bounded. �

Remark. The expenditure function is a mean to recover a particular utility
function, which is a wealth measurement of the utility level. Let p̄ ∈ R`++.
Then, if the preference relation � is continuous, convex and monotonic, the
mapping

ũ(x) = inf{p̄ · x′ | x � x′}

is a utility function representing �. For all utility function u representing the
preference relation �, one has ũ(x) = c(p̄, u(x)). Clearly, different reference
prices leads to different utility functions.

Remark. The term compensated demand has a different meaning than the
compensated change of a price wealth pair presented in the previous sub-
section. Indeed, here the utility level is kept fixed instead of the wealth when
the price changes. One remark that the compensated law of demand holds
also with the compensated demand defined above. Indeed, let us assume
to simplify the exposition that the compensated demand ∆(p, u) is single
valued. Let p and p′ two price vectors such that ∆(p, u) 6= ∆(p′, u). Then,
from the definition of ∆, one deduces that p · ∆(p′, u) > p · ∆(p, u) and
p′ ·∆(p, u) > p′ ·∆(p′, u). Consequently, (p− p′) · (∆(p, u)−∆(p′, u)) < 0.

As for the computation of the demand from the partial derivatives of the
indirect utility function, we can also compute the compensated demand from
the derivative of the expenditure function.

Proposition 2.3.7. If for some utility level α0, the expenditure function
c(·, α0) is differentiable on R`++, then for all p ∈ R`++, ∆(p, α0) = ∇pc(p, α0).

In this proposition, we implicitly show that the compensated demand is
single valued.
Proof. Let p̄ ∈ R`++ and x̄ ∈ ∆(p̄, α0). Then, for all p ∈ R`++, one has
φ(p) = p · x̄ − c(p, α0) ≥ 0 and φ(p̄) = 0. Hence, ∇φ(p̄) = 0. Since ∇φ(p) =
x̄−∇pc(p, α0), one deduces the result. �

We ends this part by giving some relations between demand, indirect
utility function, compensated demand and expenditure function.

Proposition 2.3.8. Let u be a continuous, quasi-concave and monotonic
utility function. Then, for all (p, w, α0) ∈ R`++ × R++ × I,

a) d(p, c(p, α0)) = ∆(p, α0) ;
b)∆(p, v(p, w)) = d(p, w) ;
c)c(p, v(p, w)) = w ;
d) v(p, c(p, α0)) = α0.

The proof of this proposition is left as an exercise.
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2.3.5 Some properties of a differentiable demand

We will now deduce some properties of the partial derivatives the demand
function when it is assumed to be continuously differentiable. We remark that
the indirect utility function is then differentiable when the utility function is
so.

Proposition 2.3.9. If the demand function is continuously differentiable on
R`++ × R`++, then for all (p, w) ∈ R`++ × R++,

a) for all k = 1, . . . , `,
∑`
h=1 ph

∂dk
∂ph

(p, w) + w∂dk
∂w

(p, w) = 0.

b)
∑`
h=1 ph

∂dh
∂w

(p, w) = 1.

c) For all h = 1, . . . , `,
∑`
h=1 pk

∂dk
∂ph

(p, w) = −dh(p, w).

Proof. Obvious by applying first the homogeneity of degree 0 of the demand
and then by computing the partial derivative with respect to w and ph of the
Walras identity p · d(p, w) = w. �

2.4 Exercises

Exercise 2.4.1. Let (p, p̄) ∈ (R`++)2 and (w, w̄) ∈ (R++)2. Show that the
budget set B(p, w) is included in B(p̄, w̄) if and only if w

ph
≤ w̄

p̄h
for all

h = 1, . . . , `.
Deduce from the previous question that B(p, w) = B(p̄, w̄) if and only if

(p, w) is positively proportional to (p̄, w̄).

Exercise 2.4.2. Let (p, w) ∈ R`++ × R++. Show that x̃ = w∑`
k=1 pk

(1, . . . , 1)

satisfies p · x̃ = w. Let x′ ∈ R`+ such that p · x < w. Show that there exists
x̄ ∈ R`++ such that x� x̄ and p · p̄ = w.

Let x ∈ B(p, w). Show that for all t ∈ [0, 1[, p · (tx) < w.

Exercise 2.4.3. A student has a fixed expense of 5 euro for lunch every
day. She buys only french fries and coffee. She is supposed to maximize a
monotonic preference relation under her budget constraint. The usual prices
are 1.3 euro for the french fries and 1.1 euro for the coffee. This student then
buys 3 portions of french fries and one coffee. There is a special offer for the
french fries and the new price is 1.0 euro but the price of coffee increases to
1.2 euro. Shows that the student will at least buy 0.5

0.46 portions of french fries.

Exercise 2.4.4. Compute the demand of a consumer having lexicographic
preferences.
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Exercise 2.4.5. For the following utility functions, check wether they are
continuous, monotonic, strictly monotonic, quasi-concave. Compute the as-
sociated demand for p� 0, w > 0 and the indirect utility function. Give also
the expenditure function and the compensated demand.

u(x) = min{α1x1, α2x2}, αh > 0, h = 1, 2;
u(x) = c1x1 + c2x2, ch > 0, h = 1, 2;
u(x) = xαi1 xα2

2 , αh > 0, h = 1, 2;
u(x) = (xα1 + xα2 )1/α ; α ∈]0, 1[;
u(x) = x1(1 +

√
x2);

u(x) = x1 +
√
x2;

u(x) = −e−α1x1 − e−α2x2 , αh > 0, h = 1, 2;

Exercise 2.4.6. In a two good economy, a consumer has a utility function
u defined by : u(a, b) = a+ 2b− b2.

1) Draw the indifference curve associated to the utility level 0, 5, 1 and 2.
2) Show that the utility function is concave. Show that it is not monotonic.
3) Let pA > 0 and pB > 0 the prices of the two commodities A and B. Let
w > 0 the income of the consumer. Show that (a, b) is the demand of the
consumer if and only if

a =
r − pBb
pA and b is a solution of

{
maximize r

pA + (2− pB
pA )b− b2

b ∈ [0, rpB ]

4) Give the demand and the indirect utility function of this consumer. Draw
the Engel’s curve for (pA = 1, pB = 1).

Exercise 2.4.7. We consider a consumer with an homogeneous utility func-
tion u, i.e., ∃α > 0, ∀x ∈ R`+, ∀t > 0, u(tx) = tαu(x). Show that the demand
function is such that for all p ∈ R`++, for all income w > 0 and for all t > 0,
the demand of the consumer satisfies d(p, tw) = td(p, w). Show that the in-
direct utility function is homogeneous with respect to the wealth for a fixed
price vector.

Exercise 2.4.8. We consider a consumer whose preferences are represented
by a continuous, strictly quasi-concave, strictly increasing utility function
from R2

+ to R. We denote the prices by pa > 0, pb > 0 and the wealth by
w > 0. The demand of the consumer is denoted by x(pa, pb, w).
1) Recall the definition of the demand.
2) Recall the property of the demand called Walras law.
3) We assume that the demand in good a is xa(pa, pb, w) = pbw

pa(pa+pb)
. Com-

pute the demand in good b by using the Walras law.
4) We denote by ∆(pa, pb, ū) the indirect (or Hicksian) demand of the con-
sumer for the prices pa, pb and the utility level ū. We assume that the indirect

demand in good a is equal to ∆a(pa, pb, ū) =
(

pbū
pa+pb

)2

.
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a) What is equal to ∆(pa, pb, v(pa, pb, w)), where v(pa, pb, w) is the indirect
utility function of the consumer?
b) Using the result of question 4.a, compute the indirect utility function of
the consumer.

Exercise 2.4.9. In a two-commodity economy, we consider a consumer
whose preferences are represented by a continuous strictly quasi-concave,
monotonic utility function u : R2

+ → R. The price of the second commodity
p2 is normalized to 1. The wealth of the consumer is fixed and denoted w. The
demand of this consumer for the first commodity is given by the following
formula:

d1(p1, 1, w) =

{
2− p1 if p1 ≤ 2
0 if p1 > 2

1) Compute the value of this demand for the first commodity at price p1, find
the maximum of this value for p1 ≥ 0, and show that the formula implies
that the wealth w is larger or equal to 1.
2) Compute the demand of this consumer for the second commodity d2(p1, 1, w).
3) We now assume that w = 3. Compute the demand for p1 = 1. Show that
the consumption (1, 2) is strictly preferred to the consumption (2, 1).

Exercise 2.4.10. In a two-good economy, we consider a consumer who has
a preference relation on R2

++ characterized by the following properties:

- the preferences are strictly monotonic;
- for all t > 0, the consumptions (a, b) ∈ R2

++ which are equivalent to the

consumption (t, t) are those which satisfy b = ta
2a− t .

1) Show that the unique utility function u which represents the preferences
of the consumer and which satisfies u(t, t) = t for all t > 0, is the function :

u(a, b) = 2ab
a+ b

2) Draw the indifference curve which contains the consumption (1, 1). Show
that the utility function is homogeneous of degree 1.
3) Find the demand with respect to the prices pA > 0, pB > 0 and the wealth
w > 0. Compute the indirect utility function, the compensated demand and
the expenditure function.
4) We assume that the wealth and one price are fixed. Show that the indirect
utility function is bounded above whatever is the second price.

Exercise 2.4.11. In a two-good economy, the indirect utility function of a
consumer is :

v(pA, pB , w) = −1

2
log(pA)− 1

2
log(pB) + logw.

Compute the demand and the utility function of this consumer.
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Exercise 2.4.12. In a two-good economy, the indirect utility function of a
consumer is :

v(pA, pB , w) =
w

(
√
pA +

√
pB)α

1) Show that α = 2.
2) Compute the demand function d(pA, pB , w).
3) Show that for all (x, y) ∈ R2

++, there exists (pA, pB) ∈ R2
++ such that

(x, y) = d(pA, pB , 1).
4) Deduce the utility function of the consumer from the previous question.
5) Compute the compensated demand and the expenditure function of this
consumer.

Exercise 2.4.13. In a two-commodity economy, the indirect utility function
of a consumer is:

v(p1, p2, w) =
w

p1
+

(√
p2

p1
− 1

)2

if p2 < p1 and w >
√
p2(
√
p1 −

√
p2).

1) Compute the demand function of the consumer for (p1, p2, w) satisfying
p2 < p1 and w >

√
p2(
√
p1 −

√
p2).

2) Show that for all (x1, x2) ∈ R2
++ there exists (p2, w) satisfying p2 < 1 and

w >
√
p2(1−√p2) and such that

(x1, x2) = d(1, p2, w)

3) Deduce the utility function of the consumer from the previous question.

4) Compute the demand of the consumer for all level of the wealth w when
p1 = 1 and p2 = 1

4 .

5) Draw the Engel’s curve for p1 = 1 and p2 = 1
4 .

Exercise 2.4.14. In a two-good economy, the expenditure function of a con-
sumer is :

c(pA, pB , u) = (2pA + pB)u

Compute the compensated demand, the indirect utility function and the
demand of this consumer.

Exercise 2.4.15. In a two-good economy, the expenditure function of a con-
sumer is :

c(pa, pb, u) = p1/4
a pβb u.

What is the value of β ?
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Exercise 2.4.16. In a two-good economy, the demand of a consumer is :

d(p, w) = (pB/pA,
w

pB
− 1)

when w > pB .
1) Show that for all x > 0 and y > 0, there exists (pA, pB) ∈ R2

++ such that
pB < 1 and (x, y) = d(pA, pB , 1).
2) Let u be a utility function representing the preferences of this consumer.
Show that if ϕ is a function from R++ to itself satisfying u(ϕ(y), y) is con-
stant, then ϕ′(y) = −ϕ(y).
3) Deduce from the previous question the unique utility function representing
the preferences of this consumer and satisfying u(x, 1) = x for all x ≥ 0.
4) Give the demand of this consumer when w ≤ pB .

Exercise 2.4.17. We consider a consumer with a preference relation on R`+
and we assume that the demand is unique for every (p, w) ∈ R`++×R++. Let
(p, p′) ∈ (R`++)2. Show that

(p′ − p) · (d(p′, p′ · d(p, w))− d(p, w)) ≤ 0

Show also that the inequality is strict when d(p′, p′ · d(p, w)) 6= d(p, w).

Exercise 2.4.18. In a two-commodity economy, we consider a consumer,
whose preferences can be represented by a continuous quasi-concave utility
function from R2

+ to R, which is differentiable on R2
++ with positive partial

derivatives.
We assume that for all price p = (p1, p2) ∈ R2

++ and for all wealth w > 0
the demand of the agent is

d(p1, p2, w) = (
w

2p1
,
w

2p2
)

1) Show that for all x ∈ R2
++, there exists p = (p1, p2) ∈ R2

+ such that
x = d(p1, p2, 1).

2) Deduce from the previous question that for all x ∈ R2
++, the marginal rate

of substitution of the utility function for the commodities 1 and 2 is equal to
x2

x1
.

3) Let k be a positive number. We consider the function ϕk from ]0,+∞[ to
R defined by ϕk(x) = u(x, kx ). Deduce from the previous question that ϕk is
constant on ]0,+∞[.

4) Let x and x′ be two consumptions in R2
++ such that x1x2 = x′1x

′
2. Deduce

from the previous question that u(x) = u(x′).

5) Let x and x′ be two consumptions in R2
++ such that x1x2 > x′1x

′
2. Show

that there exists t ∈]0, 1[ such that u(tx) = u(x′). Show that u(x) > u(x′).

6) Let x and x′ be two consumptions in R2
++. Show that x is preferred or

indifferent to x′ if x′1x
′
2 ≤ x1x2.
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7) Let x and x′ be two consumptions in R2
++. Show that if x is preferred or

indifferent to x′ then x′1x
′
2 ≤ x1x2.

8) Conclude from the previous questions that the preferences on R2
++ of the

consumer can be represented by the utility function ū(x) = x1x2.

9) Conclude from the previous questions that the preferences on R2
+ of the

consumer can be represented by the utility function ū(x) = x1x2.
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3. Producers

3.1 Production set

A producer is an economic agent, who can implement some technological pro-
cess in order to transform some commodities, called inputs, into other com-
modities, called output. The technological processes face physical constraints
and are also dependent on the available knowledge. The production possi-
bilities will be represented by a production set which is merely a nonempty
subset of R`. An element y of Y is called a production. A production is
feasible if and only if it belongs to Y .

The commodities h such that yh > 0 are the outputs and the commodities
k such that yk < 0 are the inputs. So the producer can produce the quantities
yh of outputs by consuming the quantities −yk of inputs in the production
process.

To illustrate in a more intuitive way the exposition below, we will con-
sider the case where the producer has a unique output, the commodity `,
and `− 1 inputs, the commodities 1, . . . , `. In this case, one can describe the
production possibilities by using a production function: this function asso-
ciates the maximal quantity ` that one can produce with a bundle of inputs
(y1, . . . , y`−1).

To simplify the notations, if y ∈ R`, then y−` is the vector of R`−1 defined
by y−` = (y1, . . . , y`−1). The production function is a function f from R`−1

−
to R+. The production set is then defined by:

Y = {(y1, . . . , y`) ∈ R` | y1 ≤ 0, . . . , y`−1 ≤ 0, y` ≤ f(y1, . . . , y`−1)}

For a given level of production y` ≥ 0, one define the iso-ouput set as
follows :

Y (y`) = {(y1, . . . , y`−1) ∈ R`−1
− | y` ≤ f(y1, . . . , y`−1)}.

This is the set of input bundles, which allow to produce at least y`. We
will denote by O ⊂ R+ the set of attainable production level, that is the set
of y` such that Y (y`) is nonempty. Since f takes its values in R+, O is an
interval of R+ containing 0.
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Transformation function

In the general case, a production set can be represented by a transforma-
tion function t from R` to R. Then the production set Y is defined by:

{y ∈ R` | t(y) ≤ 0}

Examples:
• ` = 2 and t(y) = e6y1 + ey2 − 2

• ` = 2 and t(y) =
−2+y1+y2+

√
4+(y1−y2)2

2

• ` = 3 and t(y) = y1 + βy2 − 2
√
| y3 |

Remark. In many cases, one is only interested in a local representation of
the production set, that is in a neighborhood of a given production ȳ ∈ Y .
Formally, a local transformation function t is a function from the open ball
B(ȳ, r) with r > 0 to R is such that

Y ∩B(ȳ, r) = {y ∈ B(ȳ, r) | t(y) ≤ 0}

For example, with a continuous production function f around a produc-
tion ȳ such that ȳ−` � 0, the production set is defined by the transformation
function t(y) = y` − f(y−`) on an open ball B(ȳ, r) for some r > 0.

3.1.1 Basic assumptions on the production set

Closedness : Y is a closed subset of R`.
This is equivalent to assume that if y is not feasible (y /∈ Y ), then a

small variation of the quantities of inputs or outputs is not enough to obtain
a feasible production. In mathematical words, there exists r > 0, such that
if y′ satisfies |yh − y′h| < r for all h, then y′ /∈ Y . If the production set is
defined by a continuous transformation function or a continuous production
function, then it is closed.

Possibility of inaction : 0 ∈ Y .

This assumption merely means that the producer can do nothing. It is
satisfied if t(0) ≤ 0. It is always satisfied when the production set is defined
by a production function.

Impossibility of free production : Y ∩ R`+ ⊂ {0}.
This assumption means that it is not possible to produce a positive quan-

tity of an output without consuming a positive quantity of an input in the
production process. If the production set is defined by a transformation func-
tion, it is satisfied if y ≥ 0 and t(y) ≤ 0 imply y = 0. If the production set is
defined by a production function, it is satisfied if f(0) = 0.
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Irreversibility : Y ∩ −Y ⊂ {0}.
This assumption means that it is not possible that a production y and

its opposite −y are both feasible, that is that one can obtain the inputs
from the outputs if one can obtain the outputs from the inputs. Basically,
it translates the thermo-dynamical principle of the growth of the entropy. If
the production set is defined by a transformation function, it is satisfied if
t(0) = 0 and t is a strictly quasi-convex function. If the production set is
defined by a production function, it is satisfied if f(0) = 0.

Free disposability : Y − R`+ ⊂ Y .

This assumption means that one can get ride of extra quantities of inputs
or output at no cost. From a mathematical point of view an equivalent formu-
lation is: for all y ∈ Y , for all y′ ∈ R`, if y′h ≤ yh for all h, then y′ ∈ Y . So if it
is possible to produce a quantity of output with some quantities of inputs, it
is possible to produce a smaller quantity of output with the same quantities
of inputs or it is possible to produce the same quantity of output with larger
quantities of inputs. If the production set is defined by a transformation func-
tion, it is satisfied if the transformation function is weakly increasing: for all
(y, y′) ∈ (R`)2, y ≥ y′ implies t(y) ≥ t(y′). If the production set is defined
by a production function, it is satisfied if the production function is weakly
decreasing: for all (y−`, y

′
−`) ∈ (R`−1

− )2, y−` ≥ y′−` implies f(y−`) ≤ f(y′−`).

Convexity : Y is convex.

This assumption means that for all pairs of possible productions (y, y′) ∈
(Y )2, for all t ∈ [0, 1], the mixed production ty + (1 − t)y′ is feasible. If the
production set is defined by a transformation function, it is satisfied if the
transformation function is quasi-convex. If the production set is defined by a
production function, it is satisfied if the production function is concave.

Examples of production sets: In a two commodity economy, A and B,
we can consider the three following typical production functions:

f(a) = −αa with α > 0;
f(a) = α

√
−a with α > 0;

f(a) = αa2 − βa with α > 0 and β > 0

In the three cases, the production set is closed, satisfies the impossibility
of free production, possibility of inactivity, irreversibility and free-disposal.
In the two first cases, the production set is also convex but not in the third
case.

In a three commodity economy A,B,C, A and B being inputs and C
and output. The Cobb-Douglas production function is defined by:

f(a, b) = |a|α|b|β

where α and β are positive real numbers. The production set is then defined
by:
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Y = {(a, b, c) ∈ R3 | a ≤ 0, b ≤ 0, c ≤ |a|α|b|β}

Y is closed and satisfies the impossibility of free production, possibility
of inactivity, irreversibility and free-disposal. If α+ β ≤ 1, Y is convex.

The Leontief production function is given by:

f(a, b) = min{α|a|, β|b|}

where α and β are positive real numbers. The production set is then defined
by:

Y = {(a, b, c) ∈ R3 | a ≤ 0, b ≤ 0, c ≤ min{α|a|, β|b|}}

Y is closed and satisfies the impossibility of free production, possibility
of inactivity, irreversibility and free-disposal and it is convex.

We now give some particular properties for the important class of closed
convex production sets.

Proposition 3.1.1. Let Y be a closed convex production set satisfyingt 0 ∈
Y .

(i) Y satisfies the free-disposal assumption if and only if −R`+ ⊂ Y .
(ii) If Y satisfies the impossibility of free production, then there exists p ∈

R`+, p 6= 0, such that for all y ∈ Y , p · y ≤ 0.
(iii) If there exists p ∈ R`++ such that for all y ∈ Y , p ·y ≤ 0 then Y satisfies

the impossibility of free production.
(iv) If Y satisfies the impossibility of free production, then for all e ∈ R`+,
A(e) = {y ∈ Y | y + e ≥ 0} is compact.

Remark. The first assertion means that the free-disposal assumption for a
closed convex production set is equivalent to the much weaker condition of
free elimination, that is −R`+ ⊂ Y .

Note that we can have the impossibility of free production even if Asser-
tion (iii) is false. This is the case for the following example:

Y = {(y1, y2) ∈ R2 | y1 ≤ 0, y2 ≤
√
−y1}

Assertion (iv) means that the production is bounded above with finite
quantities of input. This is consistent with the physical and economic intu-
itions.

Proof. (i) If Y satisfies the free-disposal assumption and the possibility of
inaction, then, −R`+ = 0− R`+ ⊂ Y .

Conversely, let us assume that −R`+ ⊂ Y . Let y ∈ Y , z ∈ R`+ and 1 =
(1, . . . , 1) ∈ R`. Let ε > 0 and t ≥ max{1,max{yh/ε | h = 1, . . . , `}}. Then
y − t(z + ε1) ≤ 0 hence y − t(z + ε1) ∈ Y . Since Y is convex and y −
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(z + ε1) ∈ [y, y − t(z + ε1)], y − (z + ε1) ∈ Y . Since Y is closed, one gets
y − z = limε→0 y − (z + ε1) ∈ Y .

(ii) We apply a separation theorem for the disjoint convex sets Y and
R`++. Then there exists p ∈ R` \ {0} such that for all (y, z) ∈ Y × R`++,
p · y ≤ p · z. Since 0 ∈ Y and R`+ is the closure of R`++, one deduces that
0 ≤ p · z for all z ∈ R`+. Consequently, by considering the vectors (1h)`h=1,
which are the vectors of the canonical basis of R`, one deduces that ph ≥ 0
for all h or equivalently p ∈ R`+. Furthermore, for all y ∈ Y ,for all t > 0, one
has p · y ≤ p · (t1). Hence, taking the limit when t converges to 0+, one gets
p · y ≤ 0.

(iii) We remark that for all y ∈ Y ,
∑`
h=1 phyh ≤ 0. Since ph > 0 for all

h, it is impossible that yh ≥ 0 pour tout h with one strict inequality, which
means y /∈ R`+ \ {0}.

(iv) The set A(e) is closed and convex since A(e) = Y ∩ {−e}+ R`+ and
Y is closed and convex. Let us assume that it is not bounded. Then, from
a standard result in convex analysis, there exists a vector z ∈ R` \ {0} such
that for all t ≥ 0, tz ∈ A(e). Hence tz ≥ −e for all t > 0, which implies that
for all h, zh ≥ − eht and at the limit when t converges to +∞, zh ≥ 0. So
z ∈ (R`+ \ {0}) ∩ Y which contradicts the impossibility of free production. �

3.1.2 Returns to scale

This notion is a measurement of the change of production level to a propor-
tional change of the quantities of inputs. Roughly speaking, the question is
to know whether the production level is the double, more than the double
or less than the double when one consumes two times more inputs in the
production process.

Definition 3.1.1. Let Y be a production set. The production exhibits in-
creasing (resp. decreasing, resp. constant) returns to scale if y ∈ Y , for all
t ≥ 1 (resp. t ∈ [0, 1], t ∈ R+), ty ∈ Y .

Proposition 3.1.2. If the production set is defined by a production function
f , then the returns to scale are increasing (resp. decreasing, resp. constant)
if for all t ≥ 1 (resp. t ∈ [0, 1], t ∈ R+), f(ty−`) ≥ tf(y−`).

So, one easily checks that the production has constant return to scale when
the production function is f(a) = −αa, increasing returns if f(a) = αa2−βa,
constant returns to scale if f(a) = α

√
−a.

Proposition 3.1.3. If the production set is convex and satisfies the possi-
bility of inaction, then the production has decreasing returns to scale. If the
production set is convex with constant returns to scale, then the production
set is a convex cone.
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3.1.3 Aggregate production set

A producer may have several units of production with similar or different
technologies. It is then interesting to know which are the aggregate production
possibilities of this producer. The question is the same if one merges to firms.
We limit ourself to the case of two units of production but the results may
be easily extended to several producers or several production sets.

With our notational convention with the quantities of inputs represented
by negative numbers, the mathematical formula is very simple. If Y1 and Y2

are the production sets, then the aggregate production set is

Y1 + Y2 = Y = {y1 + y2 | (y1, y2) ∈ Y1 × Y2}

We now investigate the properties of the aggregate production set. We
first remark that Y may be not closed even if Y1 and Y2 are closed. This

is the case with Y1 = {(a, b) ∈ R2 | a ≤ 0, b ≤ a2−4a
2−a } and Y2 = {(a, b) ∈

R2 | b ≤ 0, a ≤ −b}. This example shows also that Y does not satisfies the
propeerty of the impossibility of free production even if Y1 and Y2 satisfy this
property.

We now give some positive properties.

Proposition 3.1.4. Let Y1 and Y2 be two production sets and Y = Y1 + Y2

be the aggregate production set.

(i) If Y1 and Y2 satisfy the property of the possibility of inactivity, (resp.
convexity), then Y satisfies also this property.

(ii) If Y1 and Y2 satisfy the property of free disposal, then Y satisfies also
this property.

(iii) If Y1 and Y2 are closed, convex and contain 0 and if Y1 ∩ −Y2 = {0},
then Y is closed.

The third assertion shows that Y is closed if one has irreversibility of the
production between y1 and Y2. Note that it holds true if Y ∩ −Y = {0}.

Proof of Proposition 3.1.4 The two first assertions are direct consequences
of the definition of the aggregate production set as the sum of the individual
production sets.

(iii) Let y ∈ R` and let r > 0. We first show that the set

Ar(y) = {(y1, y2) ∈ Y1 × Y2 | y1 + y2 ∈ B̄(y, r)}

is bounded and closed. If it is empty, the result is obvious. If it is nonempty,
we remark that Ar(y) is closed and convex since Y1 and Y2 are so. If it is not
bounded, from a result of convex analysis, there exists (z1, z2) ∈ (R`)2 \ {0}
such that for all (y1, y2) ∈ Ar(y), for all t ≥ 0, (y1 + tz1, y2 + tz2) ∈ Ar(y).
Thus, there exists ζt ∈ B̄(0, r) such that y1 +y2 +t(z1 +z2) = y+ζt. Dividing
by t and taking the limit when t tends to +∞, one deduces that z1 + z2 = 0.
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Since (z1, z2) 6= (0, 0), one deduces that z1 6= 0. For all t > 0, y1 + tz1 ∈ Y1

and y2 + tz2 = y2− tz1 ∈ Y2. z1 + 1
t y1 = 1

t (y1 + tz1) + (1− 1
t )0 belongs to Y1

for all t ≥ 1 since Y1 is closed and convex and contains 0. Taking the limit.
when t tends to +∞, one deduces that z1 ∈ Y1. With the same argument,
one gets −z1 ∈ Y2 which contradicts the assumption Y1 ∩ −Y2 = {0}.

Let (yν)ν∈N a sequence of Y converging to ȳ. Since the sequence (yν) is
bounded, there exists r > 0 such that for all ν, yν ∈ B̄(ȳ, r). It also exists a
sequence (yν1 , u

ν
2)ν∈N of Y1 × Y2 such that yν = yν1 + yν2 . Thus, the sequence

(yν1 , u
ν
2)ν∈N remains in the bounded closed set Ar(ȳ). Consequently, it has

a converging subsequence whose limit is (ȳ1, ȳ2). ȳ1 ∈ Y1 and ȳ2 ∈ Y2 since
Y1 et Y2 are closed. We then have ȳ = ȳ1 + ȳ2 ∈ Y1 + Y2 = Y . Hence Y is
closed. �

We remark that Y can be convex even if Y1 and Y2 are not convex. For
example, this is the case with Y1 = {(a, b) ∈ R2 | a ≤ 0, b ≤ 0 if a ≥ −1, b ≤
−a if a ≤ −1} and Y2 = {(a, b) ∈ R2 | b ≤ 0, a ≤ −b} ∪ {(a, b) ∈ R2 | a ≤
0, b ≤ 0 if a ≥ −1, b ≤ 1 if a ≤ −1}. Nevertheless, we have the following
propery.

Proposition 3.1.5. Let Y1 and Y2 be two production sets and Y = Y1+Y2 be
the aggregate production set. If Y is closed and convex, then Y = c̄oY1 +c̄oY2,
where c̄oYj is the closed convex hull of Yj that is the smallest closed convex
set containing Yj.

Proof. Since Y1 ⊂ c̄oY1 and Y2 ⊂ c̄oY2, one has Y ⊂ c̄oY1 + c̄oY2. Let
(z1, z2) ∈ coY1×coY2. There exist k elements (y1

1 , y
2
1 , . . . , y

k
1 ) of Y1 and λ ∈ Rk+

such that
∑k
κ=1 λκ = 1 and z1 =

∑k
κ=1 λκy

κ
1 and m elements (y1

2 , y
2
2 , . . . , y

m
1 )

of Y2 and µ ∈ Rm+ such that
∑m
ν=1 µν = 1 and z2 =

∑m
ν=1 µνy

ν
2 . One remarks

that
z1 + z2 =

∑k
κ=1 λκy

κ
1 +

∑m
ν=1 µνy

ν
2∑k

κ=1

∑m
ν=1(λκ + µν)(yκ1 + yν2 )

and
∑k
κ=1

∑m
ν=1(λk + µν) = 1. Consequently z1 + z2 is convex combination

of the elements (yκ1 + yν2 )κ=k,ν=m
κ=1,ν=1 of Y . Since Y is convex, z1 + z2 belongs

to Y . Finally, if (z1, z2) ∈ c̄oY1 × c̄oY2, there exists a sequence (zn1 , z
n
2 )n∈N ∈

coY1×coY2, which converges to (z1, z2). Hence z1+z2 is the limit of (zn1 +zn2 ),
which is a sequence of Y , thus it belongs to Y since Y is closed. Consequently,
c̄oY1 + c̄oY2 ⊂ Y . �

Aggregate production function. Let us now assume that we have two
producers with a unique output, the commodity `. Let f and g be the pro-
ductions functions of these two producers. We are looking for the production
function F of the aggregate producer.

Let y−` a given basket of inputs. F (y−`) is the maximal quantity of com-
modity ` that one can produce using the two technologies represented by f
and g. It is then necessary to share the quantities of inputs between the two
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producers, y′−` for the first and y′′−` for the second. The production of com-
modity ` is then f(y′−`) + g(y′′−`). The repartition is feasible if yh ≤ y′h + y′′h,
y′h ≤ 0 and y′′h ≤ 0for all h = 1, . . . , `− 1. We then deduce that F (y−`) is the
value of the following maximization problem:

P(y−`)

{
maximize f(y′−`) + g(y′′−`)
yh ≤ y′h + y′′h, y′h ≤ 0, y′′h ≤ 0, h = 1, . . . , `− 1

Examples : We give two examples of the computation of the aggregate pro-
duction function F . We consider a two-commodity economy. The commodity
A is an input and the commodity B is an output. We have two producers
with the production functions: f(a) =

√
−a and g(a) = 2

√
−2a. Then F (a)

is the value of : maximize
√
−α+ 2

√
−2α′

α+ α′ ≥ a
α ≤ 0, α′ ≤ 0

One remarks that the production function are strictly decreasing, so the
optimal solution satisfies α+α′ = a. Consequently, one can solve the simplest
following problem:{

maximize
√
−α+ 2

√
−2(a− α)

α ∈ [a, 0]

The function α →
√
−α + 2

√
−2(a− α) is concave and its derivative is

equal to −1
2(−α)−1/2 + 2[−2(a−α)]−1/2. It vanishes for α = a

9 , which is the

optimal solution. So F (a) = 3
√
−a.

Although the second producer produces a higher quantity of output with
the same quantity of input, one remarks that the two producers have to
produce in order to get the optimal level of production. One remarks that
the marginal productivity, that is the derivative of the production function,

are equal at the solution a
9 and 8a

9 .

Let us now consider the case where the production functions are f(a) =
−a and g(a) = a2. Then, considering again the fact that the production
functions are strictly decreasing, the problem is the following:{

maximiser −α+ (a− α)2

a ≤ α ≤ 0

The function α → −α + (a − α)2 is convex. Thus, on the interval [a, 0],
the maximum is at α = 0 if a ≤ −1 and at α = a if a ≥ −1. So, we obtain
the following production function :

F (a) =

{
−a si −1 ≤ a ≤ 0;
a2 si a ≤ −1.
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In this example, we remark that the whole quantity of input is either given
to the first producer of to the second, but it is never shared among the two.
This is due to the presence of increasing returns to scale in the production
of the second producer.

We now characterize the optimal solution when it is an interior solution,
that is when the quantities of inputs are shared in such a way that each
producer has a non zero quantity of each input. For this, we assume that the
production functions are differentiable on the interior of their domain −R`−1

+ .
The partial derivative of the production function is called the marginal pro-
ductivity.

Proposition 3.1.6. Let f and g be two strictly decreasing production func-
tions from R`−1 to R+. We assume that f and g are continuously differ-
entiable on the interior of R`−1. Let y−` � 0 and let (ȳ′−`, ȳ

′′
−`) an optimal

solution of the maximization problem P(y−`) such that ȳ′−` � 0 and ȳ′′−` � 0.
Then

ȳ′−` + ȳ′′−` = y−`

and for all h = 1, . . . , `− 1,

∂f

∂yh
(ȳ′−`) =

∂g

∂yh
(ȳ′′−`)

Conversely, if f and g are furthermore concave, if (ȳ′−`, ȳ
′′
−`) are satisfying

ȳ′−` � 0 and ȳ′′−` � 0 and the two above conditions, then it is a solution of
the problem P(y−`).

The condition on the marginal productivity are completely natural. It
means that the two marginal productivity must be equal. Indeed, if, for ex-
ample, the first is higher than the second, one can increase the global produc-
tion by transferring a small amount of the input from the second producer to
the first. Nevertheless, with a boundary solution, where the whole quantity
of an input is given to one producer, the argument is no more valid.

Proof. Since the production functions are strictly decreasing, if for an in-
put h, y′h + y′′h > yh, then one can strictly increase the production level by
considering the distribution (y′h − (y′h + y′′h − yh), y′′h). So, (y′−`, y

′′
−`) is not

a solution of P(y−`). Consequently, if (ȳ′−`, ȳ
′′
−`) is a solution of P(y−`) it

satisfies ȳ′h + ȳ′′h = yh.
From above, one deduces that y′ is a solution of the auxiliary problem:

P ′(y−`)
{

maximize f(y′−`) + g(y−` − y′′−`)
yh ≤ y′h ≤ 0, h = 1, . . . , `− 1

Since the ȳ′ � 0 and ȳ′′−` � 0, one deduces that for all h, ȳ′h < 0 and
yh < ȳ′h. So the partial derivative of the objective function with respect to
yh must be equal to 0 at ȳ′. Hence one gets
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∂f

∂yh
(ȳ′−`)−

∂g

∂yh
(y−` − ȳ′−`) = 0

which leads to the result since y−` − ȳ′−` = ȳ′′−`.
Conversely, if fand g are concave, we know that f(z−`) ≤ f(ȳ′−`) +

∇f(ȳ′−`) · (z−` − ȳ′−`) and g(z−`) ≤ g(ȳ′′−`) + ∇g(ȳ′′−`) · (z−` − ȳ′′−`) for all

z−` ∈ −R`−1
+ .

If ȳ′−` + ȳ′′−` = y−` and for all h = 1, . . . , `− 1,
∂f
∂yh

(ȳ′−`) =
∂g
∂yh

(ȳ′′−`), for

all (y′−`, y
′′
−`) ∈ (−R`−1

+ )2 satisfying y−` ≤ y′−` + y′′−`, one obtains:

f(y′−`) + g(y′′−`) ≤ f(ȳ′−`) + g(ȳ′′−`) +∇f(ȳ′−`) · (y′−` + y′′−` − (ȳ′−` + ȳ′′−`))
f(ȳ′−`) + g(ȳ′′−`) +∇f(ȳ′−`) · (y′−` + y′′−` − y−`)

Since f is decreasing, one has ∇f(ȳ′−`) ∈ −R
`−1
+ . Consequently, since y−` ≤

y′−` + y′′−`, one gets ∇f(ȳ′−`) · (y′−` + y′′−` − y−`) ≤ 0, which implies f(y′−`) +
g(y′′−`) ≤ f(ȳ′−`) + g(ȳ′′−`) So, (ȳ′−`, ȳ

′′
−`) is a solution of P(y−`). �

3.1.4 Efficient productions

From a technical point of view, some productions are better than another
since they are optimal in the sense that the inputs are optimally used to
produce the output. Hence there is no dispose of unused commodities. It is
a minimal criterion for an rational producer.

Definition 3.1.2. Let Y be a production set. A production y ∈ Y is efficient
if it does not exist a production y′ ∈ Y such that y′ ≥ y and y′ 6= y. In
other words, ({y}+ R`+) ∩ Y = {y}. A production y in Y is weakly efficient
if it does not exist a production y′ ∈ Y tel que y′ � y. In other words,
({y}+ R`++) ∩ Y = ∅.

We denote by Ef (Y ) the set of weakly efficient productions of Y .

An efficient production is obviously weakly efficient. A efficient production
is optimal in the sense that it is not possible to produce more outputs with the
same quantities of inputs or it is not possible to produce the same quantities
of outputs with smaller quantities of inputs.

We now give some characterization of the efficient productions.

Proposition 3.1.7. Let Y be a production set.

(i) If y is weakly efficient, then y ∈ ∂Y , where ∂Y denotes the boundary of
Y .

(ii) If Y is closed, the set Ef (Y ) is closed.
(iii) If Y is closed and satisfies the free-disposal assumption, then ∂Y =
Ef (Y ).

(iv) If Y is closed and convex, then :
Ef (Y ) = {y ∈ Y | ∃p ∈ R`+ \ {0}, p · y ≥ p · y′, ∀y′ ∈ Y }.
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(v) Let y ∈ Y . If it exists p� 0 such that p · y ≥ p · y′ for all y′ ∈ Y , then
y is efficient.

Proof. (i) If y ∈ Ef (Y ), then for all t > 0, y + t1 /∈ Y . So y belongs to the

boundary of Y since y is the limit of the sequence (y + 1
ν + 11)ν∈N).

(ii) Let (yν) a sequence of Ef converging to ȳ. ȳ ∈ Y since Y is closed.
Let us assume that ȳ is not weakly efficient. Then, it exists y ∈ Y such that
y � ȳ. So, for all h = 1, . . . , `, ȳh < yh. For ν large enough, |yνh−ȳh| < yh−ȳh
for all h. Hence yν � y which contradicts the fact that yν is weakly efficient.
Thus ȳ ∈ Ef (Y ) and Ef (Y ) is closed.

(iii) From (i), Ef (Y ) ⊂ ∂Y . Let y ∈ ∂Y . If y /∈ Ef (Y ), it exists y′ ∈ Y
such that y′ � y. {y′} − R`++ is open and included in Y for Y satisfies the
free-disposal assumption. Hence y ∈ {y′} − R`++ ⊂ int Y . This contradicts
the fact that y ∈ ∂Y . Hence y ∈ Ef (Y ).

The proofs of Assertion (iv) and (v) are identical of the ones of Assertion
(ii) and (iii) of Proposition 3.1.1. Indeed, 0 is efficient if and only if the
production set Y satisfies the impossibility of free-production. �

Figure 3.1 gives an example of a production set such that a production on
the boundary is not always weakly efficient and the set of efficient production
is neither closed nor open.

PSfrag replacements
y

∂Y

Figure 3.1. y is weakly efficient but not efficient.

When the production set is defined by a production function, we can
characterize the efficient production but some weakly efficient production are
not intuitively rational. Indeed, if one input is not used at the production,
then the production is weakly efficient since no feasible production has a
positive quantity of input. But, the other inputs may not be used efficiently
in the sense that the level of output may be strictly smaller than the quantity
given by the production function and this does not matter for the weak
efficiency.
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We now give two additional remarks when the inputs are all used in the
production or when the production constraint is binding at the production.

Proposition 3.1.8. Let Y be a production set defined by a continuous pro-
duction function f . If y is a weakly efficient production plan such that yh < 0
for all h = 1, . . . , ` − 1, then y` = f(y−`). If f is decreasing and if y ∈ Y
satisfies y` = f(y−`), then y is weakly efficient.

Proof. If y` < f(y−`), then the continuity of f implies that there exists t < 1
and ε > 0 such that y`+ ε < f(ty−`). Thus the production y′ = (ty−`, y`+ ε)
belongs to Y and y � y′, which contradicts that y is weakly efficient.

Conversely, if y` = f(y−`), then the definition of Y by the production
function implies that y belongs to the boundary of Y since y is the limit of
(y−`, y` + 1

ν+1 )ν∈N. Furthermore, as already remarked, Y satisfies the free-
disposal Assumption since f is decreasing. Hence Proposition 3.1.7 (iii) im-
plies that y is weakly efficient. �

We will now show how we can characterize the production pair (y1, y2)
of Y1 × Y2 such that y1 + y2 is weakly efficient in Y = Y1 + Y2. This is a
fundamental question since it concerns the coordination of two units or two
producers in order to get the global efficiency.

Proposition 3.1.9. Let Y1 and Y2 be two production sets of R` Let (ȳ1, ȳ2) ∈
Y1×Y2. We assume that Y1 and Y2 are locally representable by transformation
functions g1 and g2 in a neighborhood of ȳ1 and ȳ2 and that g1 and g2 be
continuously differentiable and satisfies ∇g1(ȳ1) 6= 0 and ∇g2(ȳ2) 6= 0. Then,
if ȳ1 + ȳ2 is weakly efficient in Y = Y1 + Y2 then g1(ȳ1) = g2(ȳ2) = 0 and it
exists λ > 0 such that ∇g1(ȳ1) = λ∇g2(ȳ2).

Conversely, if we furthermore assume that g1 and g2 are convex, if
(ȳ1, ȳ2) ∈ Y1 × Y2 satisfies g1(ȳ1) = g2(ȳ2) = 0, ∇g1(ȳ1) ∈ R` \ {0} and
∇g2(ȳ2) ∈ R` \ {0}, and it exists λ > 0 such that ∇g1(ȳ1) = λ∇g2(ȳ2), then
ȳ1 + ȳ2 is weakly efficient in Y = Y1 + Y2.

This proposition means that the global production ȳ1 + ȳ2 is efficient, if
the marginal productivities and the marginal rate of substitution between
inputs are equal for the two units of production represented by Y1 and Y2.

In the case where the production sets are represented by production func-
tions, we can derive the following result.

Proposition 3.1.10. Let Y1 and Y2 be two convex closed production set in
R`. We assume that they satisfy the free disposal assumption and that they
produce the commodity ` using the other goods 1, . . . , ` − 1 as inputs. We
denotes by f1 and f2 from −R`−1

+ to R+ the two production functions, which

are assumed to be concave, différentiable on −R`−1
++ . Let (ȳ1, ȳ2) ∈ Y1×Y2 such

that ȳ1
−` ∈ −R

`−1
++ and ȳ2

−` ∈ −R
`−1
++ , f1(ȳ1

−`) = ȳ1
` ) and f2(ȳ2

−`) = ȳ2
` ). Then,

ȳ1 + ȳ2 is weakly efficient in Y = Y1 +Y2 if and only if for all h = 1, . . . , `−1,
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∂f1

∂yh
(y1
−`) =

∂f2

∂yh
(y2
−`)

3.2 Economic behavior of the producer: profit
maximization

In this section, we study the competitive behavior of the producer. Never-
theless, we will show that this behavior is incompatible with the presence of
producers with increasing returns to scale on the market.

The competitive behavior is characterized by the fact that the producer
takes the price as given. This means that the producer does not take into
account the effect of her supply on the output markets and of her demand
on the input markets. Then, she maximizes the profit over the production
set. The competitive behavior can be justified by the fact that the producer
is small with respect to the size of the market, which is not satisfactory with
large companies. But, we can also think that a large producer is not able to
calculate accurately her effect on the prices, so a cautious behavior is to take
the price as given.

Definition 3.2.1. Let p� 0, a price vector. The profit of the firm with the
production set Y is π(p) = sup{p · y|y ∈ Y }. The supply of the producer is
the set s(p) of productions y ∈ Y such that for all y′ ∈ Y , p · y ≥ p · y′ or
equivalently p · y = π(p).

Remark. It is possible that for a given price, the profit be infinite, the supply
be empty and the supply may also be multi-valued.

Examples. Let us find the profit and the supply for a producer having the
following production set:

Y = {(a, b) ∈ R− × R | b ≤
√

2 | a |}

We have to solve the following maximization problem.
maximize paa+ pbb
a ≤ 0

b ≤
√

2|a|
Clearly, the solution satisfies b =

√
2|a|, so we have to solve the one

variable problem:{
maximize paa+ pb

√
2|a|

a ≤ 0

One then easily find the solution since the objective function is concave.

s(p) =

{
− p2

b

2p2
a

,
pb
pa

}
and π(p) =

p2b
2pa

.

Let us now consider the case where
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Y = {(a, b) ∈ R− × R | b ≤ a2}

The problem to be solved after reduction is:{
maximize paa+ pba

2

a ≤ 0

One remarks that there is no solution and the profit is always equal to
+∞.

Now if we consider a producer having constant returns to scale, the supply
may be multi-valued. If

Y = {(a, b) ∈ R− × R | b ≤ −γa}

where γ > 0 is the constant marginal productivity. The supply is then defined
as:

s(p) =

 (0, 0) si pb < pa/γ
{(−t, γt) | t ≥ 0} si pb = pa/γ
∅ si pb > pa/γ

So, for pb = pa/γ, the supply is an half line. One checks that the profit is
either 0 when pb ≤ pa/γ or +∞.

To end this list of examples, let us consider the case where

Y = {(a, b) ∈ R2 | a ≤ 0, b ≤ a2 − 4a

2− a
}

Then for pa = pb, the profit is finite and equal to 2pb but the supply is empty.

In the next proposition, we state some elementary properties of the supply
and profit.

Proposition 3.2.1. Let p� 0 and Y a nonempty production set.

a) Every element of y ∈ s(p) is efficient.
b) If Y is closed and convex, s(p) is closed and convex. For all t > 0,
s(tp) = s(p).

c) If Y ′ is a second nonempty production set. Let Y ′′ = Y + Y ′ be the
aggregate production set. Then, let π, s, π′, s′ et π′′, s′′ the profit func-
tions and supply associated to the production sets Y , Y ′ and Y ′′. Then
π′′(p) = π(p) + π′(p). For all (y, y′) ∈ s(p)× s′(p), y+ y′ ∈ s′′(p); for all
y′′ ∈ s′′(p), for all (y, y′) ∈ Y × Y ′ such that y′′ = y + y′, then y ∈ s(p)
and y′ ∈ s′(p).

d) The profit function π is convex, homogeneous of degree 1. Its domain
of definition is a convex cone et it is continuous on the interior of its
domain.
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Proof. Assertion (a) is identical to Assertion (v) of Proposition 3.1.7. As-
sertion (b) comes from the fact that s(p) is the intersection of Y with the
hyperplan {y ∈ R` | p · y = π(p)} when π(p) is finite. Otherwise, s(p) is
empty. The homogeneity of s is obvious.

c) Let y′′ ∈ Y ′′. From the definition of Y ′′, it exists (y, y′) ∈ Y × Y ′

such that y′′ = y + y′. Thus p · y′′ = p · y + p · y′ ≤ π(p) + π′(p). Taken the
supremum on Y ′′ in the right side of the equality, one gets the inequality
π′′(p) ≤ π(p) + π′(p). Conversely if π(p) = +∞, then there exists a sequence
(yν)ν∈N of Y such that the sequence (p · yν) converges to +∞. Let y′ be any
element of Y ′. Then we have limν p · (yν + y′) = +∞ and since yν + y′ ∈ Y ′′,
one deduces that π′′(p) = +∞. A symmetric argument shows that the result
is identical if π′(p) = +∞ If π(p) and π′(p) are finite, for all ε > 0, it
exists (y, y′) ∈ Y × Y ′ such that p · y ≥ π(p) − ε and p · y′ ≥ π′(p) − ε.
Hence p · (y + y′) ≥ π(p) + π′(p) − 2ε. Since y + y′ ∈ Y ′′, one deduces that
π′′(p) ≥ π(p) + π′(p) − 2ε. Since the inequality holds true for every ε > 0,
one can conclude that π′′(p) ≥ π(p) + π′(p).

Let (y, y′) ∈ s(p) × s′(p). Hence p · y = π(p) and p · y′ = π′(p). So
p · (y + y′) = π(p) + π′(p) = π′′(p). Since y + y′ ∈ Y ′′, this implies that
y + y′ ∈ s′′(p). Conversely let y′′ ∈ s′′(p) and let (y, y′) ∈ Y × Y ′ such that
(y, y′) = y+y′. Then, p ·(y+y′) = π′′(p) = π(p)+π′(p). Since p ·y ≤ π(p) and
p · y′ ≤ π′(p), this implies that p · y = π(p) and p · y′ = π′(p). Consequently
y ∈ s(p) and y′ ∈ s(p′).

d) It is easy to check that π is homogeneous of degree 1. π is convex since
it is the supremum of linear functions p→ p · y for y ∈ Y . Hence, the results
of convex analysis shows that the domain of π is a convex cone and π is
continuous on the interior of its domain. �

Assertion (c) shows that the maximization of profit can be done in a de-
centralized way. So a producer with several units of production is not obliged
to compute the aggregate production set to compute the supply. It suffices to
compute the supply for each unit and then to aggregate the supplies of the
units. This property is fundamental since it shows that the optimal decision
can be found with the knowledge of the individual production sets without
knowing the production possibilities of the production sector as a whole.

As we have shown in the previous examples, the profit function may be
not defined for some prices. The next proposition gives us a criterion to
determine the interior of the domain of the profit function. The domain is
denoted D(π).

Proposition 3.2.2. Let Y be a convex, closed production set containing 0.
A price p ∈ R`++ is in the interior of the domain of π, intD(π), if and only
if the set Yp = {y ∈ Y | p · y ≥ 0} is bounded. In that case, s(p) is nonempty.

In the example above with the constant marginal productivity, one re-
marks that the profit is finite for the price (pa, pa/γ) but the set of produc-
tion having a non-negative value for this price is unbounded. The profit is
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infinite and the supply is empty if one slightly increase the price of the second
commodity.

Proof. We first show that Yp is bounded if the profit is finite in a neighbor-
hood of p. Let us assume by contraposition that Yp is not bounded. Since Yp
is a closed convex nonempty subset of R`, there exists z 6= 0 such that for
all t ≥ 0, tz ∈ Yp. Let τ > 0 and pτ = p + τz. For τ samll enough, pτ is in
R`++. Furthermore pτ · tz = p · tz+ τt‖z‖2. Since z 6= 0, one deduces that the
limit of pτ · tz when t tends to +∞ is +∞. Hence, π(pτ ) = +∞ for all τ > 0,
which contradicts the fact that π is finite in a neighborhood of p.

Let us now prove the converse implication. We assume that Y (p) is
bounded. If the profit is not finite in a neighborhood of p, there exists a se-
quence (rν , yν , pν) in R++×Y ×R`++ such that the sequence (rν) is decreasing
and converges to 0, for all ν, ‖pν−p‖ ≤ rν and pν ·yν ≥ ν. Since the sequence
(pν) is bounded, this implies that the sequence (‖yν‖) converges to +∞. The
sequence (rν , (1/‖yν‖)yν , pν) is bounded and it has a converging subsequence
(rψ(ν), (1/‖yψ(ν)‖)yψ(ν), pψ(ν)) whose limit is (0, z, p) with ‖z‖ = 1. We re-
mark that pψ(ν) · yψ(ν) ≥ 0. Hence dividing by ‖yψ(ν)‖ and taking the limit,
we obtain p · z ≥ 0. We now show that for all t > 0, tz ∈ Yp, which contra-
dicts the assumption that Yp is bounded. Since p · z ≥ 0, one has p · tz ≥ 0.
For ν large enough, ‖yψ(ν)‖ ≥ t and then τψ(ν) = 1 − (t/‖yψ(ν)‖) ∈ [0, 1].
Hence, since Y is convex and contains 0, (1− τψ(ν))yψ(ν) ∈ Y . The sequence
((1− τψ(ν))yψ(ν)) converges to tz which belongs to Y since Y is closed.

The non-emptiness of s(p) when Y (p) is bounded comes from the fact
that it suffices to maximize the profit on Y (p) to get the productions in s(p).
Then, since y → p · y is continuous, there exists a solution, which means that
s(p) is nonempty. �

We now provide sufficient conditions for which if the supply is non-empty,
then it is single valued.

Proposition 3.2.3. Let Y be a production set. We assume that Y is re-
presentable by a transformation function t and t is continuous and strictly
quasi-convex. Let p ∈ R`++. If s(p) 6= ∅, then s(p) is a singleton.

We give sufficient conditions, which insure that the supply is single val-
ued and continuous on the interior of the domain of definition of the profit
function. This allows us to show that the profit function is then continuously
differentiable and that one can recover the supply function from the partial
derivative of the profit function.

Proposition 3.2.4. Let Y be a convex, closed production set containing 0.
We assume that for all t ∈]0, 1[, for all (y, y′) ∈ Y 2, y 6= y′, if y and y′

are efficient, then ty + (1− t)y′ is not efficient. Then, for all p ∈ R`++, s(p)
contains at most one element. The supply function s is continuous on the
interior of the domain of definition of the profit function. The profit function
is continuously differentiable and ∇π(p) = s(p).
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The assumption on the efficient productions is obviously satisfied when
the production set is strictly convex. Nevertheless, the strict convexity never
holds true when one has a production function or, more generally, a separation
among inputs and outputs. Our assumption holds true when the production
function is strictly concave.

Proof. If s(p) is not single valued, let y and y′ in s(p) with y 6= y′. From
Proposition 3.2.1 (a), y and y′ are efficient. From our assumption, ty+(1−t)y′
is not efficient so, again from Proposition 3.2.1 (a), it does not belong to s(p).
But this contradicts the fact that s(p) is convex from Proposition 3.2.1 (b).

From Proposition 3.2.2, we know that s(p) is nonempty on intD(π). We
now show that s is continuous. Let (pν) a sequence of intD(π), which con-
verges to p ∈ intD(π). Using the same argument as in the proof of Proposi-
tion 3.2.2, one shows that (s(pν)) is a bounded sequence. It is now enough
to show that each cluster point y of this sequence is equal to s(p). Let
ψ a strictly increasing function from N to itself such that (s(pψ(ν))) con-
verges to y. Since Y is closed, y ∈ Y . Since π is continuous on intD(π),
p · y = limν p

ψ(ν) · s(pψ(ν)) = limν π(pψ(ν)) = π(y). So y = s(p).
We now show that π est continûment différentiable. Let p̄ in intD(π).

For all p ∈ intD(π), one has π(p) − π(p̄) ≥ s(p̄) · (p − p̄) and π(p̄) − π(p) ≥
s(p) · (p̄− p). Consequently,

0 ≤ π(p)− π(p̄)− s(p̄)(p− p̄) ≤ (s(p)− s(p̄)) · (p− p̄)

But ‖(s(p)−s(p̄))·(p−p̄)‖ ≤ ‖s(p)−s(p̄)‖‖p−p̄‖ and limp→p̄ ‖s(p)−s(p̄)‖ = 0
since s is continuous. This shows that π is differentiable at p̄ and its gradient
vector is s(p̄). Thus π is continuously differentiable on intD(π). �

The following result shows that one can recover the supply from the profit
function when it is differentiable.

Proposition 3.2.5. If the profit function π is differentiable on a neighbor-
hood U of p̄, then s(p̄) is single valued and

∇π(p̄) = s(p̄)

Proof. From Proposition 3.2.2, s(p) is nonempty for all p ∈ U . Let us consider
the function g defined on U by g(p) = π(p) − p · ȳ where ȳ ∈ s(p̄). For all
p ∈ U, p · ȳ ≤ π(p). Thus, for all p ∈ U , g(p) ≥ 0 and g(p̄) = 0. Consequently,
p̄ is the minimum of g on U . Hence ∇g(p̄) = 0. A simple calculus gives us
∇π(p̄) = ȳ, which implies that s(p̄) is single valued and equal to {∇π(p∗)}. �

Example. Let π the function from R2
++ to R defined by :

π(p1, p2) =
p2

2

4p1
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The computation of the partial derivative leads to s(p1, p2) = (− p2
2

4p2
1

,
p2
2p1

),

which is the profit function associated to the production set {(a, b) ∈ R2 |
a ≤ 0, b ≤

√
−a}.

We now state a proposition, which shows that the production set can
be recovered from the profit function. From an economic point of view, this
result is important since the production sets are not observable whereas the
profit function are.

Proposition 3.2.6. Let Y be a convex, nonempty closed production set sat-
isfying the free-disposal asumption. We assume that there exists p̄ ∈ R`++

such that π(p̄) is finite. Then an element y of R` belongs to Y if and only if
sup{p · y − π(p) | p ∈ R`++} ≤ 0.

Proof. For all y ∈ Y and for all p ∈ R`++, p · y ≤ π(p) thus sup{p · y−π(p) |
p ∈ R`++} ≤ 0. We now show the converse implication. Let y ∈ R` such that
sup{p · y − π(p) | p ∈ R`++} ≤ 0. By contraposition, if y /∈ Y , we apply a
separation theorem between {y} and Y . Thus, there exists q ∈ R` \ {0} such
that q · y > sup{q · z | z ∈ Y } = π(q). Since Y satisfies the free-disposal
assumption, q belongs to R`+.

We now consider qt = tq + (1 − t)p̄ for t ∈ [0, 1]. We remark that for
all t < 1, qt ∈ R`++. Since the profit function π is convex, we have π(qt) ≥
tπ(q) + (1− t)π(p̄). Taking into account the facts that π(p̄)is finite and that
qt · y converges to q · y when t converges to 1, one deduces that there exists
t̄ ∈ [0, 1[ such that qt̄ ·y > π(qt̄). Since qt̄ ∈ R`++, we get a contradiction with
sup{p · y − π(p) | p ∈ R`++} ≤ 0 �

Remark. The competitive behavior for the producers is incompatible with
the presence of producers having increasing returns to scale in production.
Indeed, let us assume that Y is a production set satisfying 0 ∈ Y . If one has
strictly increasing returns, that is, for all y ∈ Y , y 6= 0 and y efficient, for all
t > 1, ty ∈ int Y . Let p ∈ R`++. s(p) cannot contains another production than
0. In other words, s(p) = {0} or ∅. Indeed, if y 6= 0 ∈ s(p), then 2y ∈ intY ,
hence π(p) = p ·y > p ·(2y) = 2p ·y. This implies π(p) < 0 which is impossible
since 0 ∈ Y .

We can now give a first order characterization of the supply when the
production set is represented by a transformation function.

Proposition 3.2.7. Let Y be a production set of R`. Let ȳ ∈ Y and
p ∈ R`++. We assume that Y is locally representable by a transformation
function t in a neighborhood of ȳ, t is differentiable and there exists at least
one commodity k such that Dykt(ȳ) > 0.

1) If ȳ ∈ s(p), then there exists µ > 0 such that p = µ∇t(ȳ) and t(ȳ) = 0.

2) Conversely, we furthermore assume that t is quasi-convex. If there
exists µ > 0 such that p = µ∇t(ȳ) and t(ȳ) = 0, then ȳ ∈ s(p).
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This result means that ȳ is the supply of the firm if the marginal produc-
tivities and the marginal rate of substitution between inputs are equal to the
relative prices.

3.2.1 Production cost and profit maximization

In the particular case of a production set defined by a production function, the
behavior of the producer can be decomposed into two successive steps: given
a production level and the prices of input, the producer chooses the basket
of inputs, which minimizes the cost, then, given the price of the output, she
chooses the optimal level of production.

Let us define the cost function and the demand in inputs.

Definition 3.2.2. Let Y be a production set defined by a production function
f from R`−1 to R+, i.e.,

Y = {y ∈ R` | y−` ≤ 0, y` ≤ f(y−`)}.

Let O = {y` ∈ R+ | Y (y`) 6= ∅} be the set of attainable production level. The
cost function C of R`−1

++ ×O in R+ of this producer is defined by:

C(p−`, y`) = inf{−p−` · y−` | y−` ∈ Y (y`)}

The set D(p−`, y`) = {y−` ∈ Y (y`) | −p−` · y−` = C(p−`, y`)} is called the
demand in inputs.

For a given production level and input prices, the cost function is the
minimum of the values of the baskets of commodities, with which it is possible
to produce the chosen production level. The demand in inputs is the set of
baskets of commodities, which minimizes the cost.

The following proposition gives some basic properties of the cost function
and demand in inputs.

Proposition 3.2.8. We assume that f is continuous and weakly decreasing
on R`−1

− .

a) For all (p−`, y`) ∈ R`−1
++ × O, C(p−`, y`) is finite and non negative. For

all (y−`) ∈ D(p−`, y`), (y−`, y`) is weakly efficient.
b) For all (p−`, y`) ∈ R`−1

++ × O, the set D(p−`, y`) is nonempty. For all
y−` ∈ D(p−`, y`), y−` 6= 0 implies y` = f(y−`). If f is strictly quasi-
concave, then D(p−`, y`) is single valued.

c) For a fixed y` in O, the function p−` → C(p−`, y`) is continuous, homo-
geneous of degree 1, concave and weakly increasing.

d) For a fixed p−`, the cost function is weakly increasing with respect to y`.
If f is concave, C is convex with respect to the production level.
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e) If f is decreasing in the sense that for all (y−`, y
′
−`) ∈ (R`−1

− )2, y−` �
y′−` implies f(y−`) > f(y′−`), then the cost function is continuous. If
furthermoref is strictly quasi-concave, then D is continuous.

Proof. The properties of the cost function and the demand in inputs are very
similar to the ones of the expenditure functions and compensated demand,
so we refer to the proof of Proposition 2.3.6. �

The next proposition show the relation between the shape of the cost
function and the returns to scale.

Proposition 3.2.9. Let C be the cost function associated to the production
function f . Let p−` � 0 an input price. If the production exhibits increasing
(resp. constant, decreasing) return to scale, for all y` ∈ O, we have:

∀λ ∈ [0, 1], C(p−`, λy`) ≥ (resp. =, ≤)λC(p−λ, y`)

We provide a first order characterization of the demand of inputs when
the production function is differentiable.

Proposition 3.2.10. Let f be a production function and Y be the associated
production set. We assume that the production function f is differentiable on
−R`−1

++ and for every y−` ∈ −R`−1
++ there is at least one input k such that

Dykf(y−`) < 0. Let p−` ∈ R`−1
++ and y` ≥ 0.

a) If y−` ∈ D(p−`, y`), then there exists γ > 0 such that p−` = −γ∇f(y−`)
and f(y−`) = y`.

b) If f is quasi-concave and if y−` ∈ −R`−1
++ satisfies f(y−`) = y` and

p−` = −γ∇f(y−`) for some γ > 0, then y−` ∈ D(p−`, y`).

Let us now come back to the profit maximization.

Proposition 3.2.11. Let f be a production function and let Y be the asso-
ciated production set. Let y ∈ Y , y ∈ s(p) if and only if y−` ∈ D(p−`, y`) and
y` solves the maximization problem max p`y

′
` − C(p−`, y

′
`) on O.

Proof. If y ∈ s(p), then, for all y′−` ∈ Y (y`), (y′−`, y`) ∈ Y and thus
p · y = p−` · y−` + p`y` ≥ p−` · y′−` + p`y`. Consequently −p−` · y−` ≤
−p−` · y′−` which means that y−` ∈ D(p−`, y`). Let y′` ∈ O. Then, for all
ε > 0, it exists yε−` ∈ Y (y′`) such that C(p−`, y

′
`) ≤ −p−`yε−`+ε. Consequently,

(yε−`, y
′
`) ∈ Y and p · y = p−` · y−` + p`y` = p`y` −C(p−`, y`) ≥ p · (yε−`, y′`) ≥

p`y
′
` − C(p−`, y

′
`) − ε.Since it holds true for all ε > 0, one deduces that

p`y`−C(p−`, y`) ≥ p`y′`−C(p−`, y
′
`) and y` is a maximum of p`y

′
`−C(p−`, y

′
`)

on O.
Conversely, if y−` ∈ D(p−`, y`) and y` is a maximum of p`y

′
`−C(p−`, y

′
`) on

O, then for all y′ ∈ Y , one has y′−` ∈ Y (y′`) and thus −p−` ·y′−` ≥ C(p−`, y
′
`).
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Hence p · y′ = p`y
′
` + p−` · y′−` ≤ p`y′`−C(p−`, y

′
`) ≤ p`y`−C(p−`, y`) = p · y,

d’où y ∈ s(p). �

We can now characterize the elements in the supply using the partial
derivatives of the cost function.

Proposition 3.2.12. The production set Y is defined by a production func-
tion f . We assume that the cost function C is differentiable on −R`−1

++ × (O \
{0}). Let p ∈ R`++.

a) If y ∈ s(p) with y` > 0, then y−` = −∇p−`C(p−`, y`) and p` = C ′(p−`, y`)
where C ′ denotes the partial derivative of the cost function with respect
to the production level, which is called the marginal cost.

b) If the cost function C is convex with respect to the production level and
if y satisfies y−` = −∇p−`C(p−`, y`) and p` = C ′(p−`, y`), then y ∈ s(p).

This proposition shows that the output price is equal to the marginal cost
at the optimal production plan.

Proof. a) Using the same argument as in the proof of Proposition 2.3.7, one
proves that y−` = ∇p−`C(p−`, y`) since y−` minimizes the cost. So the result
is a direct consequence of the previous proposition.

b) We just have to check that the function p`y
′
` − C(p−`, y

′
`) is concave

when the cost function is convex. So the first order necessary condition is
sufficient. �

3.3 Exercises

Exercise 3.3.1. Compute the cost function for the following production
sets.

- Y = {(a, b) ∈ R2 | a ≤ 0, b ≤ αa2 + β|a|}, α > 0, β ≥ 0.

- Y = {(a, b) ∈ R2 | a ≤ 0, b ≤ α(1− eKa)}, α > 0,K > 0.

- Y = {(a, b) ∈ R2 | a ≤ 0, b ≤ α|a|}, α > 0.

- Y = {(a, b) ∈ R2 | a ≤ 0, b ≤ α|a|β}, α > 0, β > 0.

- Y = {(a, b) ∈ R2 | a ≤ 0, b ≤ max{|a|, 2|a| − 2}},
- Y = {(a, b, c) ∈ R3 | a ≤ 0, b ≤ 0, c ≤ |a|α|b|1−α}, 0 < α < 1.

- Y = {(a, b, c) ∈ R3 | a ≤ 0, b ≤ 0, c ≤
√
|αa+ βb|}, α > 0, β > 0.

- Y = {x ∈ R` | x1 ≤ 0, . . . , x`−1 ≤ 0, x` ≤ min{αi|xi|, i = 1, . . . , `− 1}}
- Y = {(a, b, c, d) ∈ R4 | a ≤ 0, b ≤ 0, c ≤ 0, d ≤ |a|+ min{|b|, |c|}}.
- Y = {x ∈ R3 | x1 ≤ 0, x2 ≤ 0, x3 ≤ α1|xi|+ α2|x2|}
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Exercise 3.3.2. In a three-good economy, a firm has two production units.
The first one produces the commodity C using the commodity A as input.
The production set of this unit is {(a, b, c) ∈ R3 | a ≤ 0, b ≤ 0, c ≤ |a|}. The
second unit produces the commodity C using the commodity B as input. The
production set of this unit is {(a, b, c) ∈ R3 | a ≤ 0, b ≤ 0, c ≤ b2}. Determine
the iso-output set, that is the set of baskets of inputs allowing to produce at
least a given quantity c ≥ 0 of output. Compute the cost function and the
demand of inputs. Compute the supply of this firm.

Exercise 3.3.3. In a three-good economy, a firm produces the commodity
C using the commodities A and B as inputs. The production function is :

f(a, b) = a(b− 1)

1) Show that the cost function is given by :

C(pA, pB , c) =

{
2
√
cpApB − pB if cpA

pB
≥ 1

cpA if cpA
pB

< 1

and compute the cost function and the demand of inputs.
2) Give the demand of inputs and the cost function when the production
function is :

g(a, b) =
√
a(b− 1)

3) The price of commodity C is supposed to be equal to 1. What is the supply
of the producer having the production function g.

Exercise 3.3.4. Compute the production function associated to the follow-
ing cost functions :

- C(y, p1, p2) = 2y1/2p
1/2
1 p

1/2
2

- C(y, p1, p2) = y(p1 + p
1/2
1 p

1/2
2 + p2)

Exercise 3.3.5. Compute the supply and the profit of the producers having
the following production sets :

- Y = {(a, b) ∈ R2 | a ≤ 0, b ≤ α|a|}, α > 0.

- Y = {(a, b) ∈ R2 | a ≤ 0, b ≤ k(1− eαa)}, k > 0, α > 0.

- Y = {(a, b) ∈ R2 | a ≤ 0, b ≤ α|a|β}, α > 0, β > 0.

- Y = {(a, b) ∈ R2 | a ≤ 0, b ≤ max{0,Log(−a)}}.
- Y = {(a, b, c) ∈ R3 | a ≤ 0, b ≤ 0, c ≤ k(|a|α|b|1−α)β}, α ∈]0, 1[, β ∈]0, 1[.

- Y = {(a, b, c) ∈ R3 | a ≤ 0, b ≤ 0, c ≤ (β|a|ρ+γ|b|ρ)
1
ρ }, β > 0, γ > 0, ρ > 0.

- Y = {(a, b, c) ∈ R3 | a ≤ 0, b ≤ 0, c ≤ min{−αa,−βb}γ}, α > 0, β > 0,
γ > 0.
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Exercise 3.3.6. We consider the following production set :

Y = {a, b, c) ∈ R3 | a ≤ 0, b ≤ 0, c ≤ 100|a|1/2|b|1/4}.
a) Compute the cost function c(pa, pb, c).
b) Compute the supply function and the profit function.

Exercise 3.3.7. In a two-commodity economy, we consider a producer hav-
ing the following production set :

Y1 = {(a, b) ∈ R2 | a ≤ 0, b ≤ k1|a|α}
where k1 is a positive real number and α ∈]0, 1[. We denote by pA > 0 and
pB > 0 the prices of the two commodities.
1) Give the profit and the supply of this producer with respect to the price
vector (pA, pB).
2) We assume now that they are n producers having the same production set
Y1. Give the aggregate supply of the production sector with respect to the
price vector (pA, pB).

Exercise 3.3.8. In a two-commodity economy, we consider a producer hav-
ing the following production set :

Yα = {(a, b) ∈ R2 | a ≤ 0, b ≤
√
−a+ α−

√
α}

où α est un paramètre réel positif ou nul.
1) Give the profit and the supply of this producer with respect to the price
vector (pA, pB).
2) We now assume that there is a second producer whose production set is
Yβ avec β ≥ α. What is the aggregated supply of the economy?

Exercise 3.3.9. In a two commodity economy, we consider a producer,
which uses the first commodity as input to produce the second one. The pro-
duction possibilities are represented by a production function f from ]−∞, 0]
to [0,+∞[. We assume that f is concave, continuous and decreasing and that
f(y1) ≥ −y1 for all y1 ≤ 0. Let p = (p1, p2) ∈ R2

++. We assume that p2
p1

> 1.

1) For all y1 ≤ 0, show that the value of the production (y1, f(y1)) at the
price p is larger than y1(p1 − p2).

2) Recall what is the definition of the supply of the producer with respect to
the price p.

3) Show that the supply for the price p is empty as a consequence of the first
question.

Exercise 3.3.10. In a three-dommodity economy, we consider a producer
whose cost function is

C(pA, pB , c) = 2c2p
2
3

Ap
1
3

B

Compute the supply and the profit of this producer with respect to the prices
pA, pB and pC .
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Exercise 3.3.11. Let Y be a closed convex production set of R`. Let p ∈
R`++. Let ȳ ∈ Y such that there exists r > 0; for all y ∈ Y , if ‖y − y′‖ ≤ r,
p · y ≥ p · y′. Show that y ∈ s(p).

Exercise 3.3.12. Let Y be a closed convex production set of R`. Let (p, p′) ∈
(R`++)2 and (y, y′) ∈ s(p)× s(p′). Show that (p− p′) · (y− y′) ≥ 0. Show that
the inequality is strict when y /∈ s(p) or y′ /∈ s(p′).

Exercise 3.3.13. Let Y be a nonempty closed convex production set of R`
satisfying the free-disposal assumption. We assume that there exists p ∈ R`++

such that π(p) < +∞. Let p̄ ∈ R`++. Let ȳ ∈ R` such that for all p ∈ R`++,
π(p) ≥ π(p̄) + ȳ · (p− p̄). Using Proposition 3.2.6, show that ȳ ∈ Y and then
that ȳ ∈ s(p̄).



4. Optimality in exchange economies

4.1 Pareto optimal allocations

We consider an exchange economy with a finite number ` of commodities
labeled by the superscript h = 1, . . . , ` and a finite number m of consumers
labeled by the subscript i = 1, . . . ,m. The preferences of each consumer i
(i = 1, . . . ,m) are represented by a utility function ui from R`+ to R. Each
consumer has an initial endowments ei ∈ R`+. The total initial endowments
of the economy is then e =

∑m
i=1 ei ∈ R`+.

The consumer will trade to get a final allocation (xi) ∈ (R`+)m. Since there
is no production, the final allocation must be feasible with respect to the total
initial endowments e, that is

∑m
i=1 xi = e. If (xi) is a feasible allocation, one

remarks that 0 ≤ xi ≤ e. Thus, the set of feasible allocations is closed, convex
and bounded. It is also nonempty since (e, 0, . . . , 0) is a feasible allocation.

In an economy with two goods and two consumers, one can use the Edge-
worth box to represent the set of feasible allocation. The Edgeworth box is
built by two orthogonal set of axis having opposite directions. The origin of
the first set of axis is e in the second set of axis and conversely. Every feasible
allocation is represented by a point in the box and conversely a point in the
box represents a feasible allocation. The allocation of the first consumer is
given by the coordinates of the point in the first set of axis and the allocation
of the second consumer by the coordinates of the point in the second set of
axis. Since the point is in the box, the coordinates in both sets of axis are
non-negative. The fact that the same point represents the allocations of the
two agents means that these allocations are feasible.

We now come to the Pareto criterion of optimality, which allows us to
compare feasible allocations. This criterion is a minimal condition, which
eliminates the feasible allocations, which are unanimously rejected by the
consumers.

Among the feasible allocations, we consider the following order relation.
An allocation (xi) is preferred in the sense of Pareto to an allocation (x′i) if for
all i, ui(xi) ≥ ui(x′i) and if for at least one consumer i0, ui0(xi0) > ui0(x′i0). In
other words, an allocation is preferred in the sense of Pareto if all consumers
prefer this allocation in the weak sense and at least one consumer prefers
strictly this allocation.
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Definition 4.1.1. An allocation (xi) ∈ (R`+)m is a Pareto optimum if it is
feasible and if there does not exist a feasible allocation (x′i) which is preferred
to (xi) in the sense of Pareto.

An allocation is then Pareto optimal if it does not exist an allocation
unanimously preferred by all consumers. The set of Pareto optimal alloca-
tions can be represented in the Edgeworth box when the preferences of the
consumers are linear or of the Leontieff type.

Pareto optima can also be represented graphically in the space of utilities
Rm. Let A = {(xi) ∈ (R`+)m |

∑m
i=1 xi = e} be the set of feasible allocations.

Let U from (R`+)m to Rm defined by

U(x1, . . . , xm) = (u1(x1), . . . , um(xm))

The set of feasible utilities is U(A) ⊂ Rm. If the utility functions are contin-
uous, then U(A) is compact. A utility vector v in U(A) is the image by U
of a Pareto optimal allocation if it does not exist an element v′ ∈ U(A) such
that v′ ≥ v and v′ 6= v. Hence the set of Pareto optimal utility vectors is the
north-east frontier of the set U(A) when we have two consumers.

An allocation can be Pareto optimal but not be consistent with a fairness
criterion or a criterion of justice. Indeed, if the preferences of all consumers
are strictly monotonic, then the allocation where the total initial endowments
is given to a unique consumer and nothing to the others is Pareto optimal.

We now characterize Pareto optima as solutions of an appropriate op-
timization problem. This allows us to easily obtain the existence and the
characterization of Pareto optimal allocations.

Proposition 4.1.1. Let us assume that for all i = 1, . . . ,m, ui is continuous
and strictly increasing on R`+. (x̄i) is a Pareto optimal allocation if and only
if (x̄i) is a solution of the following problem.

max
(xi)∈(R`+)m

u1(x1)

subject to

{
ui(xi) ≥ ui(x̄i) for all i = 2, . . . ,m,∑m
i=1 xi = e

From this proposition, we can derive the existence of a family of Pareto
optima.

Proposition 4.1.2. We assume that for all i = 1, . . . ,m, ui is continuous
and strictly increasing on R`+. For all v ∈ U(A), the set of feasible utilities,
the following optimization problem has at least one solution and every solution
is a Pareto optimum :

max
(xi)∈(R`+)m

u1(x1)

subject to

{
ui(xi) ≥ vi for all i = 2, . . . ,m,∑m
i=1 xi = e
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Furthermore, if v and v′ in U(A) are such that vi 6= v′i for at least one
i = 2, . . . ,m, then the solutions of the associated problems to v and v′ are
different.

Note that A is nonempty, hence U(A) is so, which implies that there exists
Pareto optimal allocations under the assumptions of this proposition.

Using Proposition 4.1.1, we now derive a first order characterization of
Pareto optimal allocations for quasi-concave and differentiable utility func-
tions. This result is the fundamental result of this section. In the Edgeworth
box, when the indifference curves are smooth, one remarks that if an alloca-
tion is Pareto optimal then the two indifference curves have the same tangent
at the point representing the allocation. If the preferences are furthermore
convex, then this condition is also sufficient for Pareto optimality.

Proposition 4.1.3. Let us assume that for all i = 1, . . . ,m, ui is contin-
uous and quasi-concave on R`+, differentiable on R`++ and ∇ui(x) ∈ R`++

for all x ∈ R`++. Then, (x̄i) ∈ (R`++)m is a Pareto optimal allocation if
and only if (x̄i) ∈ (R`++)m is a feasible allocation, that is

∑m
i=1 x̄i = e,

and all gradient vectors (∇ui(x̄i)) are positively collinear, that is there exists
(λ2, ..., λi, ..., λm) ∈ Rm−1

++ such that

∇u1(x̄1) = λi∇ui(x̄i), ∀ i = 2, . . . ,m

Proof. Let z ∈ R` such that ∇u1(x̄1) · z < 0. Then for all t > 0 small
enough, u1(x̄1 − tz) > u1(x̄1). Consequently, for all i > 1, ui(x̄i + tz) <
ui(x̄i) otherwise (x̄1− tz, x̄2, . . . , x̄i−1, x̄i + tz, x̄i=1, . . . , x̄m) would be Pareto
preferred to (x̄1, . . . , x̄m), which is incompatible with the Pareto optimality
of this allocation.

Hence, ϕ(t) = ui(x̄i + tz) satisfies ϕ(0) = ui(x̄i) and ϕ(t) < ϕ(0) for all
t small enough. Consequently, ϕ′(0) ≤ 0, that is, ∇ui(x̄i) · z ≤ 0. Since it
holds true for all z such that ∇u1(x̄1) · z < 0, this implies that ∇u1(x̄1) and
∇ui(x̄i) are positively proportional. �

Remark. Under the assumptions made in Proposition 4.1.3, one easily de-
duces the Pareto optimality conditions in terms of marginal rate of substitu-
tions. That is, (x̄i) ∈ (R`++)m is a Pareto optimal allocation if and only if
(x̄i) ∈ (R`++)m is a feasible allocation and all consumers’ marginal rates of
substitution between every pair of commodities must be equalized at (x̄i).

Using Proposition 4.1.3, we give now an example of the computation of
all Pareto optima in a simple economy.

Example. Let us consider an economy with two consumers :

u1(x1
1, x

2
1) = (x1

1)1/3(x2
1)2/3

u2(x1
2, x

2
2) = (x1

2)1/2(x2
2)1/2



54 4. Optimality in exchange economies

e = (3, 3)

ũ1(x1
1, x

2
1) = ln(u1(x1

1, x
2
1)) and ũ2(x1

2, x
2
2) = ln(u2(x1

2, x
2
2))

∇ũ1(x1
1, x

2
1) = ( 1

3x1
1

, 2
3x2

1

), ∇ũ2(x1
2, x

2
2) = λ2( 1

2x1
2

, 1
2x2

2

)

Hence the Pareto optima are the points given by the following formula :(
x1

1,
6x1

1

3 + x1
1

, 3− x1
1, 3−

6x1
1

3 + x1
1

)
, x1

1 ∈ [0, 3].

Using the characterization of the demand, one can reformulate Proposi-
tion 4.1.3 as follows.

Proposition 4.1.4. Let us assume that for all i = 1, . . . ,m, ui is continuous
and quasi-concave on R`+, differentiable on R`++ and ∇ui(x) ∈ R`++ for all
x ∈ R`++. Then a feasible allocation (x̄i) ∈ (R`++)m is Pareto optimal if and
only if there exists a price p ∈ R`++, such that x̄i = di(p, p · x̄i).

For a Pareto optimum, the price p given by the previous definition is called
a supporting price. In the Edgeworth box, the price p is a vector orthogonal to
the common tangent to the two indifference curves at the optimal allocation.

4.2 Exercises

Exercise 4.2.1. Find all Pareto optima of two-good, two-consumer economy
when the preferences are linear, when the preferences are of Leontieff type,
when the preferences of one consumer are linear and the one of the other
consumers are of Leontieff type.

Exercise 4.2.2. We consider a two-good two-consumer economy. The utility
functions are given by :

u1(a, b) = a
1
3 b

2
3

u2(a, b) = a
1
2 b

1
2

Find all Pareto optimal allocations whatever are the initial endowments of
the economy and draw the set of Pareto optimal allocation in the Edgeworth
box when the initial endowments are e = (4, 2).

Exercise 4.2.3. We consider a two-good two-consumer economy. The utility
functions are given by :

u1(a, b) = u2(a, b) = a+
√
b

Find all Pareto optimal allocations whatever are the initial endowments of
the economy and draw the set of Pareto optimal allocation in the Edgeworth
box when the initial endowments are e = (4, 2).
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Exercise 4.2.4. We consider a two-good two-consumer economy. The utility
functions are given by :

u1(a, b) = a+ b

u2(a, b) = a
2
3 b

1
3

The initial endowments of the economy are e = (4, 3). Find all Pareto
optimal allocations. First look for the Pareto optimal allocations such that
(a2, b2) ∈ R2

++.

Exercise 4.2.5. We consider an economy with m consumers and ` com-
modities. We assume that the preferences of all consumers are represented
by the same utility function u, which is supposed to be continuous, concave
and homogeneous, that is u(tx) = tu(x) for all t > 0 and x ∈ R`+ and contin-
uously differentiable on R`++. We denote by e ∈ R`++ the vectors of the total
initial endowments. Show that the Pareto optimal allocations in (R`++)m are
the allocations (tie) where ti > 0 and

∑m
i=1 ti = 1.
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5. Competitive equilibrium in an exchange
economy

5.1 Definition and first properties

We consider an exchange economy with a finite number ` of commodities
labeled by the superscript h = 1, . . . , ` and a finite number m of consumers
labeled by the subscript i = 1, . . . ,m. Their preferences are represented by
utility function ui from R`+ to R. Each consumer has an initial endowments
ei ∈ R`+.

We will consider an exchange process between the consumers correspond-
ing to an organized market with posted prices that determine the ratio of
possible trades between the goods.

For a price p� 0, a consumer can exchange a quantity xh > 0 of commod-
ity h against a quantity xk > 0 of commodity k if the ratio of the quantities

are the inverse of the ratio of prices, that is, x
h

xk
= pk

ph
, or again phxh = pkxk.

This means that the net trade (−xh, xk) has a zero value when it is evaluated
with the price p.

Taken the price as given, the consumer can compute her wealth ri(p) as
the value of her initial endowments p · ei. This allows her to determine all
affordable bundles of commodities for her on the market, that is the budget
set for the price p and the wealth ri(p). She can then compute her demand
di(p, ri(p)), which is the preferred consumption under the budget constraint.
We actually posit an important assumption. Indeed, the consumers do not
take into account the influence of the demand on the price formation. They
are supposed to have a competitive behavior. This assumption is often justi-
fied by the fact that the consumers are negligible with respect to the market.
It can also be coming from the fact that the consumers have no way in terms
of information and computation to determine their influence on the price
formation.

A Walras (or competitive) equilibrium is realized when the individual
demands are compatible with the feasibility constraint. This condition is
necessary in order to realize the trades that each agents want to do. For this
economic model, a price p can be observed on a market if demand and supply
are balanced, which allows the exchange to take place since they are physically
feasible. Thus, the price formation is explained by the matching between



58 5. Competitive equilibrium in an exchange economy

supply and demand, the later being defined by the consumer’s preferences
and the initial endowments.

We can now give the definition of a Walras equilibrium.

Definition 5.1.1. A Walras equilibrium of the economy E = ((ui, ei)
m
i=1) is

a price p∗ ∈ R`+ and allocations (x∗i ) ∈ (R`+)m satisfying :

a) For all i = 1, . . . ,m, x∗i is a solution of the optimization problem : Maximize ui(xi)
p∗ · xi ≤ p∗ · ei
xi ≥ 0

and

b) (Market Clearing Conditions)
∑m
i=1 x

∗
i =

∑m
i=1 ei.

We can represent a Walras equilibrium in the Edgeworth box. We first
remark that the two budget lines of the two consumers are identical. Indeed,
they go through the point representing the initial endowments and they are
orthogonal to the price. In the two sets of axis, the price has the same di-
rection since the axis have opposite directions. To get an equilibrium, the
two demands must have the same representation in both sets of axis. Hence
an equilibrium is represented by a budget line going through the point of
initial endowments and a point on this line such that in the sets of axis, the
indifference curves associated to this point have the budget line as tangent.

For example, one can graphically find the equilibrium price and the equi-
librium allocations when the two consumers have linear or Leontieff type
preferences.

We now give some properties of Walras equilibrium, which follows imme-
diately from the definition.

Proposition 5.1.1. Let (p∗, (x∗i )) be a Walras equilibrium of the economy
E = ((ui, ei)

m
i=1).

i) For all t > 0, (tp∗, (x∗i )) is a Walras equilibrium of the economy E.
ii) If the preferences of one consumer are strictly monotonic, then the equi-

librium price p∗ belongs to R`++.
iii) For all i = 1, . . . ,m, p∗ · x∗i = p∗ · ei.
iv) For all i = 1, . . . ,m, ui(x

∗
i ) ≥ ui(ei).

The first assertion shows that there always exists an indetermination on
the equilibrium price, that is a nominal indetermination, which does not
change the relative prices and has no influence on the equilibrium allocation.
So, when one look for an equilibrium price with at least one consumer having
monotonic preferences, one can only consider the simplex of R`, that is the
set {p ∈ R`+ |

∑`
h=1 p

h = 1}. This corresponds to a normalization, which
allows us to avoid the multiple solution due to the nominal indetermination.
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When one consumer has strictly monotonic preferences, one can normalize
the prices by considering that one commodity is a numéraire good, that is
has a price equal to 1.

Assert in (iii) shows that the value of the equilibrium allocation is always
equal to the value of the initial endowments, hence the net trade x∗i − ei has
a zero value. We also note that the consumer gets a final allocation, which is
always weakly preferred to the initial endowments. Thus, the participation
to the market leads never a consumer to a worse situation than the autarkic
solution where she keeps her initial endowments and does not participate to
the exchange.

The next proposition dates back to Léon Walras. It means that the equi-
librium on `− 1 markets are enough to get an equilibrium on the remaining
market when the equilibrium price is positive.

Proposition 5.1.2. Let us assume that the preferences are monotonic. Let
(p∗, (x∗i )) ∈ R`++ × (R`+)m such that

a) for all i = 1, . . . ,m, x∗i is a solution of the problem : Maximize ui(xi)
p∗ · xi ≤ p∗ · ei
xi ≥ 0

and

b) for all commodities h = 1, . . . , `− 1,
∑m
i=1 x

∗h
i =

∑m
i=1 e

h
i .

Then, (p∗, (x∗i )) is a Walras equilibrium of the economy E = ((ui, ei)
m
i=1).

The proof relies on the fact that the market clearing condition for the
commodity ` is satisfied as a consequence of the fact that all budget con-
straints are binding. The previous proposition allows us to remark that an
equilibrium is a solution of a system of `− 1 equations with `− 1 unknowns
when the demand is single valued. Indeed, to find an equilibrium price p in
the simplex of R`, it suffices to find a solution of

∑m
i=1(dhi (p) − ehi ) = 0 for

all h = 1, . . . , `− 1. Since in the simplex, the price of the commodity ` is de-
termined by the prices of the other commodities, we are actually in presence
of `− 1 unknowns.

Example. The previous propositions allow us to use a simplified system of
equation to find an equilibrium in particular when the number of commodities
is 2. Indeed, one can often fix the price of one commodity to 1 thanks to
the strict monotonicity of the preferences and one can look for the equality
between supply and demand on only one market. So one gets one equation
with one unknown. We now give an example of such computation for an
economy with two commodities and two consumers :

u1(x1
1, x

2
1) = (x1

1)1/3(x2
1)2/3, e1 = (1, 2) ;
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u2(x1
2, x

2
2) = (x1

2)1/2(x2
2)1/2, e2 = (2, 1) ;

The price of the first commodity p1 is chosen equal to 1;

d1(1, p2, 1 + 2p2) =
(1 + 2p2

3 , 2
1 + 2p2

3p2

)
;

d2(1, p2, 2 + p2) =
(2 + p2

2 ,
2 + p2

2p2

)
.

(1, p∗2) is an equilibrium price if one has an equality on the market of the
first commodity, that is, if

1 + 2p∗2

3
+

2 + p∗2

2
= 3

Thus p∗2 = 10
7 . Hence

(
p∗ =

(
1, 10

7

)
, x∗1 =

(
9
7 ,

9
5

)
, x∗2 =

(
12
7 ,

6
5

))
is

the unique Walras equilibrium of this economy satisfying p∗1 = 1.

Using the characterization of the demand when the utility functions are
differentiable (see Proposition 2.3.3) and Proposition 5.1.2 we can character-
ize the equilibrium as follows.

Proposition 5.1.3. We consider an exchange economy E = ((ui, ei)
m
i=1) and

we assume that the utility functions are continuous on R`+, differentiable on
R`++ and that ∇ui(x) ∈ R`++, for all i and for all x ∈ R`++.

a) If (p∗, (x∗i )) ∈ R`++× (R`++)m is a Walras equilibrium of the economy,
then there exists (λi) ∈ Rm++ such that

• for all i, ∇ui(x∗i ) = λip
∗ and p∗ · x∗i = p∗ · ei;

• for all commodities h = 1, . . . , `− 1,
∑m
i=1 x

∗h
i =

∑m
i=1 e

h
i .

b) Conversely, we furthermore assume that the utility functions are quasi-
concave on R`++. If (p∗, (x∗i )) ∈ R`++ × (R`++)m is such that there exists
(λi) ∈ Rm++ for which the two conditions above are satisfied, then (p∗, (x∗i ))
is a Walras equilibrium of the economy.

We end this first list of properties of Walras equilibrium by studying
the effect of some particular modifications of the initial endowments on the
equilibrium.

Proposition 5.1.4. In an exchange economy (ui, ei)
m
i=1, let (p∗, (x∗i )) be

a Walras equilibrium. Then (p∗, (x∗i )) is also a Walras equilibrium of the
economy (ui, ẽi)

m
i=1 for all (ẽi) ∈ (R`+)m satisfying p∗ · ẽi = p∗ · ei and∑m

i=1 ẽi =
∑m
i=1 ei. In particular, (p∗, (x∗i )) is a Walras equilibrium of the

economy (ui, x
∗
i )
m
i=1.



5.2 Optimality of equilibrium allocation 61

This proposition asserts that a redistribution of the initial endowments,
which does not modify the value of the initial endowments with respect to
the equilibrium price vector does not affect the equilibrium. In particular,
this is true for the equilibrium allocation. Hence, if the consumers want to
retrade after the distribution of equilibrium allocations, the same price is an
equilibrium price and no trade take place since no consumer wants to modify
her allocation.

5.2 Optimality of equilibrium allocation

Using Propositions 4.1.3 and 5.1.3, one easily deduces that the following fun-
damental property of the equilibrium allocations, that is the First Theorem
of welfare economics.

Proposition 5.2.1. Let us assume that for all i = 1, . . . ,m, ui is contin-
uous and quasi-concave on R`+, differentiable on R`++ and ∇ui(x) ∈ R`++

for all x ∈ R`++. If (p∗, (x∗i )) ∈ R`++ × (R`++)m is a Walras equilibrium of
the economy E = (ui, ei)

m
i=1, then the equilibrium allocation (x∗i ) is Pareto

optimal.

The First Theorem of welfare economics can be restated under very mild
assumptions.

Proposition 5.2.2. If ((x∗i ), p
∗) is a Walras equilibrium of the economy E =

(ui, ei)
m
i=1 and for all i, ui is monotonic, then the equilibrium allocation (x∗i )

is Pareto optimal.

The proof follows the same steps as the proof of Proposition 6.2.2.

We note that the exchange process on the market selects an allocation
which is Pareto optimal and individually rational (see Proposition 5.1.1).

If the initial endowments is a Pareto optimal allocation, we remark that
the unique equilibrium is a no-trade equilibrium where each consumer keeps
her initial endowments and the price vector is the unique (up to a scaling
parameter) supporting price of the Pareto optimal allocation. We now give
the statement of the Second Theorem of welfare economics in a pure exchange
economy.

Proposition 5.2.3. Let us assume that for all i = 1, . . . ,m, ui is continu-
ous, strictly quasi-concave on R`+, differentiable on R`++ and ∇ui(x) ∈ R`++

for all x ∈ R`++. If (x∗i ) ∈ (R`++)m is a Pareto optimal allocation of the
economy E = (ui, ei)

m
i=1, then there exists p∗ ∈ R`++ such that, up to a nor-

malization of the price, (p∗, (x∗i )) ∈ R`++ × (R`++)m is the unique Walras
equilibrium of the economy E∗ = (ui, x

∗
i )
m
i=1 where the equilibrium price is

given by
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p∗ =
∇u1(x∗1)

Dx∗`1
u1(x∗1)

Remark 1. In this case, we say that the Pareto optimal allocation (x∗i ) ∈
(R`++)m can be decentralized as a Walras equilibrium using transfers (taxes

or subsidies) (ti) ∈
(
R`
)m

such that
∑m
i=1 ti = 0 and p∗ · (ei + ti) = p∗ · x∗i

for all i = 1, . . . ,m. The equilibrium price p∗ given by Proposition 5.2.3 is
called the supporting price.

Remark 2. If the Pareto optima of an economy are known as well as the
associated supporting prices, one can compute the equilibrium for all initial
endowments. Indeed, the equilibrium associated to the initial endowments
(ei) are the elements (p∗, (x∗i )) such that (x∗i ) is a Pareto optimum, p∗ is the
supporting price and p∗ · x∗i = p∗ · ei for all i = 1, . . . ,m− 1.

5.3 Existence of an equilibrium

We now give without proof sufficient conditions for the existence of a Walras
equilibrium. See the proof in Debreu (1984).

Theorem 5.3.1. The exchange economy E = ((ui, ei)
m
i=1) has a Walras equi-

librium with a non-zero equilibrium price if the following sufficient condition
are satisfied :

(i) For all i = 1, . . . ,m, ui is continuous, quasi-concave and monotonic;
(ii) For all i = 1, . . . ,m, ei � 0.

This theorem shows that under our basic assumptions on the utility func-
tions, an equilibrium exists if the initial endowments of each consumer is
strictly positive, which means that each consumer has a positive quantity of
each commodity before the market. This assumption is quite restrictive and
it can be weaken at the price of a stronger assumption on the preferences.

Corollary 5.3.1. The exchange economy E = ((ui, ei)
m
i=1) has a Walras

equilibrium with a strictly positive equilibrium price if the following sufficient
condition are satisfied :

(i) For all i = 1, . . . ,m, ui is continuous, quasi-concave and strictly mono-
tonic;

(ii) For all i = 1, . . . ,m, ei ≥ 0 and
∑m
i=1 ei � 0.

We now give an example due to D. Gale. We consider a two-commodity
two-consumer linear exchange economy, which has no equilibrium since the
initial endowments are not strictly positive and the preferences not strictly
monotonic.
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u1(x1
1, x

2
1) = x2

1, u2(x1
2, x

2
2) = x1

2 + x2
2; e1 = (2, 2), e2 = (2, 0).

If one perturbs this economy taken the same utility functions and the
initial endowments eε1 = (2, 2− ε) and eε2 = (2, ε) for ε > 0, one gets an equi-
librium. When ε is small enough, the equilibrium allocations are ((0, 2), (4, 0))
with an equilibrium price pε in the simplex which converges to (0, 1) when ε
tends to 0. Note that the limit of the equilibrium price is not an equilibrium
price.

If one perturbs the utility functions keeping the initial endowments fixed,
with the same preferences for the second consumer and uε1(x1

1, x
2
1) = εx1

1 +x2
1,

one gets an equilibrium allocation ((2, 2), (2, 0)) when ε is small enough and
the equilibrium price( ε

1+ε ,
1

1+ε ) also converges to (0, 1).

In a two-commodity economy, we can give a simple proof of the existence
of an equilibrium by studying the excess demand function of the first com-
modity with respect to price of the first commodity, the second one being
normalized to 1. One can shows that the excess demand is positive is the
price is sufficiently small and negative if the price is sufficiently large. Since
the excess demand is continuous with respect to the price, one deduces that
the excess demand vanishes for some positive price. Using Proposition 5.1.2,
one then concludes that the excess demand for the second commodity also
vanishes for the same price and that one has find an equilibrium price.

In this simple framework, one can also show that the number of equilib-
rium is finite and odd when the derivative of the excess demand function
does not vanish for the equilibrium prices.

5.4 Exercises

Exercise 5.4.1. Figure 1 below represents an Edgeworth box with the ini-
tial endowments e1 of the first agent, the two indifference curves of the two
agents associated to the initial endowments. Using graphical arguments and
complementary explanations, answer to the following questions:

1) Is the allocation (e1, e2) Pareto optimal?
2) In which area of the Edgeworth box lies the equilibrium allocation?
3) Are the dotted lines possible equilibrium budget lines?
Figure 2 below represents an Edgeworth box with the initial endowments

e1 of the first agent, the curve of Pareto optimal allocations and the dotted
line represents the tangent to the indifference curve associated to x1, which is
on the Pareto optimal curve. Using graphical arguments and complementary
explanations, answer to the following questions:

1) Is it possible that x1 be the equilibrium allocation of the first agent?
2) Where are the initial endowments e1′ of the first agent in the Edgeworth

box such that x1 is an equilibrium allocation associated to e1′?
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Exercise 5.4.2. We consider an economy with two commodities A et B and
2 consumers. The utility functions are of the Cobb-Douglas type, that is :
ui(a, b) = aαib1−αi with αi ∈]0, 1[ for i = 1; 2. The initial endowments are
e1, e2 � 0.

1. Compute the excess demand function of this economy and show that it
satisfies the gross substitute property : if the price of one commodity
increases and the other one is kept fixed, then the excess demand of the
other commodity increases strictly.

2. Show that if all consumers have the same initial endowments e, then the
global excess demand is the same as the one of unique consumer having
initial endowments 2e and a utility function :
u(a, b) = aα1+α2b2−α1−α2

Give the equilibrium price as a function of e, α1 and α2.
3. Show that if all consumers have the same utility function, then the global

excess demand is the same as the one of a unique consumer with the same
utility function and initial endowments e1 + e2.
Give the equilibrium price as a function of e1 + e2 and α1.

Exercise 5.4.3. We consider an economy with two commodities A et B and
2 consumers. The utility functions are given by :

u1(a, b) = a
1
3 + b

2
3

u2(a, b) = a
2
3 + b

1
3

The initial endowments are e1 = (1, 2) and e2 = (1, 1). Show that the
trade to get the equilibrium allocation is such that the first consumer sells a
positive quantity of commodity A and buys a positive quantity of commodity
B. Do not try to compute the equilibrium allocation.

Exercise 5.4.4. We consider an economy with two commodities A et B
and 2 consumers. The global initial endowments are e = (3, 2). The Pareto
optimal allocations of this economy are ((a1, b1), (a2, b2)) ∈ (R2

+)2 such that : a1 + a2 = 3
b1 + b2 = 2
9b1 = 12a1 − 2a2

1

.

For all Pareto optimal allocation, ((a1, b1), (a2, b2)), the unique supporting
price is p = (2, 1). Find the Walras equilibrium of the economy where the

initial endowments of the two consumers are e1 = (5
2 ,

7
9) and e2 = (1

2 ,
11
9 ).

Exercise 5.4.5. We consider an economy with two commodities A et B and
2 consumers. The initial endowments are e1 = (1, 1) and e2 = (1, 1). The
utility functions are given by :

u1(a, b) = a
1
3 b

2
3

u2(a, b) = a
1
4 b

3
4

1. Find all Pareto optimal allocations.
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2. For equity of treatment, the planner wishes to obtain a Pareto optimal
allocation which guarantees the same allocation in commodity A for both
consumers. Which is this optimum?

3. To decentralize this optimum, the planner has the possibility to imple-
ment some transfers between the initial endowments of commodity A.
Determine the transfer which leads to a Walras equilibrium satisfying
the equity of treatment.
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e1

e1

x1

Figure 1

Figure 2



6. Production economy

6.1 Competitive equilibrium

We consider a production economy with a finite number ` of commodities
labeled by the superscript h = 1, . . . , `, a finite number m of consumers
labeled by the subscript i = 1, . . . ,m, and a finite number n of producers
labeled by the subscript j = 1, . . . , n. The preferences of each consumer i
are represented by a utility function ui from R`+ to R. Each producer j is
represented by a production set Yj included in R`.

We now consider a private ownership economy. This means that each
consumer i has an initial endowments ei ∈ R` and a portfolio of shares in the
firms (θij)

n
j=1 where θij ∈ [0, 1]. Globally these portfolios satisfy the condition∑m

i=1 θij = 1 for all j. This means that given the price p∗ and the production
plan (y∗j ) ∈

∏n
j=1 Yj , the wealth of the consumer i is given by

p∗ · ei +

n∑
j=1

θijp
∗ · y∗j

Note that

m∑
i=1

p∗ · ei +

n∑
j=1

θijp
∗ · y∗j

 = p∗ ·
m∑
i=1

ei +

n∑
j=1

y∗j

.
To summarize, a production economy is a collection

E =
(
R`, (ui, ei)mi=1, (Yj)

n
j=1, (θij)

i=m,j=n
i=1,j=1

)
We can now define a Walras (or competitive) equilibrium of a production

economy. With respect to an exchange economy, we add a further condition
that the production are taken in the supply for each producer and the wealth
of the consumers is computed by taking into account the share of the profits
of the firms.

Definition 6.1.1. A Walras equilibrium of the private ownership economy
E is an element ((x∗i ), (y

∗
j ), p∗) of (R`+)m × (R`)n × R`+ such that
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(a) [Profit maximization] for every j, y∗j is a solution of{
maximize p∗ · yj
yj ∈ Yj

(b) [Preference maximization] for every i, x∗i is a solution of
maximize ui(xi)
p∗ · xi ≤ p∗ · ei +

∑n
j=1 θijp

∗ · y∗j
xi ≥ 0

(c) [Market Clearing Conditions]

m∑
i=1

x∗i =
m∑
i=1

ei +
n∑
j=1

y∗j

We now give the basic properties of a Walras equilibrium.

Proposition 6.1.1. If ((x∗i ), (y
∗
j ), p∗) is a Walras equilibrium of the economy

E, then
(i) for every t > 0, ((x∗i ), (y

∗
j ), tp∗) is also a Walras equilibrium;

(ii) for every i, p∗ · xi = p∗ · ei +
∑n
j=1 θijp

∗ · y∗j ;
(iii) if for every j ∈ J , 0 ∈ Yj, then ui(x

∗
i ) ≥ ui(ei) for all i;

(iv) for all τ ∈ RI , ((x∗i ), (y
∗
j ), p∗) is a Walras equilibrium of the economy

Eτ =
(

(ui, τiei + (1− τi)(x∗i −
∑n
j=1 θijy

∗
j ))mi=1, (Yj)

n
j=1, (θij)

i=m,j=n
i=1,j=1

)
.

We also remark that if ((x∗i ), (y
∗
j ), p∗) is a Walras equilibrium of the econ-

omy E , then ((x∗i ), p
∗) is a Walras equilibrium of the pure exchange economy

Ẽ =
(
ui, ei +

∑n
j=1 θijy

∗
j

)m
i=1

Example. Let us consider an economy with two commodities, one producer
and one consumer :

u1(x1
1, x

2
1) = (x1

1)1/2(x2
1)1/2, e1 = (2, 1), θ11 = 1 ;

Y1 = {(y1
1 , y

2
1) ∈ R2 | y1

1 ≤ 0; y2
1 ≤

√
|y1

1 |} ;

d1(p1, p2, w) =
( w

2p1 ,
w

2p2

)
;

s1(p1, p2) =
(
− (p2)2

4(p1)2 ,
p2

2p1

)
, π1(p1, p2) =

(p2)2

4p1 ;

(p∗1, p∗2) is an equilibrium price if

2p∗1 + p∗2 +
(p∗2)2

4p∗1

2p∗1
= − (p∗2)2

4(p∗1)2 + 2.
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Let π∗ =
p∗2

p∗1
, we get the equation

2 + π∗ +
(π∗)2

4
2 = − (π∗)2

4 + 2.

Hence π∗ = 2(
√

3− 1). Consequently(
(1, 2(

√
3−1)),

(2 + 3
√

3
2 , 2 + 3

√
3

4(
√

3− 1)

)
,
(
−2−

√
3

2 ,
√

3−1
))

is the unique

equilibrium of this economy up to price normalization.

As in an exchange economy, the following result asserts that, at equilib-
rium, there is one redundant equation.

Proposition 6.1.2. Let us assume that all the preferences are monotonic.
Let (p∗, (x∗i ), (y

∗
j )) ∈ R`++ × (R`+)m ×

∏n
j=1 Yj such that

(a) [Profit maximization] for every j, y∗j is a solution of{
maximize p∗ · yj
yj ∈ Yj

(b) [Preference maximization] for every i, x∗i is a solution of
maximize ui(xi)
p∗ · xi ≤ p∗ · ei +

∑n
j=1 θijp

∗ · y∗j
xi ≥ 0

(c) for all commodities h = 1, . . . , `−1,
∑m
i=1 x

∗h
i =

∑m
i=1 e

h
i +
∑n
j=1 y

∗h
j .

Then, (p∗, (x∗i )) is a Walras equilibrium of the economy.

6.2 Optimality in production economies

We consider a production economy E =
(
R`, (ui)mi=1, (Yj)

n
j=1, e

)
, where e

denotes the total initial endowments. We denote by A(E) the set of attainable
allocations of the economy E , that is

A(E) =

((xi), (yj)) ∈ (R`+)m ×
n∏
j=1

Yj |
m∑
i=1

xi = e+

n∑
j=1

yj


Among the feasible allocations, we consider the following order relation.

An allocation ((xi), (yj)) is preferred in the sense of Pareto to an allocation
((x′i), (y

′
j)) if for all i, ui(xi) ≥ ui(x

′
i) and if for at least one consumer i0,

ui0(xi0) > ui0(x′i0). In other words, an allocation is preferred in the sense of
Pareto if all consumers prefer this allocation in the weak sense and at least
one consumer prefers strictly this allocation.
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Definition 6.2.1. An allocation ((xi), (yj)) ∈ A(E) is a Pareto optimum if
there does not exist an allocation ((x′i), (y

′
j)) ∈ A(E) which is preferred to

((xi), (yj)) in the sense of Pareto.

We remark that if ((x̄i), (ȳj)) is Pareto optimal, then (x̄i) is a Pareto

optimum of the pure exchange economy Ec =
(

(ui)
m
i=1, e+

∑n
j=1 ȳj

)
.

We now give a characterization of the Pareto optimal allocations in a
production economy, which is the extension of the result given in Proposition
4.1.3.

Proposition 6.2.1. We consider a production economy E =
(
R`, (ui)mi=1, (Yj)

n
j=1, e

)
and we assume that

a) for all i = 1, . . . ,m, ui is continuous and quasi-concave on R`+, differen-
tiable on R`++ and ∇ui(x) ∈ R`++ for all x ∈ R`++.

b) Y =
∑n
j=1 Yj is convex.

Then a feasible allocation ((x̄i), (ȳj)) ∈ (R`++)m ×
∏n
j=1 Yj is Pareto op-

timal if and only if

1) all gradient vectors (∇ui(x̄i)) are positively collinear, that is for all i =
2, . . . ,m, there exists λi > 0 such that ∇u1(x̄1) = λi∇ui(x̄i) and

2) for all j = 1, . . . , n, ȳj ∈ sj(∇u1(x̄1)).

Proof. From a remark above, (x̄i) is a Pareto optimum of the exchange econ-

omy Ec =
(

(ui)
m
i=1, e+

∑n
j=1 ȳj

)
. Then, from Proposition 4.1.3, all gradient

vectors (∇ui(x̄i)) are positively collinear.
We end the proof by contradiction. Let p̄ = ∇u1(x̄1). Let us now assume

that there exists j0 such that ȳj0 /∈ sj0(p̄). Then, from Proposition 3.2.1 (c),
ȳ
∑n
j=1 ȳj /∈ s(p̄) for the global production set Y =

∑n
j=1 Yj . Consequently,

there exists y ∈ Y such that p̄ · y > p̄ · ȳ. Let z = y − ȳ. For all t ∈ [0, 1],
ȳ + tz ∈ Y since Y is convex. For all i, ∇ui(x̄i) · z > 0 since ∇ui(x̄i) is
positively colinear to p̄. Consequently, for all i, there exists τi > 0 such
that ui(x̄i + τz) > ui(x̄i) for all τ ∈]0, τi[. Let t ∈]0, 1[ such that t/m <
mini{τi}. Let yt = ȳ + tz. Since yt ∈ Y , there exists (yi) ∈

∏n
j=1 Yj , such

that yt =
∑n
j=1 yj . For all i, let xi = x̄i + (t/m)z. Then, ((xi), (yj)) is a

feasible allocation, which Pareto dominates ((x̄i), (ȳj)). This contradicts the
fact that ((x̄i), (ȳj)) is a Pareto optimal allocation. �

Remark (first order conditions for Pareto optimality). Assume that
(ui, ei) satisfies the assumptions of Proposition 6.2.1. We remark that if in ad-
dition each production set Yj is represented by a quasi-convex differentiable
transformation function tj which satisfies all the assumptions of Proposition
3.2.7, then Proposition 6.2.1 can be reformulated in terms of first order con-
ditions in the following way:
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A feasible allocation ((x̄i), (ȳj)) ∈ (R`++)m × (R`)n is Pareto optimal if
and only if

1. tj(ȳj) = 0 for all j = 1, . . . , n, and

2. all gradient vectors (∇ui(x̄i)) and (∇tj(ȳj)) are positively collinear, i.e.
for all i = 2, . . . ,m there exists λi > 0 such that

∇u1(x̄1) = λi∇ui(x̄i)

and for all j = 1, . . . , n there exists δj > 0 such that

∇u1(x̄1) = δj∇tj(ȳj)

In particular, from the conditions given above one easily deduces the
Pareto optimality conditions in terms of marginal rate of substitutions and
marginal rates of transformations. That is, a feasible allocation ((x̄i), (ȳj)) ∈
(R`++)m× (R`)n is Pareto optimal if and only if tj(ȳj) = 0 for all j = 1, . . . , n
and:

a) all consumers’ marginal rates of substitution between every pair of
commodities must be equalized at (x̄i),

b) all firms’ marginal rates of transformation between every pair of com-
modities must be equalized at (ȳj),

c) every consumer i’s marginal rates of substitution at x̄i must equal every
firm j’s marginal rates of transformation at (ȳj) for all pair of commodities.

We now state the First Theorem of welfare economics, which shows that
the equilibrium allocations are Pareto optimal under very mild assumptions.
In particular, this result implies that the global production is weakly efficient
in the global production set.

Proposition 6.2.2. If ((x∗i ), (y
∗
j ), p∗) is a Walras equilibrium of the private

ownership economy E =
(
R`, (ui, ei)mi=1, (Yj)

n
j=1, (θij)

i=m,j=n
i=1,j=1

)
and for all i,

ui is monotonic, then the equilibrium allocation ((x∗i ), (y
∗
j )) is Pareto optimal.

Proof. By contraposition. If ((x∗i ), (y
∗
j )) is not Pareto optimal, then there

exists a feasible allocation ((xi), (yj)) such that ui(xi) ≥ ui(x
∗
i ) for every i

and a consumer i0 such that ui0(xi0) > ui0(x∗i0). From the very definition
of a Walras equilibrium, this implies that p∗ · xi0 > p∗ · x∗i0 . We now show
that p∗ · xi ≥ p∗ · x∗i for all i. If p∗ · xi < p∗ · x∗i , since ui is monotonic, there
exists x′i ∈ R`+, satisfying p∗ · x′i ≤ p∗ · x∗i and ui(x

′
i) > ui(xi) ≥ ui(x

∗
i ).

This contradicts the fact that x∗i maximizes the utility under the budget
constraint. So p∗ · xi ≥ p∗ · x∗i for all i. Consequently,
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p∗ ·
m∑
i=1

xi > p∗ ·
m∑
i=1

x∗i = p∗ · (
∑
j

y∗j + e)

But
∑m
i=1 xi =

∑
j yj + e implies p∗ ·

∑m
i=1 xi = p∗ · (

∑
j yj + e), hence

p∗ ·
∑
j yj > p∗ ·

∑
j y
∗
j . This implies that for at least one producer j0, p∗ ·yj0 >

p∗ ·y∗j0 . But this contradicts the fact that the producer j0 maximizes its profit
for the price p∗ at y∗j0 . �

We now give below the statement of the Second Theorem of welfare eco-
nomics in a production economy, which is a consequence of the result given
in Proposition 6.2.1. Note that we need stronger assumptions than in the
First Theorem of welfare economics, in particular the quasi-concavity of the
utility functions and the convexity of the global production set. We can state
the following proposition in other words showing that a Pareto optimal allo-
cation of a production economy is an equilibrium allocation if we allow for
some transfers of wealth among the consumers, that is some redistribution of
the initial endowments and an appropriate assignment of shares.

Proposition 6.2.3. Under the assumptions of Proposition 6.2.1, if ((x̄i), (ȳj)) ∈
(R`++)m ×

∏n
j=1 Yj is Pareto optimal, there exists a price p̄ ∈ R`++ such that

a) for every j, ȳj is a solution of{
Maximize p̄ · yj
yj ∈ Yj

b) for all i, x̄i is a solution of Maximize ui(xi)
p̄ · xi ≤ p̄ · x̄i
xi ≥ 0

c)
∑m
i=1 x̄i = e+

∑n
j=1 ȳj .

The existence of Pareto optimal allocations in a production economy is
slightly more demanding than in an exchange economy. Indeed, it is necessary
to have a bounded set of attainable allocations, which is always the case in
an exchange economy with non-negative consumptions.

Proposition 6.2.4. The production economy E =
(
R`, (ui)mi=1, (Yj)

n
j=1, e

)
has a Pareto optimal allocation if the utility functions are continuous and
(
∑n
j=1 Yj + e) ∩ R`+ is bounded and closed.

Proof. It suffices to remark that the following maximization problem has a
solution ((x̄i), ȳ).

maximize
∑m
i=1 ui(xi)∑m

i=1 xi = y + e
y ∈

∑n
j=1 Yj

xi ∈ R`+ for all i

Furthermore, there exists (ȳj) ∈
∏n
j=1 Yj such that ȳ =

∑n
j=1 ȳj . Finally,

one easily checks that ((x̄i), (ȳj)) is a Pareto optimal allocation. �



6.3 Existence of an equilibrium in production economies 73

6.3 Existence of an equilibrium in production economies

We are now giving the existence result for a Walras equilibrium in a produc-
tion economy.

Theorem 6.3.1. The economy E = ((ui, ei), (Yj), (θij)) has a Walras equi-
librium if (ui, ei) satisfies the assumptions of Theorem 5.3.1 and

(i) for all j = 1, . . . , n, Yj is closed, convex and satisfies the possibility of
inactivity.

(ii) The total production set Y =
∑n
j=1 Yj satisfies the irreversibility condi-

tion Y ∩−Y = {0} and the impossibility of free production Y ∩R`+ ⊂ {0}.

We can remark that the convexity assumption is a fundamental require-
ment for the existence of a Walras equilibrium. We now give an example
of a two-commodity economy with one producer and one consumer with no
equilibrium only because the production set is not convex.

` = 2, m = n = 1. u1(x1, x2) = x1x2, Y = {(y1, y2) ∈ R2 | y1 ≤ 0, y2 ≤
0 if y1 > −1, y2 ≤ 1 if y1 < −1}, e1 = (2, 1).

The proof of Theorem 6.3.1 is beyond the scope of this course. We just
give a sketch of the proof in a two-commodity economy A and B with one
producers producing commodity B using commodity A as input.

Let us consider a production economy E = ((ui, ei), (Y1), (θi)) with ` = 2.
We assume that the utility functions are continuous, strictly quasi-concave,
continuously differentiable on R2

++, with ∇ui(xi)� 0 for all i and xi ∈ R2
++.

We also assume that ei � 0 for all i. We finally assume that the production
set is defined by a continuous, concave production function from R− to R+

satisfying f(0) = 0 and f is differentiable on R−− with f ′(a) < 0 for all
a < 0.

Since f is concave, f has a negative left derivative at 0 denoted f ′(0),
which can be equal to −∞. We normalize the price by pA = 1. From
Proposition 2.3.1, the demand functions of the consumers are continuous
on R2

++ × R++. For each i, we let

pBi =
∂ui(ei)
∂b

∂ui(ei)
∂a

From the characterization of the demand in Proposition 2.3.3, one easily
checks that dBi ((1, pB), eAi + pBeBi ) > eBi if pB < pBi and dBi ((1, pB), eAi +
pBeBi ) < eBi if pB > pBi .

Consequently, if pB ≤ mini{pBi }, then zB(pB) =
∑m
i=1 d

B
i ((1, pB), eAi +

pBeBi )− eBi is positive and if pB ≥ maxi{pBi }, then zB(pB) is negative.
We now consider a price pB ∈]0, pB0 = −1

f ′(0) ]. Note that this case has to be

considered only if f ′(0) is finite. If there exists p∗B in this interval such that
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zB(p∗B) = 0, then
(
(1, p∗B), (di((1, p

∗B), eAi + p∗BeBi )), 0
)

is an equilibrium
of the production economy as well as an equilibrium of the exchange economy
((ui, ei)).

If such p∗B does not exists, note that zB(pB0 ) > 0. We now consider for
each a ∈ [a = −

∑m
i=1 e

A
i , 0]1 the following functions:

pB(a) =
−1

f ′(a)
, wi(a) = eAi + pB(a)eBi + θi(a+ pB(a)f(a))

and

z̃B(a) =

m∑
i=1

(
dBi ((1, pB(a)), wi(a))− eBi

)
− f(a)

We remark that z̃B is continuous. If pB0 = 0, one remarks that z̃B(a) is
positive when a is small enough since pB(a) tends to 0 when a tends to 0 and
the profit a+ pB(a)f(a) also tends to 0 . If pB0 > 0, one remarks that z̃B(0)
is positive since z̃B(0) = zB(pB0 ). For a = a, the Walras law implies:∑m

i=1

(
dAi ((1, pB(a)), wi(a))− eBi

)
+

pB(a)
∑m
i=1

(
dBi ((1, pB(a)), wi(a))− eBi

)
=∑m

i=1(eAi + pB(a)eBi ) + a+ pB(a)f(a)

Hence, since a = −
∑m
i=1 e

A
i , one gets,

pB(a)z̃B(a) +

m∑
i=1

(
dAi ((1, pB(a)), wi(a))− eBi

)
= 0

which implies z̃B(a) < 0. Consequently, there exists a∗ ∈]a, 0[ such that
z̃B(a∗) = 0. So, one easily checks that (1, pB(a∗), (xi(a

∗)), (a∗, f(a∗)) is a
Walras equilibrium with xi(a

∗) = di((1, p
B(a∗)), wi(a

∗)).

6.4 Exercises

Exercise 6.4.1. Determine graphically the unique equilibrium of an econ-
omy with two commodities, two consumers, one producer when the consumers
have linear utility functions, the producer has a constant return technology
using the first commodity as input and the second one as output.

Exercise 6.4.2. We consider an economy with two goods A and B, two
consumers and one producer with the following characteristics:

Y = {(a, b) ∈ R2 | a ≤ 0, b ≤
√
−a}

u1(a, b) = a2b, u2(a, b) = ab2.
The initial endowments are e1 = e2 = (1, 0) and each consumer receives

half of the profit of the unique firm. We normalize the price by choosing
pA = 1.

1 If pB0 = 0, we do not consider the value a = 0.
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1) Compute the supply function of the producer and the demand functions
of the consumers with respect to the price pB .
2) Determine the unique Walras equilibrium of this economy. Is the allocation
Pareto optimal?
3) We now suppose that the economy has n identical producers with the
same production set Y . Each consumer receives half of the profit of each
firm. Determine the unique Walras equilibrium with respect to n. What is
the limit of the equilibrium price when n converges to +∞. How vary the
equilibrium utility levels when n increases? Is the entry of new producers
profitable to the consumers?

Exercise 6.4.3. We consider an economy with two goods, two producers
and one consumer. The characteristics of the agents are the following:

Y1 = {(a, b) ∈ R2 | a ≤ 0, b ≤
√
−a+ 1− 1}

and
Y2 = {(a, b) ∈ R2 | a ≤ 0, b ≤

√
−a+ 2−

√
2}

u(a, b) = aγb1−γ

where γ ∈]0, 1[. The initial endowments is e = ( 39
2 ,
√

2). We consider a Walras
equilibrium of this economy (x∗, y∗1 , y

∗
2 , p
∗). We know the global production

y∗1 + y∗2 = (− 3
2 , 2 −

√
2) and we let p∗A = 1. Find p∗B then y∗1 , y∗2 , x∗ and

finally γ.

Exercise 6.4.4. We consider an economy with two commodities A and B,
two producers and one consumer. The characteristics of the agents are the
following:

Y1 = {(a, b) ∈ R2 | a ≤ 0, b ≤ −a};

Y2 = {(a, b) ∈ R2 | a ≤ 0, b ≤ max{−2a− 2, 0}, b ≤ 4}.

u(a, b) = ab.

The initial endowments are e = (4, 4).
1) Determine the total production set Y = Y1 + Y2.
2) The aim of this question is to show that this economy has no Walras equi-
librium. We assume by contraposition that there exists a Walras equilibrium
(p∗, x∗, y∗1 , y

∗
2) with p∗A = 1.

2a) Show that the four following cases are the only ones possible:

1) p∗B = 1, y∗1 = (−a, a), a ≥ 0, y∗2 = (−3, 4);

2) p∗B ∈] 34 , 1[, y∗1 = (0, 0), y∗2 = (−3, 4) ;

3) p∗B = 3
4 , y
∗
1 = (0, 0), y∗2 = (−3, 4) ou (0, 0);

4) p∗B < 3
4 , y
∗
1 = (0, 0), y∗2 = (0, 0)..
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2b) Show that x
∗A

x∗B
= p∗B .

2c) Using the market clearing condition, show that there is no equilibrium
3) Can you explain why there is no equilibrium?
4) Show that there exists an equilibrium in this economy if the second pro-
ducer follow the average pricing rule, that is p∗ ·y∗2 = 0 instead of maximizing
the profit.

Exercise 6.4.5. We consider an economy with two commodities A and B,
one producer and one consumer. The production set is:

Y = {(a, b) ∈ R2 | a ≤ 0, b ≤
{

0 if a ∈ [−1, 0]√
−a− 1 if a ≤ −1

}
The utility function of the unique consumer is u(a, b) = min{a, b} and

his initial endowments are e = (3, 1). We normalize the price by choosing
pA = 1.
1) Draw the production set and the cost function.
2) Draw one indifference curve and determine the demand of the consumer.
3) Compute the supply of the producer with respect to the price pB .
4) Let (x∗, y∗) a feasible allocation and p∗B > 0. We assume that x∗ is the
demand of the consumer for the price p∗B and the wealth w∗ = (1, p∗B) · (e+
y∗) and that y∗ is weakly efficient. Show that :

x∗A = x∗B = y∗A + 3 = y∗B + 1 =
√
−y∗A − 1 + 1

5) Compute the values of (x∗A, x
∗
B , y

∗
A, y

∗
B).

6) Show graphically that (x∗, y∗) is a Pareto optimal allocation.
7) Show that if (x̄, ȳ, p̄B) is a Walras equilibrium, then (x̄, ȳ) = (x∗, y∗).
8) Deduce from the previous questions that this economy has no Walras
equilibrium. Show that it has an equilibrium for the average pricing rule
where p∗ · y∗ = 0.

Exercise 6.4.6. We consider an economy with two commodities A and B,
two consumers and one producer. The price of the commodity A is normalized
to 1. The two consumers have the same preferences represented by the utility
function u(a, b) = ab. The initial endowments are e1 = (1, 2) and e2 = (4, 1).
The producer produces the commodity B using the commodity A as input
with constant return technology. The production set is:

Y = {(a, b) ∈ R2 | a ≤ 0, b ≤ −αa}

with α > 0.
1) Compute the demand of the consumers with respect to pB and the wealth
w > 0.
2) Compute the supply and the profit of the producer with respect to the
price pB and the marginal productivity α.
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3) Show why the share of the consumers on the profit of the firm has no
influence on the Walras equilibrium in this economy.
4) Compute the unique Walras equilibrium of this economy with respect to
α.
5) Give the utility level of the consumers with respect to the marginal
productivity α.
6) Show that the utility of the second consumer is increasing.
7) Show that the utility of the first consumer is constant, then decreasing
and finally increasing.
8) Can you explain the differences of the behavior of the utility levels of the
consumers with respect to the marginal productivity?

Exercise 6.4.7. Find all Pareto optimal allocation of the economy with two
commodities A and B, two consumers and one producer with the following
characteristics:

u1(a, b) = b, u2(a, b) = min{6a, b}, e = (20, 50),
Y1 = {(a, b) ∈ R2 | a ≤ 0, b ≤ −a},

Exercise 6.4.8. We consider an economy with 2 goods, 2 consumers and
one producer. The utility functions are:

u1(a, b) = a
1
3 b

2
3 and u2(a, b) = a

1
2 + b

1
2

The production set is :

Y = {(a, b) ∈ R2 | a ≤ 0, b ≤ −a}

and the global initial endowments are e = (2, 1). One looks for all Pareto
optimal allocations ((a1, b1), (a2, b2), y) of this economy such that y 6= 0 and
a1, b1, a2, b2 are positive.
1) Show that y = (−t, t) with t > 0 and that ∇u1(a1, b1) and ∇u2(a2, b2) are
positively proportional to (1, 1).
2) Show that b1 = 2a1 and a2 = b2.
3) Show that all Pareto optimal allocations satisfying the required conditions
are ((−1 + 2t,−2 + 4t), (3− 3t, 3− 3t), (−t, t)) avec t ∈] 1

2 , 1[.
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6. Gabszewicz J.J., Théorie Microéconomique, CLET De Boeck, (1986).
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